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Abstract 

Background  While transcription factor (TF) regulation is known to play an important role in osteoblast development, 
differentiation, and bone metabolism, the molecular features of TFs in human osteoblasts at the single-cell resolution 
level have not yet been characterized. Here, we identified modules (regulons) of co-regulated genes by applying sin-
gle-cell regulatory network inference and clustering to the single-cell RNA sequencing profiles of human osteoblasts. 
We also performed cell-specific network (CSN) analysis, reconstructed regulon activity-based osteoblast development 
trajectories, and validated the functions of important regulons both in vivo and in vitro.

Results  We identified four cell clusters: preosteoblast-S1, preosteoblast-S2, intermediate osteoblasts, and mature 
osteoblasts. CSN analysis results and regulon activity-based osteoblast development trajectories revealed cell devel-
opment and functional state changes of osteoblasts. CREM and FOSL2 regulons were mainly active in preosteoblast-
S1, FOXC2 regulons were mainly active in intermediate osteoblast, and RUNX2 and CREB3L1 regulons were most active 
in mature osteoblasts.

Conclusions  This is the first study to describe the unique features of human osteoblasts in vivo based on cellular 
regulon active landscapes. Functional state changes of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons regarding 
immunity, cell proliferation, and differentiation identified the important cell stages or subtypes that may be predomi-
nantly affected by bone metabolism disorders. These findings may lead to a deeper understanding of the mecha-
nisms underlying bone metabolism and associated diseases.

Keywords  Osteoblast, Bone metabolism, Single-cell RNA sequencing, Transcription factor, Cell-specific network

*Correspondence:
Hongmei Xiao
hmxiao@csu.edu.cn
Hongwen Deng
hdeng2@tulane.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-022-00448-2&domain=pdf


Page 2 of 21Wang et al. Human Genomics           (2023) 17:11 

Introduction
Bone homeostasis is highly dependent on coordinated 
and sequential actions by osteoblasts, osteoclasts, and 
osteocytes [1]. Osteoblasts mainly promote bone for-
mation and influence bone resorption in this dynamic 
and well-balanced regulation [1, 2]. Under induction by 
a series of key pathways and transcription factors (TFs), 
osteoblasts reach maturity and actively modify the bone 
microenvironment [3–7]. For example, runt-related tran-
scription factor 2 (RUNX2) is an early marker and mas-
ter TF for osteoblast differentiation that shows different 
activation patterns through the osteoblast differentiation 
process [8–11]. Targeted disruption of RUNX2 results in 
a complete lack of bone formation, owing to maturational 
arrest of osteoblasts [12]. Thus, exploring the dynamic 
changes of gene function and TF activation, from early to 
mature stages of osteoblast differentiation, is important 
in understanding the pathophysiology of bone homeosta-
sis and related bone loss disease.

Previous studies have provided evidence for heteroge-
neity among osteoblasts [13, 14], including our previous 
study which provided the first unbiased examination of 
the cellular landscape of freshly isolated human osteo-
blasts via single-cell RNA sequencing (scRNA-seq) [15]. 
We identified cell heterogeneity among human osteo-
blasts in  vivo, and preliminarily explored transcriptome 
dynamic changes based on gene expression. Accumulat-
ing evidence suggested that many pathophysiological 
processes are not only controlled by the expression states 
of one or several molecules but rather by coordinated 
expression changes of a number of genes [16–19]. Net-
work analysis, accounting for expressional changes of 
multiple genes simultaneously, provides an opportunity 
to explore specific biological processes more comprehen-
sively, under conditions resembling their natural biologi-
cal state. However, no research has explored osteogenic 
processes based on changes in TF networks and gene 
interactions at the single-cell level.

Single-cell regulatory network inference and cluster-
ing (SCENIC) is a method of performing simultaneous 
reconstruction of gene regulatory networks, permit-
ting identification of regulons and cell states [20]. Regu-
lons are composed of a TF as regulatory gene and the 
target genes of the TF. The regulatory gene generally 
regulates  the regulon as a unit. Another approach is to 
construct a cell-specific network (CSN), separate gene 
regulatory networks for individual cells, which allows for 
identification of cell type heterogeneity based on multi-
ple genes and their co-expressions [16]. TF networks and 
CSN analysis have been efficiently applied to provide 
potentially impactful insights regarding embryonic devel-
opment, aging processes, and tumorigenesis [16–19].

TF abnormalities are known to be related to some 
common skeletal diseases [21–23]. For example, clini-
cal research has revealed associations between Osx and 
age-related osteoporosis [22]. In the present study, we 
performed TF network and CSN analysis in human oste-
oblasts for the first time, with the objective of exploring 
their biological function in bone-related physiological 
processes. Our work revealed five important regulons 
and permitted reconstruction of osteoblast development 
trajectories based on regulon activity. Our findings pro-
vide a framework for understanding gene relationships 
during osteogenesis at the single-cell level, thereby laying 
the foundation for exploring characteristic gene func-
tions from a novel TF regulation perspective.

Materials and methods
Single‑cell RNA sequencing (scRNA‑seq) data information
As described in our recent study [15], the study subject 
was a 31-year-old male patient who suffered from osteo-
arthritis and osteopenia (BMD T-score: 0.6 at lumbar 
vertebrae, − 1.1 at total hip). His cardinal manifesta-
tions were hip pain and limited activity/functionality 
of the hip joint. He underwent hip replacement surgery 
at the Xiangya Hospital of Central South University to 
treat osteoarthritis. The subject had bone mineral den-
sity (BMD) measurement by dual energy x-ray absorpti-
ometry (DXA) prior to surgery and was screened with a 
detailed questionnaire for medical history and a physical 
examination to rule out preexisting chronic conditions 
which may significantly influence bone metabolism, such 
as diabetes mellitus, renal failure, liver failure, hemato-
logic diseases, disorders of the thyroid/parathyroid, mal-
absorption syndrome, malignant tumors, and previous 
pathological fractures [15]. The femoral head was col-
lected from the patient during hip replacement surgery. 
Freshly harvested bone tissue fragments were incubated 
with highly purified, endotoxin-free type II collagenase. 
Collected cells were incubated with human CD31/34/45-
PE, human ALPL-APC, and 7-AAD antibody. After nega-
tive selection of 7-AAD, ALPL + /CD45/34/31- cells were 
collected as osteoblasts on the BD FACS Aria II sorter. 
The scRNA-seq library was constructed using the Single-
Cell 3’ Library Gel Bead Kit, version 3 (10X Genomics), 
and 150  bp paired-end sequencing was performed on 
Illumina Novaseq6000 platform. Cellular barcodes in raw 
sequencing data were demultiplexed using Cell Ranger 
analysis pipeline v3.0. Reads were aligned to human 
genome version GRCh38 (hg38). Low-quality cells or 
empty droplets often have very few genes, while cell dou-
blets or multiplets may exhibit an aberrantly high gene 
number. We set the lower gene number limit (200 genes) 
to eliminate low-quality cells or empty droplets and the 
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upper limit (5000 genes) to eliminate cell doublets or 
multiplet droplets (Additional file  1: Fig. S1A) [15, 24]. 
For osteoblast lineage cell filtering, only cells expressing 
the gene RUNX2, an early marker of osteoblast differ-
entiation, were included for further analysis. Cells with 
a mitochondrial gene percentage over 15% or expressed 
hemoglobin genes (HBM, HBA1, HBA2 and HBB) were 
also discarded. The filtered gene expression matrix con-
taining the remaining 3507 cells was normalized to a 
total of 10,000 molecules per cell by the NormalizeData 
function in Seurat R package (v3.6.1) [25].

Gene expression‑based osteoblast lineage cell clustering
The top 2000 highly variable genes selected by the Find-
VariableFeatures function in Seurat R package were 
used as inputs for initial principal component analysis 
(PCA). We then performed a jackstraw analysis [26] 
to select principal components (PCs) which separated 
the cells effectively. Afterward, the first 18 PCs at the 
plateau region of the elbow plot (Additional file 1: Fig. 
S1B) were used for uniform manifold approximation 
and projection (UMAP) dimension reduction. The per-
centage of variance associated with each PC was cal-
culated according to the standard deviations (stdev) 
in the elbow plot using the formula: stdev**2/sum 
(stdev**2) * 100. The cumulative variance explained by 
the 18 selected PCs was 54.70% (Additional file 1: Fig. 
S1C). Cell clustering results were visualized in a two-
dimensional panel using DimPlot function in Seurat R 
package.

