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Abstract 

Background  The metabolome is the best representation of cancer phenotypes. Gene expression can be considered 
a confounding covariate affecting metabolite levels. Data integration across metabolomics and genomics to establish 
the biological relevance of cancer metabolism is challenging. This study aimed to eliminate the confounding effect of 
metabolic gene expression to reflect actual metabolite levels in microsatellite instability (MSI) cancers.

Methods  In this study, we propose a new strategy using covariate-adjusted tensor classification in high dimensions 
(CATCH) models to integrate metabolite and metabolic gene expression data to classify MSI and microsatellite stability 
(MSS) cancers. We used datasets from the Cancer Cell Line Encyclopedia (CCLE) phase II project and treated metabo‑
lomic data as tensor predictors and data on gene expression of metabolic enzymes as confounding covariates.

Results  The CATCH model performed well, with high accuracy (0.82), sensitivity (0.66), specificity (0.88), precision 
(0.65), and F1 score (0.65). Seven metabolite features adjusted for metabolic gene expression, namely, 3-phospho‑
glycerate, 6-phosphogluconate, cholesterol ester, lysophosphatidylethanolamine (LPE), phosphatidylcholine, reduced 
glutathione, and sarcosine, were found in MSI cancers. Only one metabolite, Hippurate, was present in MSS cancers. 
The gene expression of phosphofructokinase 1 (PFKP), which is involved in the glycolytic pathway, was related to 
3-phosphoglycerate. ALDH4A1 and GPT2 were associated with sarcosine. LPE was associated with the expression of 
CHPT1, which is involved in lipid metabolism. The glycolysis, nucleotide, glutamate, and lipid metabolic pathways 
were enriched in MSI cancers.

Conclusions  We propose an effective CATCH model for predicting MSI cancer status. By controlling the confounding 
effect of metabolic gene expression, we identified cancer metabolic biomarkers and therapeutic targets. In addition, 
we provided the possible biology and genetics of MSI cancer metabolism.
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Background
Microsatellite instability (MSI) results in the frequent 
occurrence of short tandem repeats in the cancer 
genome when there is a deficit in DNA mismatch repair 
(MMR) genes. In addition to DNA repair mechanisms, 
somatic genetic alterations such as tumor suppressor 
genes may accumulate in MSI malignancies [1]. Clini-
cally, several malignancies, notably endometrial, upper 
gastrointestinal (GI), colorectal, cervical, and prostate 
cancers, express MSI [2, 3]. It is a valuable marker for 
predicting immunotherapy responses in any type of can-
cer [3, 4]. However, MSI cancer patients show a variety 
of biological mechanisms of immune resistance to immu-
notherapy. Intrinsic resistance to immunotherapy is com-
monly attributed to host genetic alterations, immune 
response, and tumor metabolism [5]. The relationship 
between drug resistance and MSI cancer metabolites can 
be understood by investigating tumor metabolites and 
MSI status. High-throughput metabolomics has been 
used to identify new diagnostic biomarkers and thera-
peutic targets for various cancers [6]. In MSI cancers, 
plasma metabolites can be used as biomarkers for diag-
nosis, recurrence surveillance, and treatment response 
monitoring [7].

Metabolomics is the best representation of molecular 
phenotypes and the final step in the omics cascade. Gene 
alterations have been proposed to significantly affect 
metabolite levels. For example, some genetic loci have 
been identified to correlate with specific metabolic phe-
notypes using quantitative trait locus (QTL) mapping [8]. 
Metabolites and gene expression of metabolic enzymes 
are two fundamental biological components of metabolic 
pathways. Metabolites represent a variety of upstream 
biological signals at the functional genomic level, such 
as the transcriptome [9]. As a result of epigenetic modi-
fications, metabolic enzyme genes expressed differently 
might contribute to metabolic reprogramming, which is 
necessary for glucose metabolism, lipid metabolism, and 
amino acid metabolism [10]. In addition, research has 
indicated the direct involvement of the metabolome in 
genome regulation [11]. Metabolomics also serves as an 
input that influences genomic alteration to form a feed-
back loop [12, 13]. There are interactions between metab-
olites and gene expression [14, 15].