Single‑cell regulatory network inference and clustering 
(SCENIC) analysis
We calculated regulation modules based on human hg19 
transcriptional regulator database (RcisTarget in Bio-
conductor on hg19-tss-centered-10  kb-7species.mc9nr.
feather) using SCENIC R package [20]. Target genes 
that were co-expressed with transcription factors were 
identified using GENIE3. Regulons were identified from 
co-expression and DNA motif analyses. Area under the 
curve (AUC) scores were calculated to evaluate regulon 
activity as a whole (as opposed to the TF or individual 
genes alone) in each cell using AUCell function. This 
approach is robust against drop-out events of individual 
genes and provides a unique perspective to explore cell 
states. The output matrix, with the AUC score for each 
regulon in each cell, was used directly as continuous 
input to perform cell clustering and trajectory infer-
ence. The regulon regulatory network was visualized in 
Cytoscape (v3.6.1), and the Kruskal–Wallis test was used 
for multi-group expression comparison (Student’s t test 

is not appropriate in this study because the data under 
analysis do not follow normal distributions).

Constructing single‑cell trajectories in osteoblast
To discover developmental transitions, single-cell devel-
opmental trajectories were constructed in Monocle 2 R 
package (v2.14.0) [27]. We used highly variable features to 
sort cells into pseudotime order with “orderCells” func-
tion. “DDRTree” and “UMAP” were applied to reduce 
dimensional space and their results were used to perform 
cell trajectory visualization. Trajectory plots were gener-
ated by the “plot_cell_trajectory” function, while dendro-
grams were generated by “plot_complex_cell_trajectory” 
function in Monocle 2.

Diffusion mapping is another method for dimension-
ality reduction that is often used to identify bifurcation 
and pseudotimes. Our analysis was conducted using the 
R Bioconductor destiny package (v3.0.1) [28] with default 
parameters. The average cell-to-cell transition probabili-
ties between cell types were calculated using destiny and 
presented in a heatmap. It should be noted that gene 
expression matrix and AUC score matrix served as the 
input values to construct gene expression-based and reg-
ulon activity-based osteoblast trajectories, respectively.

Gene set enrichment analysis (GSEA)
To identify the significantly enriched pathways of target 
gene sets in given clusters, we used GSEA (clusterPro-
filer R package) to perform enrichment analysis. Only 
terms showing false discovery rate (FDR) adjusted p val-
ues (BH) less than 0.05 and absolute value of normalized 
enrichment score (NES) greater than 1 were considered 
significantly enriched.

Protein–protein interaction (PPI) network
We used the Search Tool for the Retrieval of Interact-
ing Genes (STRING) database to build PPI networks in 
selected target genes. Then, molecular complex detection 
(MCODE) plugin was used to identify the most densely 
connected core network modules in the PPI network. 
MCODE is a graph theoretic clustering algorithm based 
on vertex weighting. Local neighborhood density and 
outward traversal from a locally dense seed protein are 
analyzed to isolate the dense regions in the PPI network. 
Key parameters were set as default as follows: degree 
cutoff = 2, node score cutoff = 0.2, K-core value = 2, and 
MCODE score cutoff value = 3.0 by Cytoscape (v3.6.1) 
[29].
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Cell‑specific network (CSN) analysis
We performed CSN analysis in MATLAB software as 
previously described [16]. Briefly, a scatter plot is con-
structed based on the expression values of genes x and y 
in different cells (Fig.  1A). Each dot represents an indi-
vidual cell (X-axis and Y-axis show the expression values 
of gene X and Y for cell k, respectively), and n represents 
the total cell number in the scatter diagram. The number 
of dots (i.e., cell number) in the blue, red, and intersec-
tion green boxes is denoted as n x(k), n y(k) and n xy(k), 
respectively. We set n x(k) = n y(k) = 0.1n as default. The 
coefficient 0.1 denotes the box size (blue and red box). In 
cell k, the statistic ρ̂(k)

xy  is used to assess the inter-relation-
ships (edges) between gene x and gene y (Eq. 1).

After hypothesis testing to determine the signifi-
cance of each edge, the total number of significant edges 
including gene x was returned as network degree matrix 
(NDM) value for gene x. We used the Wilcoxon rank-
sum test to identify genes with different NDM values in 
a given cell cluster compared with others, and adjusted p 
value < 0.05 was regarded as statistically significant.

Public data for independent in vitro and in vivo validation
The gene expression profile of the osteogenic differentia-
tion process from human bone marrow-derived mesen-
chymal stem cells (BM-MSCs) to osteoblasts in vitro was 
obtained from the GEO database with accession number 
GSE37558 [30]. Total RNA was extracted from cultured 
BM-MSCs in osteogenic differentiation medium sup-
plemented with 1.8 mM Ca2+ for 0, 2, 8, 12, or 25 days. 

(1)ρ̂
(k)

xy =
√
n− 1 · n · n(k)

xy − n
(k)

x n
(k)

y

n
(k)

x n
(k)
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(k)

x n− n
(k)

y

Three replicates were performed for each timepoint, with 
exception of day 0 which included four replicates. The 
data were log2 transformed and normalized using “scale” 
function in R software.

We added another scRNA-seq dataset in vivo on mouse 
osteoblasts which acquired from GEO database under 
the accession number GSE108891 [31] to further vali-
date our osteogenic differentiation pseudotime results. 
This scRNA-seq dataset of mouse osteoblasts used line-
age-specific Cre-transgenic mouse crossed to a knock-in 
reporter strain Col2.3-cre to trace osteoblast cells. After 
acquiring the expression matrix of the osteoblasts in 
mouse, we used Monocle 2 to perform the pseudotime 
analysis.

Cell lines and reagents
We further performed in-house validation experiments 
for the key findings of this study. The preosteoblastic 
cell line MC3T3-E1 was purchased from the Ameri-
can type culture collection (ATCC, USA) and was cul-
tured in α-minimal essential medium (α-MEM; Gibco, 
Thermo Fisher Scientific, United States) with 10% fetal 
bovine serum (FBS) and 1% penicillin–streptomy-
cin (Gibco, Thermo Fisher Scientific, United States) 
solution. Next, the cells were rinsed with PBS and the 
medium was replaced with osteogenic differentiation 
medium (MesenCult™ Osteogenic Stimulatory Kit, 
Stemcell). Cells were harvested at 0, 2, 3, 7, and 14 days 
after induction.

Mineralization assay Alizarin Red S staining
Patterns of matrix mineralization in MC3T3-E1 cells 
were evaluated using Alizarin Red S staining at 0 and 
14  days to validate the osteogenic induction process. 
After washing twice with PBS, cells were fixed with 4% 
paraformaldehyde (PFA) for 30  min and stained with 

Fig. 1  Flowchart and scatter diagram for gene x and gene y. A Each dot in the scatter diagram represents an individual cell. X-axis represents the 
expression values of gene x, Y-axis represents the expression values of gene y. The green dot represents cell k. The number of dots in the blue, 
red, and intersection green boxes near the green dot (cell k) is denoted as nx

(k), ny
(k) and nxy

(k), respectively. Colored by cell cluster. Dots with black 
outlines represent cells with significant inter-relationship edge of gene X–Y. B Workflow of the research
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Alizarin Red S. Fluorescence signals were visualized 
using a microscope at 4 × magnification.

RNA isolation and quantitative real time (qRT)‑polymerase 
chain reaction (PCR)
Total RNA of MC3T3-E1 cells (ATCC) was extracted 
using RNeasy Mini Kit (Qiagen, American, USA). To 
quantify the relative gene expression level, qRT-PCR 
was performed using the RevertAid First Strand cDNA 
Synthesis Kit (Thermo Scientific) and Synergy brands 
(SYBR) mix (Bio-Rad Laboratories-Life Sciences) on 
the CFX Opus 96 Real-Time PCR system (Bio-Rad) in 
a total reaction volume of 20  µl for 40 cycles. Gapdh 
was used as an inner reference. The relative expres-
sion levels were compared across groups using one-way 
ANOVA. The sequences of primers used in qRT-PCR 
reactions were:

Crem

F: 5′-CTC​GAC​TCT​CAA​GAC​ACT​TCAC-3′
R: 5′-ACT​AGC​AGA​AGA​AGC​AAC​TCG-3′

Fosl2

F: 5′-CTG​CAG​CTC​AGC​AAT​CTC​TT-3′
R: 5′-CAG​CCA​AGT​GTC​GGA​ACC​-3′

Foxc2

F: 5′-AAC​CCA​ACA​GCA​AAC​TTT​CCC-3′
R: 5′-GCG​TAG​CTC​GAT​AGG​GCA​G-3′

Creb3l1

F: 5′-CCC​CAT​CAT​CGT​AGA​ACA​GTAG-3′
R: 5′-CCT​TCC​TGC​ATT​CTC​TTC​CG-3′

Runx2

F: 5′-GAA​TGG​CAG​CAC​GCTATIAAA​TCC​-3′
R: 5′-GCC​GCT​AGAATICAA​AAC​AGTIGG-3′

Col

F: 5′-GGC​TCT​AGA​GGT​GAA​CGT​GG-3′
R: 5′-CAC​CAG​GGG​CAC​CAT​TAA​CT-3′

Alp

F: 5′-AAC​CCA​GAC​ACA​AGC​ATT​CC-3′
R: 5′-GCC​TTT​GAG​GTT​TITGG​TCA​-3′

Osx

F: 5′-CCT​CTC​GAC​CCG​ACT​GCA​GATC-3′
R: 5′-AGC​TGC​AAG​CTC​TCT​GTA​ACC​ATG​AC-3′

Experimental animals
Male C57BL/6J mice were purchased from Jackson 
Laboratory (Bar Harbor, ME, USA). All mice were fed 
with autoclaved food and housed in pathogen-free con-
ditions. All experimental procedures were approved by 
the Ethics Committee of Xiangya Hospital of Central 
South University (Changsha, China).

Bone sectioning, immunostaining, and confocal imaging
To verify the expression of Foxc2 in osteoblasts in vivo, 
immunostaining was used to stain Foxc2 and Alp pro-
teins in frozen sections of mouse femur. Freshly dis-
sected femur from male C57BL/6 wild-type mouse was 
fixed in 4% paraformaldehyde overnight followed by 
decalcification in 14% EDTA for 2 weeks. Samples were 
cut in 5-µm-thick longitudinally oriented sections. Fro-
zen sections were blocked in PBS with 5% bovine serum 
albumin (BSA) for 1 h and then stained overnight with 
rabbit-anti-Alp (Novus Biologicals, NBP2-67295, 1:100) 
and sheep-anti-Foxc2 (R&D AF6989SP, 1:100). Next, 
samples were incubated with appropriate secondary 
antibodies, including donkey anti-rabbit Alexa Fluor 
647 (Invitrogen) and donkey anti-sheep Alexa Fluor 
488 (Invitrogen). Sections were mounted with anti-fade 
prolong gold (Invitrogen) and images were acquired 
with a Zeiss LSM780 confocal microscope.

Transfection of Foxc2 siRNA
To explore Foxc2’s function in osteogenesis process, 
the expression of Foxc2 was knocked down by small 
molecule interference siRNA in osteogenic-induced 
MC3T3-E1 cells. Nonsense siRNA was transfected as 
a negative control (NC). siRNA-Foxc2 and siRNA-NC 
were synthesized by Integrated DNA Technologies 
(IDT, USA). Lipofectamine™2000 was used to transfer 
interfere siRNA at 0 and 4 days after induction and har-
vested at 3 days after interference.

Workflow
We used our previous scRNA-seq data (GSE147390) 
[15] to perform single-cell regulatory network infer-
ence by SCENIC R package [20]. Co-expression and 
AUC score calculation were analyzed with GENIE3 
and AUCell functions in SCENIC, respectively. After 
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regulon regulatory network identification, functions 
of target genes were analyzed by GSEA. Then, we use 
PPI and CSN network to explore different kinds of gene 
associations of functional genes. We used MCODE 
plugin to identify core networks/hub genes in the PPI 
network, and used CSN analysis to explore the cell-
specific gene associations. Then, we both used pub-
lic datasets (gene expression profile in osteogenic cell 
line in  vitro and scRNA-seq data of mouse osteoblast 
in  vivo) and performed our own in-house verification 
experiments from mouse osteoblast in  vivo (immuno-
fluorescence on mouse femur) and in vitro (osteogenic 
induction and function verification in mouse osteo-
genesis cell line) to support our TF regulatory analysis 
results (Fig. 1B).

Results
Gene expression and transcription factor regulatory 
network analysis identified four osteoblast subtypes
To understand the molecular features of human osteo-
blasts, we integrated cell clustering information obtained 
from gene expression profiles (by Seurat) and regulon 

activity profiles (by SCENIC). Three cell clusters of oste-
oblasts were identified based on systematic differences 
in their gene expression profiles (Fig. 2A). According to 
their order in the developmental trajectory (Fig. 2B) and 
their dynamic changes of the expression of BM-MSC and 
osteoblast-related marker genes (BM-MSC-related mark-
ers: LEPR [3], VCAM1 [4], osteoblast-related markers: 
RUNX2 [5], BGLAP [6]; Fig.  2C), we labeled the early-
stage cell cluster with high expression of BM-MSCs-
related markers as preosteoblasts, and the late-stage 
cell cluster with a high expression of osteoblast-related 
markers as mature osteoblasts. “Intermediate osteo-
blast” refers to the cell cluster in the middle stage of the 
developmental trajectory. SCENIC cell clustering results 
further identified two subtypes of preosteoblast [pre-
osteoblast-S1 and preosteoblast-S2; Fig. 2D]. The regulon 
active scores of these two cell subtypes differed substan-
tially from each other (Fig. 2E). These results reflect the 
heterogeneity of two cell subtypes of preosteoblasts, and 
thus, we identified a total of four cell clusters using inte-
grated cell clustering information based on both gene 
expression and regulon activity.

Fig. 2  Single-cell clustering and regulatory network inference. A Gene expression-based cell clustering results shown using the Seurat clustering 
layout. Marked out three cell clusters. B Cell developmental trajectory inference based on gene expression. Marked three cell clusters. The 
upper-right trajectory plot indicates the direction of pseudotime. C Expression levels (log-normalized) of indicated genes in the three osteoblast 
clusters with respect to their pseudotime coordinates. The x-axis indicates the pseudotime, while the y-axis represents the log-normalized gene 
expression levels. Black lines depict the LOESS regression fit of the normalized expression values. D Gene expression and TF regulatory network 
conjoint clustering results shown using the SCENIC clustering layout. Marked out four cell clusters. E Regulons active heatmap in four cell clusters
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Target gene function of active regulons in preosteoblast‑S1
According to the transcription factor regulatory network 
activity heatmap (Fig. 2E), the 17 regulons demonstrating 
the highest active scores in preosteoblast-S1 were HES1, 
FOXC1, CEBPB, MAFF, FOSL2, CREM, EGR1, JUNB, 
NFIL3, ATF3, FOS, FOSB, CEBPD, JUND, BCLAF1, IRF1 
and RUNX1. GSEA results showed that gene members 
in these regulons were mainly enriched in immunity and 
cell proliferation/differentiation-related function terms 
such as osteoblast differentiation (Fig. 3A), positive regu-
lation of cell population proliferation, regulation of cell 
differentiation, regulation of cell population proliferation, 
regulation of cell activation (Additional file 2: Fig. S2A), 
inflammatory response (Fig.  3B), response to cytokine, 
leukocyte migration, cytokine receptor binding, and reg-
ulation of lymphocyte activation (Additional file  2: Fig. 
S2B). We used Cytoscape for network visualization and 

to mark these categories of gene function (e.g., immunity 
vs. cell proliferation/differentiation; Fig.  3C). The aver-
age expression levels of 113 gene members related to 
immunity and cell proliferation/differentiation showed a 
gradual downward trend in the four cell clusters as they 
matured (Fig. 3D).

Dynamic changes of CREM and FOSL2 regulon activity
The CREM regulon showed the highest active score 
(Fig. 2E) in preosteoblast-S1. There were 16 target genes 
in this regulon. Among these genes, ISG20, CXCL3, LIF, 
ABL2, IL6, and MTUS1 were related to immunity and/
or cell proliferation/differentiation (Fig. 4A). Both CREM 
regulon activity and CREM gene expression showed spe-
cific high levels in preosteoblast-S1 (Fig. 4B, C). The aver-
age expression for target genes and expression levels for 
ISG20, CXCL3, LIF, ABL2, IL6, and MTUS1 were reduced 

Fig. 3  Active regulons in preosteoblast-S1. A GSEA analysis results in target genes of active regulons in preosteoblast-S1, “osteoblast 
differentiation” term. B GSEA analysis results in target genes of active regulons in preosteoblast-S1, terms of inflammatory response. C Network 
visualization of active regulons in preosteoblast-S1. Large green dots represent TF, small red dots represent immunity-related target genes, small 
blue dots represent cell proliferation/differentiation-related target genes, small yellow dots represent both immunity and cell proliferation/
differentiation-related target genes; other target genes are shown as gray diamonds. D Violin plots showing average expression levels of gene 
members related to immunity and cell proliferation/differentiation. Dot size represents pseudotime for each cell from early (small) to late (large). 
*Adjusted p value < 0.05 (Kruskal–Wallis test)
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gradually among the four cell clusters (preosteoblast-S1, 
preosteoblast-S2, intermediate osteoblast, and mature 
osteoblast, Fig. 4D, E). Target genes of the CREM regulon 
showed high expression levels at the early stage in pseu-
dotime (Fig. 4F). The binding motif for most target genes 
of CREM is Taipale_cyt_meth_ATF4_GGA​TGA​CGT​
CAT​CC_eDBD (Fig. 4G, Table 1).