Covariate adjustment has been described in previ-
ous metabolite studies as a method for reducing con-
founders [16]. Metabolism is altered by many factors, 
such as genetics, disease status, and the environment. 
Gene expression of metabolic enzymes is a confounding 
covariate that affects metabolite levels in different cancer 
types [8]. In our study, genetic alterations such as gene 
mutations and gene expression affected metabolite levels 
and MSI cancer status. By controlling the confounding 

effects, we can identify the actual metabolite biomark-
ers and cancer metabolism. Integrating information 
from metabolomic predictors and genomic confounding 
covariates to predict MSI cancer status is challenging. In 
multiomics analyses, various omics datasets have been 
used to investigate the underlying biological mechanisms 
of diseases [17]. Most studies use a simultaneous integra-
tion and linear regression approach to interpret multiom-
ics data [17, 18]. For example, MetaboAnalyst v5.0 [18], 
a metabolite analysis software, uses a linear regression 
model to adjust for individual features such as age, sex, 
and batch variables. Multiomics data are integrated and 
interpreted using joint pathway analysis. Random for-
est (RF) is used to integrate multiple factors simultane-
ously [17]. However, the current interface does not allow 
the incorporation of high-dimensional tensor predictors 
and confounding covariates to achieve the best possible 
classification.

To integrate metabolomic and genomic data, we pro-
pose a novel strategy using covariate-adjusted tensor 
classification in high dimensions (CATCH) models [19]. 
The main goal of this study was to minimize the impact 
of confounding covariates in identifying actual metabo-
lism in MSI or microsatellite stability (MSS) cancers. 
Metabolites and gene expression may interact with each 
other. Moreover, the metabolome is closely related to the 
phenotype. Thus, we treated metabolomic data as ten-
sor predictors and genomic data as confounding covari-
ates. Unlike typical metabolomics analysis [18, 20, 21], 
the CATCH model uses the tensor regression approach 
to define the relationship between the metabolomic and 
genomic data. This research reveals the adjusted metabo-
lite features, the predictive performance of the CATCH 
model, and the relationships between metabolite features 
and metabolic genes. Finally, we discuss metabolic path-
ways in MSI and MSS cancers.

Methods
Cancer cell lines, gene alterations, MSI cancer status, 
and metabolites
Metabolomic and genomic data were collected from 
phase II of the Cancer Cell Line Encyclopedia (CCLE) 
project [22–24]. CCLE data, including RNA expression 
and genetic mutation data for over 1000 cancer cell lines 
across 20 major cancer types, are publicly accessible. 
Emerging next-generation sequencing (NGS) technology 
was applied to RNA expression data. Data on cancer cell 
lines were obtained from the Cancer Dependency Map 
Project (DepMap) (https://​depmap.​org/​portal/​downl​
oad/​custom/). The cancer cell lineages (from the sam-
ple information file), APC mutations (from the mutation 
file), and RNA gene expression data (from the expression 
2022Q2 public file) were found in the DepMap 22Q2 data 
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release (accessed on May 26, 2022). MSI cancer status 
was determined using NGS and polymerase chain reac-
tion (PCR)-based phenotyping [24]. We downloaded 
the MSI/MSS cancer status and TP53 mutation data 
from E. M. Chan’s research project [24]. A total of 928 
cell lines were analyzed by liquid chromatography‒mass 
spectrometry (LC‒MS). Metabolite profiling revealed 
225 metabolites, including 124 polar and 101 lipid spe-
cies. The CCLE 2019 metabolomics dataset (clean and 
imputed) was used for further analysis [25].

MSI and MSS cancer cell line matching
A total of 75 MSI and 827 MSS cancer cell lines were 
identified. To reduce bias between metabolite data from 
MSI and MSS cancer cell lines, the MSS cell lines were 
randomly sampled to match APC and TP53 mutations as 
well as cancer cell lineages. Finally, 225 MSI cancer cell 
lines were selected for subsequent analysis.