FOSL2, which was found to be an upstream regula-
tion gene of CREM, was the second most active regu-
lon (Fig.  2E) in preosteoblast-S1. 14 of 39 FOSL2 target 
genes were related to immunity and/or cell proliferation/
differentiation (Fig.  5A). Both FOSL2 regulon activity 
and FOSL2 gene expression showed specific high levels 
in preosteoblast-S1 (Fig.  5B, C). Average expression for 
FOSL2’s target genes decreased gradually over pseudo-
time (Fig.  5D). 14 immunity and/or cell proliferation/
differentiation-related genes were highly expressed in 
preosteoblast-S1 (Fig.  5E). Target genes of the FOSL2 
regulon also showed high expression levels at the early 
stage in pseudotime (Fig. 5F). The binding motif for most 
target genes of FOSL2 is cisbp_M3083 (Fig. 5G, Table 1). 

These collective results demonstrate that the CREM reg-
ulon, FOSL2 regulon, and their target genes related to 
immunity and/or cell proliferation/differentiation were 
highly active in the preosteoblast-S1 cluster.

To identify core target genes in the 17 highly active reg-
ulons we identified in preosteoblast-S1, we used immu-
nity and cell proliferation/differentiation-related target 
genes to construct PPI networks (Fig. 6A, B). Interactions 
in these networks included correlation/regulation rela-
tionships or protein binding validated in Co-IP or other 
experiments [32]. Combined scores were used to value 
the confidence of interactions based on these evidences. 
High combined score interactions showed in wide edges 
were more valid than other interactions. Larger nodes 
with the higher network degrees represent the widely 
association of the corresponding proteins. Node color 
showed the gene expression ratio of preosteoblast S1 in 
comparison with mature osteoblast. Genes of the red/
blue node were more highly expressed in preosteo-
blast S1 compared with other genes. MCODE extracted 
one core gene module in the immunity network with a 

Fig. 4  Dynamic changes of CREM regulon activity. A CREM regulatory network. Red dots represent immunity-related target genes, blue dots 
represent cell proliferation/differentiation-related target genes, yellow dots represent both immunity and cell proliferation/differentiation-related 
target genes; other target genes are shown as gray dots. B CREM regulon activity, embedded on SCENIC clustering layout and colored by CREM 
regulon active levels. Gray dots represent completely inactive cells with zero active scores. Other dot colors represent active score in each cell from 
black (low) to blue (high). C Violin plots showing expression levels of CREM. *Adjusted p value < 0.05 (Kruskal–Wallis test). D Violin plots showing 
average expression levels of all target genes in CREM regulon. *Adjusted p value < 0.05 (Kruskal–Wallis test). E Immunity and cell proliferation/
differentiation-related target gene expression in CREM regulon among four cell clusters. Dot color indicates the relative expression levels and 
the dot size shows the proportion of cells expressing the indicated genes. F Continuum of dynamic target gene expression in pseudotime of 
osteoblasts. Pixel color indicates the expression levels. Early-stage cells are list in on the left. G Motif taipale_cyt_meth_ATF4_GGA​TGA​CGT​CAT​
CC_eDBD of CREM. The relative sizes of the letters indicate the frequency of four bases in the sequences
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MCODE score of 9.4 (Fig. 6C). Two core gene modules 
were extracted in the cell proliferation/differentiation 
network with MCODE scores of 5.4 and 4.7, respec-
tively (Fig.  6D). Genes included in these core modules 
may widely influence the function of the whole network 
with more connection degrees. IL6 and TNFAIP3 were 
hub genes with high degrees in immunity network core 
module. IL6, CCL2, and PTGS2 were hub genes with 

high degrees in cell proliferation/differentiation network 
core modules. Only IL6 demonstrated the highest degree 
values in both immunity and cell proliferation/differ-
entiation networks. In addition, IL6 also has many high 
combined score interactions and a high expression ratio 
of preosteoblast S1 compared with mature osteoblasts. 
These results comprehensively demonstrate that four hub 
genes, particularly IL6, had extensive interactions among 
core modules and might be critical for coordinating the 
function of target genes.

Dynamic changes of MXD4 and KLF2 regulon activity
The MXD4 and KLF2 regulons showed higher active 
scores in preosteoblast-S2 (Fig.  2E). There were 29 tar-
get genes in the MXD4 regulon and 17 target genes in 
the KLF2 regulon (Fig. 7A, B). Although both MXD4 and 
KLF2 regulon activities showed specific high levels in 
preosteoblast-S2 (Fig.  7C), MXD4 gene expression was 
more specifically higher in the preosteoblast-S2 cell clus-
ter (Fig. 7D). The average expression for target genes in 
the MXD4 regulon also showed the highest expression 
level in preosteoblast-S2 (Fig. 7E). Target gene clusters in 
the MXD4 and KLF2 regulons that showed high expres-
sion levels at the early stage in pseudotime are shown in 
Fig. 7F. The binding motif for most target genes of MXD4 
and KLF2 is hocomoco__USF2_HUMAN.H11MO.0.A 
and transfac_pro__M07913 (Fig. 7G, H).

Dynamic changes of FOXC2 and TAF7 regulon activity
Active scores for FOXC2 and TAF7 regulons were higher 
in intermediate osteoblasts than they were in the three 
other cell clusters (Fig.  2E). There were 26 target genes 
in the FOXC2 regulon and 11 target genes in the TAF7 
regulon. EFNA1, SMAD7, SNAI1, HEY2, JAG1, SEMA7A 
and WNT4 in the FOXC2 regulon are genes related to 
MSC differentiation in the GO database (Fig.  8A, B). 
Both FOXC2 regulon activity and FOXC2 gene expres-
sion showed more specifically higher levels in inter-
mediate osteoblasts than the other stages (Fig.  8C, D). 
Intermediate osteoblasts showed high expression levels 
of EFNA1, SMAD7, and SEMA7A (Fig. 8E) and average 
expression levels of all FOXC2 target genes (left plot in 
8F). Target gene clusters in the FOXC2 and TAF7 regu-
lons that showed high expression levels at the intermedi-
ate stage in pseudotime are shown in Fig. 8G. The binding 
motif for most target genes of FOXC2 and TAF7 is hoco-
moco__FOXL2_MOUSE.H11MO.0.C and dbcorrdb__
TAF7__ENCSR000BLU_1__m1 (Fig. 8H, I, Table 1).

Table 1  Motif information in CREM, FOSL2, FOXC2, RUNX2, and 
CREB3L1 regulons

TF Target gene Motif nMotifs

CREM IL6 transfac_pro__M04746 6

CREM CXCL3 elemento__TGA​CAT​CA 4

CREM LIF elemento__TGA​CAT​CA 8

CREM ISG20 transfac_pro__M00801 2

CREM ABL2 transfac_public__M00178 2

CREM MTUS1 transfac_public__M00178 2

FOSL2 ATP1B3 cisbp__M3083 28

FOSL2 CH25H cisbp__M3083 19

FOSL2 EGR3 cisbp__M3083 34

FOSL2 HEYL cisbp__M3083 7

FOSL2 IL6 cisbp__M3083 37

FOSL2 IRX3 cisbp__M3083 13

FOSL2 LIF cisbp__M3083 23

FOSL2 NR4A1 cisbp__M3083 8

FOSL2 NR4A3 cisbp__M3083 50

FOSL2 PDE4B cisbp__M3083 27

FOSL2 PDE4D cisbp__M3083 35

FOSL2 PIM1 cisbp__M3083 6

FOSL2 RGS2 cisbp__M3083 17

FOSL2 DLG5 swissregulon__hs__ATF5_CREB3.p2 3

FOXC2 EFNA1 hocomoco__FOXL2_MOUSE.
H11MO.0.C

4

FOXC2 SMAD7 hocomoco__FOXL2_MOUSE.
H11MO.0.C

5

FOXC2 SNAI1 hocomoco__FOXL2_MOUSE.
H11MO.0.C

1

FOXC2 HEY2 cisbp__M0746 1

FOXC2 JAG1 cisbp__M0746 1

FOXC2 SEMA7A cisbp__M0746 1

FOXC2 WNT4 cisbp__M0746 1

RUNX2 MEF2C transfac_pro__M00984 2

RUNX2 MEPE transfac_pro__M00984 2

RUNX2 PDGFC transfac_pro__M00984 2

RUNX2 VDR transfac_pro__M00984 1

CREB3L1 COL1A1 hocomoco__CR3L1_HUMAN.
H11MO.0.D

29

CREB3L1 SPNS2 hocomoco__CR3L1_HUMAN.
H11MO.0.D

15

CREB3L1 PHOSPHO1 taipale_cyt_meth__CREB3L1_TGC​
CAC​RTCAYN_eDBD_meth

1
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Activity of RUNX2 and CREB3L1 regulons increased 
as osteoblasts matured.
Active scores for RUNX2 and CREB3L1 regulons were 
higher in mature osteoblasts than they were in the three 
other cell clusters (Fig.  2E). Consequently, we focused 
on these regulons and performed GSEA to explore the 
function of their target genes. Although not signifi-
cantly enriched, MEPE, PDGFC, MEF2C, and VDR in 
the RUNX2 regulon and PHOSPHO1, SPNS2, COL1A1 in 
the CREB3L1 regulon are genes related to skeletal system 
development in the GO database (Fig.  9A, B). RUNX2/
CREB3L1 regulons were also relatively active in interme-
diate and mature osteoblasts (Fig. 9C). Expression levels 
for genes in the RUNX2 regulon rose gradually during 
osteoblast maturation, while CREB3L1 genes were signif-
icantly upregulated in mature osteoblasts (Fig. 9D). Inter-
mediate and mature osteoblasts showed high expression 
levels of MEPE, PDGFC, MEF2C, and VDR (Fig.  9E) 
and average expression levels of all RUNX2 target genes 
(left plot in 9F). Moreover, high expression levels of 

PHOSPHO1, SPNS2, and COL1A1 were observed pre-
dominantly in mature osteoblasts (Fig.  9E). Average 
expression levels for all CREB3L1 target genes rose 
gradually during osteoblast differentiation, but expres-
sion levels increased dramatically in mature osteoblasts 
(right plot in 9F). Expression of most target genes in the 
RUNX2 regulon, including MEPE, PDGFC, MEF2C, and 
VDR, increased over pseudotime through the four cell 
subtype clusters (Fig.  9G). Despite specific target genes 
of CREB3L1 displaying a downward trend, genes related 
to skeletal system development (e.g., PHOSPHO1, SPNS2 
and COL1A1) were gradually upregulated during osteo-
blast maturation (Fig.  9H). The binding motifs for most 
target genes of RUNX2 and CREB3L1 are swissregu-
lon_hs_RUNX1.0.3.p2 and hocomoco_CR3L1_HUMAN.
H11MO.0.D, respectively (Fig.  9I, J, Table  1). These 
results revealed that, as osteoblasts matured, there was 
an upward trend in RUNX2/CREB3L1 regulons and their 
target genes related to skeletal development.

Fig. 5  Dynamic changes of FOSL2 regulon activity. A FOSL2 regulatory network. Red dots represent immunity-related target genes, blue dots 
represent cell proliferation/differentiation-related target genes, yellow dots represent both immunity and cell proliferation/differentiation-related 
target genes; other target genes are shown as gray dots. B FOSL2 regulon activity, embedded on SCENIC clustering layout and colored by FOSL2 
regulon active levels. Gray dots represent completely inactive cells with zero active scores. Other dot colors represent active score in each cell from 
black (low) to blue (high). C Violin plots showing expression levels of FOSL2. *Adjusted p value < 0.05 (Kruskal–Wallis test). D Violin plots showing 
average expression levels of all target genes in FOSL2 regulon. *Adjusted p value < 0.05 (Kruskal–Wallis test). E Immunity and cell proliferation/
differentiation-related target genes expression in FOSL2 regulon among four cell clusters. Dot color indicates the relative expression levels and dot 
size shows the proportion of cells expressing the indicated genes. F Continuum of dynamic target gene expression in pseudotime of osteoblasts. 
Pixel color indicates expression levels. Early-stage cells are listed on the left. G Motif cisbp_M3083 of FOSL2. The relative sizes of the letters indicate 
the frequency of four bases in the sequences
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CSN analysis reflected connection changes between target 
gene pairs
Next, we analyzed important target gene connections 
in the four cell clusters at single-cell resolution. Gene 
connections in the CSN analysis are the inter-relation-
ships (edges) among gene x and gene y in cell k that are 
assessed by statistic ρ̂x(k)  (Eq. 1). We used target genes 
that are related to immunity, cell proliferation/differen-
tiation, mesenchymal stem cell differentiation, and skel-
etal system development in the CREM, FOSL2, FOXC2, 
RUNX2, and CREB3L1 regulons to construct CSN for 
each cluster (Fig.  10A–C). Strong connections between 
113 target genes in the CREM and FOSL2 regulons 
were established in preosteoblast-S1 (Fig.  10A). Pre-
osteoblasts had the highest connectivity among 7 target 
genes in the FOXC2 regulon (Fig.  10B), while mature 
osteoblasts had the highest connectivity among 7 target 
genes in the RUNX2 and CREB3L1 regulons (Fig.  10C). 
Thus, immunity, cell proliferation/differentiation, and 
skeletal system development-related target genes in the 
CREM, FOSL2, RUNX2 and CREB3L1 regulons were 

only active in certain cell clusters. Their association net-
work at single-cell resolution also has strong connections 
in the same cell types; however, strong connections of 
FOXC2’s target genes appeared before (in the early stage) 
the FOXC2 regulon attained the highest activation score 
(during the intermediate stage), which means that target 
genes in the FOXC2 regulon might be widely associated 
with each other in the early cell stage. These results sug-
gest that FOXC2 may also play a role in the early stage 
of osteogenic differentiation mediated by target gene 
interactions.

Cell trajectory reconstruction reveals a new potential 
preosteoblast lineage
To further explore cell lineage from regulon activ-
ity aspect, we used regulons activity score matrix to 
reconstruct the regulon activity score-based cell devel-
opmental trajectory (Fig.  11A, B). We found that two 
preosteoblast subtypes, preosteoblast-S1 and preoste-
oblast-S2, were highly enriched in early cell stage and 
mature osteoblast was in the terminal stage (Fig. 11A, B). 

Fig. 6  PPI analysis of immunity and cell proliferation/differentiation-related target genes. A PPI network of immunity-related target genes. Dot 
size represents connection degrees from small (low) to large (high). Red nodes have the higher gene expression ratio of pre-osteoblast S1 in 
comparison with mature osteoblast. Edge width represents the combinded scores. B PPI network of cell proliferation/differentiation-related target 
genes. Dot size represents connection degrees from small (low) to large (high). Blue nodes have the higher gene expression ratio of pre-osteoblast 
S1 in comparison with mature osteoblast. Edge width represents the combinded scores. C Subnetwork in immunity-related PPI network screened 
by MCODE, MCODE score = 0.94. D Subnetwork in cell proliferation/differentiation-related PPI network screened by MCODE, MCODE score = 0.54 
(left) and 0.47 (right). Dot color represents connection degrees in each subnetwork from blue (low) to red (high). Edge width represents the 
combined scores
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When we compared these results with the gene expres-
sion-based cell trajectory (Fig.  11C), we found that the 
uptrends of pseudotime values from preosteoblast, inter-
mediate to mature osteoblast were coincident in both 
regulon score-based (Fig.  11A, B) and gene expression-
based (Fig.  11C) cell trajectory results. Additionally, 
preosteoblast-S1 tended to form a distinct branch in the 
preosteoblast lineage (Fig. 11A, D), which was quite dif-
ferent in this trajectory structure. Branch heatmap of the 
branch point 2 in Fig.  11A, D (Fig.  11E) also showed a 
tendency toward upregulation of RUNX2 and CREB3L1 
regulons in cell fate 1 (left branch after branch point 2 in 
Fig.  11D) and upregulation of CREM and FOSL2 regu-
lons in cell fate 2 (right branch after branch point 2 in 
Fig.  11D). Although several of the 17 active regulons in 
preosteoblast-S1 showed a different activation tendency, 
this may be attributed to the mixed-cell composition in 
such cell fates (Fig. 11E). These results further strength-
ened the conclusion that preosteoblast-S1 was in a dif-
ferent cell state from the distinct branch of preosteoblast 

lineage compared with preosteoblast-S2, especially with 
regard to regulon activity.

To explore gene connections at the whole transcrip-
tome level, we calculated network degrees of five high-
lighted TFs. CREM and FOSL2 demonstrated the 
highest NDM values in preosteoblast-S1, FOXC2 dem-
onstrated the highest NDM values in intermediate osteo-
blasts, while the NDM values of RUNX2 and CREB3L1 
approached their peaks in mature osteoblasts (Fig. 11F). 
These results indicate that more interactions exist 
between these TFs and other genes in the corresponding 
cell subtypes. These are also the same trends identified 
for the activity of the corresponding regulons.

We also used diffusion mapping [28] to further confirm 
our osteogenic differentiation trajectory results based on 
gene expression and TF regulation aspects. Pseudotime 
order of preosteoblasts (preosteoblast-S1, preosteoblast-
S2), intermediate osteoblasts, and mature osteoblasts in 
diffusion map analysis results were consistent with our 
earlier Monocle-based analysis (Fig. 12A–D). Compared 
with preosteoblast-S2, diffusion map analysis showed 

Fig. 7  Dynamic changes of MXD4 and KLF2 regulons activity. A MXD4 regulatory network. Target genes are shown as gray dots. B KLF2 regulatory 
network. Target genes are shown as gray dots. C MXD4 and KLF2 regulon activity, embedded on SCENIC clustering layout and colored by MXD4 or 
KLF2 regulon active levels. Gray dots represent completely inactive cells with zero active scores. Other dot colors represent active scores in each cell 
from black (low) to blue (high). D Violin plots showing expression levels of MXD4 (left) and KLF2 (right). *Adjusted p value < 0.05 (Kruskal–Wallis test). 
E Violin plots showing average expression levels of all target genes in MXD4 regulons. *Adjusted p value < 0.05 (Kruskal–Wallis test). F Continuum of 
dynamic MXD4 and KLF2 regulon’s target gene expression in pseudotime of osteoblasts. Pixel color indicates expression levels. Early-stage cells are 
list at left. G Motif hocomoco__USF2_HUMAN.H11MO.0.A of MXD4. H Motif transfac_pro__M07913 of KLF2. The relative sizes of the letters indicate 
the frequency of four bases in the sequences
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that preosteoblast-S1 cells were more concentrated in the 
DC2 dimension (Fig. 12A) and the early stage of pseudo-
time (< 1500, Fig.  12B) in gene expression-based trajec-
tory. Preosteoblast-S1 also tended to form a distinctive 
branch in preosteoblast lineage in TF regulation-based 
trajectory (Fig.  12C, D). Thus, preosteoblast-S1 per-
formed differently than preosteoblast-S2, even with the 
independent approach using gene expression-based “tra-
ditional” pseudotime analysis. These differences were 
more apparent in TF regulation-based trajectories, which 
was consistent with the results from the Monocle analy-
sis. These results further validated the independence of 
preosteoblast-S1. CREM, FOSL2, FOXC2, RUNX2, and 
CREB3L1 regulon coincident active tendencies were 
also confirmed in monocle (Fig. 12E) and diffusion map 
trajectory heatmap (Fig.  12F). Thus, CREM and FOSL2 
regulons were highly active in the early cell stage (pre-
osteoblast-S1), FOXC2 regulon was highly active in the 
intermediate cell stage, and RUNX2 and CREB3L1 reg-
ulons were highly active in the late cell stage (mature 
osteoblast).

Validation of regulon expression in vitro and in vivo
One major limitation of these results is that they were 
all generated with cells recovered from one patient. To 
validate our results, we analyzed expression levels of tar-
get genes for the CREM, FOSL2, FOXC2, RUNX2, and 
CREB3L1 regulons during osteogenic differentiation of 
BM-MSCs to osteoblasts in vitro.

We obtained data for osteogenic differentiation 
in  vitro from the GEO database with accession number 
GSE37558 [30]. Average expression of immunity and cell 
proliferation/differentiation-related target genes in the 
CREM and FOSL2 regulons were higher in the early stage 
(day 0), except for the FOSL2 regulon which was elevated 
again on day 25 (Fig. 12G, H). Average expression of mes-
enchymal cell differentiation-related target genes in the 
FOXC2 regulons were higher on day 2 (Fig.  12I). Aver-
age expression for all target genes in the RUNX2 regulon 
showed an upward tendency during osteogenic differen-
tiation (from day 0 to day 25, Fig. 12J); however, expres-
sion levels for target genes of the CREB3L1 regulon 
showed somewhat erratic changes (Fig. 12K). Expression 

Fig. 8  Dynamic changes of FOXC2 and TAF7 regulon activity. A FOXC2 regulatory network. Blue dots represent MSC differentiation-related target 
genes; other target genes are shown as gray dots. B TAF7 regulatory network. Target genes are shown as gray dots. C FOXC2 and TAF7 regulon 
activity, embedded on SCENIC clustering layout and colored by FOXC2 or TAF7 regulon active levels. Gray dots represent completely inactive cells 
with zero active scores. Other dot colors represent active scores in each cell from black (low) to blue (high). D Violin plots showing expression levels 
of FOXC2 (left) and TAF7 (right). *Adjusted p value < 0.05 (Kruskal–Wallis test). E MSC differentiation-related target gene expression in FOXC2 regulon 
among four cell clusters. Dot color indicates relative expression levels and the dot size shows the proportion of cells expressing the indicated genes. 
F Violin plots showing average expression levels of all target genes in FOXC2 regulons. *Adjusted p value < 0.05 (Kruskal–Wallis test). G Continuum of 
dynamic FOXC2 and TAF7 regulon target gene expression in pseudotime of osteoblasts. Pixel color indicates expression levels. Early-stage cells are 
list at left. H Motif hocomoco__FOXL2_MOUSE.H11MO.0.C of FOXC2. I Motif dbcorrdb__TAF7__ENCSR000BLU_1__m1 of TAF7. The relative sizes of 
the letters indicate the frequency of four bases in the sequences
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levels of CREM and FOSL2 genes were also highest in the 
early stages (day 0/day 2, Fig. 12L). RUNX2 and CREB3L1 
genes approached their peaks in later stages (day 25), as 
expected (Fig.  12L), while TF FOXC2’s expression was 
earlier than expected (early stages, day 0/day 2, Fig. 12L). 
Despite the limitations of in  vitro conditions, and lim-
ited temporal sampling and sample size, results from 
these two markedly different experimental conditions are 
highly consistent. Thus, both TF and target gene expres-
sion tendencies in the five proposed regulons (CREM, 
FOSL2, FOXC2, RUNX2, and CREB3L1) were confirmed 
by independent analysis of this in  vitro data for osteo-
genic differentiation (Fig.  12G–L), providing valuable 
validation of our scRNA-seq based analysis.

To further validate our osteogenic differentiation pseu-
dotime results, we analyzed another in  vivo scRNA-seq 
dataset using mouse osteoblasts, acquired from the GEO 
database under the accession number GSE108891 [31]. 
During osteogenesis in mice, the expression of BM-
MSC-related markers Lepr [33] and Vcam1 [34] gradu-
ally decreased over pseudotime. Further, the expression 
of osteoblast-related markers Runx2 [8] and Bglap 

[35] gradually increased as osteogenesis progressed 
(Fig.  12M). These trends were consistent with results 
from our human scRNA-seq data analysis (Fig.  2C). 
Additionally, the downward tendency of target gene 
expression in Crem regulons (Fig. 12N), downward ten-
dency of TF and target gene expression in Foxc2 regu-
lon in late cell stage (Fig.  12O), and upward tendency 
of TF and target gene expression in Runx2 and Creb3l1 
regulons (Fig. 12P, Q) were confirmed by this in vivo data 
using mouse osteoblasts. The inconsistent tendency of 
no obvious decrease in expression of target genes of the 
Fosl2 regulon (Fig. 12R), and TF expression in Crem and 
Fosl2 regulons (Fig. 12S), may be attributable to species 
differences, suggesting the necessity and importance of 
using human specimens to study osteogenesis. These 
in  vivo results using mouse osteoblasts further validate 
our pseudotime-based cell cluster designations of pre-
osteoblasts, intermediate osteoblasts, and mature osteo-
blasts during human osteogenesis.

Finally, we further validated our osteogenic differen-
tiation results using the mouse preosteoblast cell line 
MC3T3-E1. During the osteogenic induction process, 

Fig. 9  Dynamic changes of RUNX2 and CREB3L1 regulon activity. A RUNX2 regulatory network. Blue dots represent skeletal system 
development-related target genes, other target genes are shown as gray dots. B CREB3L1 regulatory network. Blue dots represent skeletal system 
development-related target genes, other target genes are shown as gray dots. C RUNX2 and CREB3L1 regulon activity, embedded on SCENIC 
clustering layout and colored by RUNX2 or CREB3L1 regulon active levels. Gray dots represent completely inactive cells with zero active scores. Other 
dot colors represent active score in each cell from black (low) to blue (high). D Violin plots showing expression levels of RUNX2 (left) and CREB3L1 
(right). *Adjusted p value < 0.05 (Kruskal–Wallis test). E Skeletal system development-related target gene expression in RUNX2 and CREB3L1 regulon 
among four cell clusters. Dot color indicates relative expression level and the dot size shows the proportion of cells expressing the indicated 
genes. F Violin plots showing average expression levels of all target genes in RUNX2 (left) and CREB3L1 (right) regulons. *Adjusted p value < 0.05 
(Kruskal–Wallis test). G Continuum of dynamic RUNX2 regulon target gene expression in pseudotime of osteoblasts. Pixel color indicates expression 
level. Early-stage cells are listed at left. H Continuum of dynamic RUNX2 regulon’s target gene expression in pseudotime of osteoblasts. Pixel color 
indicates the expression levels. Early-stage cells are listed at left. I Motif swissregulon_hs_RUNX1..3.p2 of RUNX2. J Motif hocomoco_CR3L1_HUMAN.
H11MO.0.D of CREB3L1. The relative sizes of the letters indicate the frequency of four bases in the sequences
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Crem’s upregulation was later than expected at 14 days. 
Fosl2 had the highest level at 2 days, then downregulated 
at 3 and 7 days, which was consistent with its early-stage 
activation tendency. However, instead of staying down-
regulated as we predicted, Fosl2’s expression elevated 
again at day 14 which, may be attributable to species dif-
ferences and in vitro conditions. Foxc2 was upregulated at 
3 and 7 days (intermediate stage) and began to decrease 
at 14 days as expected. Runx2 and Creb3l1 genes reached 
their peaks at later stages (7 and 14  days), as expected 
(Fig.  13A). The success of osteogenesis induction was 
demonstrated by increased mineral nodule formation at 
14 days in Alizarin red S staining results (Fig. 13B).

Foxc2 is critical to osteogenesis process in MC3T3‑E1 cells
Foxc2’s function in the osteogenesis process is unclear. 
Foxc2 gene’s upregulation at the intermediate stage was 

concordant in the scRNA-seq analysis and osteogenesis 
induction experiment results; however, our CSN results 
also showed its potential role in early stage of differen-
tiation. Therefore, we further explored Foxc2’s function 
in vivo and in vitro. First, immunofluorescence on mouse 
femur displayed the co-staining of the osteoblast marker 
Alp with Foxc2, thereby verifying the expression of Foxc2 
in osteoblasts in  vivo (Fig.  13C). To further explore the 
biological function of Foxc2 in osteogenic differentia-
tion, we performed Foxc2 siRNA knockdown experiment 
on MC3T3-E1 cells. Successful knockdown of Foxc2 was 
verified by qPCR analysis (Fig.  13D). Silencing of Foxc2 
at 0–3  days (early stage) decreased osteoblastic differen-
tiation marker gene expression including Runx2, Col, Alp, 
and Osx (Fig. 13E), whereas silencing of Foxc2 at 4–7 days 
(intermediate stage) did not affect osteoblastic differen-
tiation (Fig.  13F). These results suggest that Foxc2 plays 

Fig. 10  CSN construction among target genes. A CSN connections between immunity/cell proliferation/cell differentiation-related target genes 
in four cell clusters. Red arcs represent immunity-related target genes. Blue arcs represent cell proliferation/cell differentiation-related target 
genes. Yellow arcs represent immunity and cell proliferation/cell differentiation-related target genes. B CSN connections between skeletal system 
development-related target genes in four cell clusters. Purple arcs represent MSC differentiation-related target genes. C CSN connections between 
skeletal system development-related target genes in four cell clusters. Purple arcs represent skeletal system development-related target genes
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an important role in osteogenic differentiation at the early 
stage.

Discussion
In the current study, we performed TF network and CSN 
analysis, at the single-cell level, in human osteoblasts 
freshly isolated from the femur of a 31-year-old man who 
underwent hip replacement surgery.

Our work revealed five important regulons, CREM, 
FOSL2, FOXC2, RUNX2, and CREB3L1, whose vary-
ing activity levels enabled us to identify four distinct cell 
clusters that we designated preosteoblast-S1, preosteo-
blast-S2, intermediate osteoblast, and mature osteoblast, 
representing different maturational stages during human 
osteogenesis. CREM and FOSL2 were most active in pre-
osteoblasts, FOXC2 was most active in intermediate oste-
oblasts, whereas RUNX2 and CREB3L1 activity increased 
as osteoblasts matured. Since these results were based 
on single-cell analysis of a single human subject, we vali-
dated our results using two different approaches. Com-
parable results were generated using human osteoblasts 
cultured in  vitro and an in  vivo scRNA-seq dataset for 
mouse osteoblasts.

These findings provide a framework for gene relation-
ships during osteogenesis at the single-cell level, laying 
the foundation for exploring characteristic gene func-
tions from a novel TF regulation perspective. Linking 

genomic regulatory patterns to variations in gene expres-
sion at the single-cell level could be robust against 
drop-out commonly seen in single-cell sequencing data, 
thereby optimizing the discovery and characterization of 
cellular states [20]. Additionally, unlike traditional net-
work construction groups of cells, the CSN method con-
structs separate networks at the single-cell level, thus the 
heterogeneity of each individual cell is preserved [16, 19]. 
To this end, our research revealed unique features in the 
regulon activity landscape and reciprocal gene interac-
tions within each human osteoblast subtype. Inferred TF 
and target genes in those candidate functional regulons 
may provide valuable clues for subsequent pathophysio-
logical study of osteoblast metabolism and osteoarthritis.

Cell heterogeneity may manifest in a variety of differ-
ent ways (e.g., gene expression or TF regulation). Con-
sequently, application of related conjoint analysis (using 
Seurat and SCENIC) is important in providing more 
comprehensive results in cell type identification. Activity 
of the regulons we studied differed substantially among 
the four designated cell clusters. Regulon activity-based 
cell clustering and trajectory inference effectively supple-
ment the traditional approach results that preosteoblast-
S1 was re-identified as an independent preosteoblast 
subtype in a distinctive cell lineage branch; meanwhile, 
the pseudotime order of intermediate osteoblasts and 
mature osteoblasts also obtained further validation. 

Fig. 11  Cell trajectory reconstruction based on regulon activity. A Cell developmental trajectory inference based on regulon activity, four branch 
points in total. B The direction of pseudotime in trajectory plot for Fig. 9A. C Cell developmental trajectory branch plot based on gene expression. 
The upper-right trajectory plot indicates the direction of pseudotime. D Cell lineage relationships in Fig. 9A. E Continuum of dynamic target gene 
expression around branch point 2 in Fig. 9A, D. Cell fate 1 was correlated to the up branch after branch point 2 in Fig. 9A (left branch after branch 
point 2 in Fig. 9D). Cell fate 2 was correlated to the down branch after branch point 2 in Fig. 9A (right branch after branch point 2 in Fig. 9D). Pixel 
color indicates the expression levels. All target genes are clustered in 2 groups based on their expression pattern. F NDM of CREM, FOSL2, FOXC2, 
RUNX2, and CREB3L1 TFs. Stars indicate the significance levels of the NDM difference from any other cell clusters (adjusted p value < 0.05, Wilcoxon 
rank-sum test)
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Although some cell lineage branches need further explo-
ration and validation, our results showed that preoste-
oblast-S1 represents a potential independent state of 
cellular differentiation, and mature osteoblasts represent 
the final cell fate in terms of both gene expression and TF 
regulation. GSEA results further confirmed the immu-
nity/cell proliferation/cell differentiation and skeletal sys-
tem developmental functions of these two cell types.

CREM and FOSL2 regulons were relatively active in 
preosteoblast-S1. Strong CSN connections for immunity 
and cell proliferation/differentiation-related target genes 
in CREM and FOSL2 regulons further supported their 
designated functional states. CREM has been reported 
to be a member of the ATF/CREB family of basic leucine 

zipper transcription factors [36, 37]. CREM encodes a 
variety of different isoforms by utilizing four promot-
ers and a complex pattern of alternative mRNA splicing 
[38]. For example, ICER is a dominant negative tran-
scription regulator transcribed by the P2 promoter of the 
CREM gene. Osteoblast-targeted overexpression of ICER 
resulted in osteopenia, attributable primarily to reduced 
bone formation [39]. Our findings demonstrate that the 
CREM regulon was most active in preosteoblast-S1. Thus, 
the combined action of various CREM isoforms, which 
may impact specific bone formation and homeostasis 
regulation processes in this cell subtype, warrants fur-
ther in-depth research. The FOSL2 regulon was another 
relatively active regulon in preosteoblast-S1. FOSL2 is a 

Fig. 12  Validation of regulon activity tendency. A Diffusion map trajectory inference based on gene expression. The upper-right trajectory plot 
indicates the direction of pseudotime. B Cell distribution based on the pseudotime coordinates (Fig. 10A). The x-axis is the pseudotime and the 
y-axis represents the osteoblast subtypes. C Diffusion map trajectory inference based on regulon activity. The upper-right trajectory plot indicates 
the direction of pseudotime. D Cell distribution based on the pseudotime coordinates in (Fig. 10C). The x-axis is pseudotime and the y-axis 
represents osteoblast subtypes. E Monocle trajectory heatmap of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons. F Diffusion map trajectory 
heatmap of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons. G Immunity and cell proliferation/differentiation-related target genes’ average 
expression in CREM regulon. H Immunity and cell proliferation/differentiation-related target genes’ average expression in FOSL2 regulon. I MSC 
differentiation-related target genes’ average expression in FOXC2 regulon. J Average expression of all target genes in RUNX2 regulon. K Skeletal 
system development-related target genes’ average expression in CREB3L1 regulon. L Expression of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 genes 
during osteogenic differentiation process in vitro. M Pseudotime heatmap of Lepr, Vcam1, Runx2 and Bglap during osteogenic differentiation in vivo 
on mouse. Pixel color indicates expression levels. N Immunity and cell proliferation/differentiation-related target genes’ average expression in Crem 
regulon. O Immunity and cell proliferation/differentiation-related target genes’ average expression in Fosl2 regulon. P MSC differentiation-related 
target genes’ average expression in Foxc2 regulon. Q Skeletal system development-related target genes’ average expression in Runx2 regulon. R 
Skeletal system development-related target genes’ average expression in Creb3l1 regulon. S Pseudotime heatmap of Crem, Fosl2, Foxc2, Runx2, and 
Creb3l1 genes during osteogenic differentiation in vivo on mouse. Pixel color indicates the expression levels



Page 18 of 21Wang et al. Human Genomics           (2023) 17:11 

paradigm transcription factor that controls the endocrine 
function of skeletal system. FOSL2 expression in osteo-
blasts influences adiponectin and osteocalcin expression 
and affects metabolism [36, 37, 40]. Activation patterns 
of the FOSL2 regulon might indicate that skeleton-
endocrine functions of FOSL2 are performed predomi-
nantly by preosteoblast-S1. Previous studies showed that 
interactions of FOSL2 and proinflammatory cytokines, 
including IL-6, contributed to various inflammatory 
reactions [41–43]. In addition, FOSL2 regulon’s target 
gene, IL-6, was included in the core gene modules of 
immunity-related PPI networks. As inflammatory activ-
ity is critical to the pathogenesis of osteoarthritis [44], 
determining whether the FOSL2 regulon contributed to 
osteoarthritis-associated inflammation via IL-6, or other 
immunity-related genes, warrants further study.

We further showed that the highly active regulon 
MXD4 [45], KLF2 [46] in preosteoblasts S2 and TAF7 
[47] in intermediate osteoblasts were related to the osteo-
genesis process. However, limited research [48] reported 
FOXC2’s osteogenesis function in preosteoblasts, espe-
cially at the early and intermediate stages. After verifying 
the expression of Foxc2 in osteoblasts in vivo, our knock-
down experiments by siRNA further suggested that Foxc2 
mainly influenced the osteogenic differentiation process 
in the early stage. These results were concordant with our 
CSN results, and as this stage was also the fastest increas-
ing stage for Foxc2 gene expression and regulon activity, 
results indicate the importance of using multiple analysis 
approaches in scRNA-seq data interpretation.

RUNX2 is a classical osteogenic-related TF which is 
essential for osteoblast differentiation and maturation 
[49–51]. We further confirmed that RUNX2 regulon 

Fig. 13  Experimental validation in MC3T3-E1 preosteoblastic cell line. A Expression of Crem, Fosl2, Foxc2, Runx2 and Creb3l1 genes during 
osteogenic differentiation process in 0, 2, 3, 7 and 14 days. B Alizarin Red S staining at 0 and 14 days. C Representative confocal immunofluorescent 
imaging showing distribution of Foxc2+Alp+ osteoblast in murine femur. Arrows mark Foxc2+Alp+ cells. D Qpcr experiment revealed the successful 
knockdown of Foxc2. E Gene expression of Runx2, Col, Alp and Osx at 3 days. F Gene expression of Runx2, Col, Alp and Osx at 7 days. (*, P < 0.05 by 
one-way ANOVA; ns not significant, OM osteogenic differentiation medium)
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activity and expression of its target genes were elevated 
in late-stage osteoblasts. Endoplasmic reticulum stress 
transducer old astrocyte specifically induced substance 
(OASIS), encoded by CREB3L1, has been demonstrated 
to promote the terminal maturation of osteoblasts 
[52–54]. OASIS activates the transcription of type I 
collagen gene COL1A1 and affects the secretion of 
bone matrix proteins [55–57]. These previous studies 
support our results demonstrating CREB3L1 regulon’s 
active tendency, the trend of COL1A1’s CSN connec-
tion, and the COL1A1-CREB3L1 regulation edge. In 
addition, to investigate the gene association of CREM, 
FOSL2, FOXC2, RUNX2, and CREB3L1 at the whole 
transcriptome level, we calculated NDM values of 
these five TFs. As expected, NDM values of CREM and 
FOSL2 were highest in preosteoblast-S1, NDM values 
of FOXC2 were highest in intermediate osteoblasts, and 
NDM values of RUNX2 and CREB3L1 were highest in 
mature osteoblasts. These results demonstrate the wide 
influence of these regulons at the whole transcriptome 
level by directly or indirectly regulating gene targets, 
co-expression, alternative splicing, or other potential 
mechanisms [16].

There are several limitations to the present study. Most 
significantly, much of the research data were obtained 
from one 31-year-old Chinese male patient with osteo-
arthritis and osteopenia. Independent in  vitro data and 
complementary analysis with diffusion mapping provided 
further evidence supporting the differential TF expres-
sion and pattern dynamics of the regulons identified in 
cells from this patient. Nevertheless, this sample size is 
limited in its ability to represent the general population 
with respect to bone health or disorder. Consequently, 
the cell subtype designations reported in the current 
study must be considered preliminary until we have an 
opportunity to explore physiological differences of these 
cell subtypes from a larger number, and greater diversity, 
of subjects. Specifically, more samples from both healthy 
subjects and bone disorder patients are needed to derive 
unbiased expression matrices for downstream analyses of 
regulons and gene interactions in osteoblasts as they dif-
ferentiate. Another limitation is that the interactions in 
the PPI network are inferred rather than assured in the 
cells under study, since the PPIs from STRING are not 
tissue-specific. Although evidence of interaction like cor-
relation/regulation relationships and protein-binding val-
idated in Co-IP or other in vitro experiments also lends 
support to the potential interactions in the cells under 
study [58–60], further experimental validation should be 
performed with a sufficient sample size in vivo to validate 
the results from the regulon network and PPI analyses.

Conclusion
Despite these potential limitations, our results provide 
the first necessary and valuable insights into the cellular 
heterogeneity of osteoblasts, along with a comprehensive 
and systematic understanding of cell development and 
functional state changes of primary osteoblasts. These 
insights, based on both TF regulation and CSN perspec-
tives at the single-cell network level, may prove critical to 
understanding bone metabolism and pathophysiologic 
mechanisms associated with various bone disorders. 
Multiple functions like immunity, endocrine activity, cell 
differentiation, and cell development were differentially 
influenced by different TFs in different cell stages. Our 
work also provides a new approach of integrating analy-
sis for novel CSN methods with classical TF regulatory 
network in scRNA-seq data. The findings provide crucial 
insights from a novel regulatory network perspective that 
warrant further exploration in functional mechanistic 
studies in bone physiological and pathological processes.
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