CATCH model
We used the CATCH model proposed by Pan et al. [19] 
to develop a classifier for predicting the MSI cancer sta-
tus from metabolite profiling and gene expression data. 
In statistics, a confounding covariate, e.g., metabolic gene 
expression, is a variable that influences both the depend-
ent variable (MSI status) and independent variable 
(metabolites, as Additional file  1: Fig. S1). The CATCH 
model can be used to predict particular classes by con-
trolling the confounding effects. We considered the gene 
expression of metabolic enzymes as a confounding covar-
iate and used the CATCH model to predict the MSI sta-
tus. The CATCH model is a classifier based on Bayes’ rule 
and is defined as follows:

where Ŷ  is the predictor for MSI cancer status (1 for MSS; 
2 for MSI), Madj = M − α(M+1)×G represents metabo-
lite profiling data adjusted by the gene expression level 
G, and M represents the original metabolite data profil-
ing. The coefficient α is used to quantify the relationship 
between metabolite levels and gene expression, while 
coefficient B represents the direct effect of metabolite 
levels on MSI cancer status. The coefficients {B , α} and 
Madj are critical and can guide clinicians in interpreting 
the results obtained from the CATCH model. Here, we 
explain how to utilize this information to identify metab-
olite biomarkers for, biological relevance of, and potential 
therapeutic targets in MSI cancers. Because the CATCH 
method involves a variable selection algorithm, a typical 
data standardization procedure was used to transform 
the metabolite data to comparable scales. The datasets 

Ŷ = arg max
k=1,2

Pr ak + γ T
k G + B,Madj ,

and source code are available at https://​github.​com/​
H2406​1024/​micro​satel​lite-​insta​bility-​cance​rs.

Data visualization tools
The R package pheatmap (version 1.0.12) was used to 
draw a heatmap to visualize the correlation between 
metabolite features and metabolic gene expression. 
A boxplot was created using the R package ggplot2 
(version 3.3.6) to visually assess the differences in 
non-adjusted, standardized, and CATCH-adjusted 
metabolite data between MSI and MSS cancers. Addi-
tionally, we performed the Wilcoxon test to evaluate the 
statistical significance of the non-adjusted, standardized, 
and CATCH-adjusted metabolite data between MSI and 
MSS cancers. A p value greater than 0.05 was considered 
statistically significant.

Integration models for metabolomic and genomic data
Two conceptual approaches incorporating metabolomic 
and genomic data are shown in Fig.  1. CATCH models 
were employed in this study to predict MSI and MSS 
cancer statuses. Metabolomic data were treated as tensor 
predictors, whereas genomic data were treated as con-
founding covariates (Fig.  1A). To classify MSI and MSS 
cancer status, we adjusted the metabolomic data with 
genomic data and quantified the direct impacts on the 
outcome. A tensor regression model was used to deter-
mine the relationship between metabolomic and genomic 
data. For comparison, we used a classical machine learn-
ing technique, RF, to simultaneously integrate metabo-
lomic and genomic data (Fig. 1B) [26].

Databases and metabolic pathway analysis
Public databases for metabolite information and meta-
bolic pathways were used. PubChem is an open database 
maintained by the National Institutes of Health (NIH) 
that allows users to search for metabolites by name and 
identify their chemical and physical properties along 
with other information [27]. The Human Metabolome 
Database (HMDB) was used for metabolite information, 
including chemical, clinical, molecular biology, and bio-
chemical data [28]. The metabolic pathway of the biologi-
cal system was analyzed using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database [29].

Analysis of plasma metabolites in MSI cancer patients
The case study was approved by the Institutional Review 
Board (IRB) of the National Cheng Kung University 
Hospital (NCKUH) (A-ER-103–395, B-ER-110–342, 
and B-ER-110–418), and the healthy control study was 
approved by the IRB of NCKUH (B-ER-110–442). The 
study was conducted in accordance with the Declaration 
of Helsinki. We used LC‒MS for amino acid and related 

https://github.com/H24061024/microsatellite-instability-cancers
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amine analysis and nuclear magnetic resonance (NMR) 
for nonamine metabolite analysis. Plasma was collected 
from a patient with MSI cancer and healthy control sub-
jects. Protein precipitation using methanol was carried 
out as described by Gowda [30]. NMR experiments were 
conducted at 298  K on a Bruker Avance III 600  MHz 
spectrometer (Billerica, MA, USA) equipped with a tri-
ple-inverse probe and a Z-gradient. CPMG (Carr − Pur-
cell − Meiboom − Gill) pulse sequences and presaturation 
for water suppression were used for 1H 1D NMR experi-
ments. For the LC‒MS-based metabolomics study, the 
amino acid derivatives were prepared according to the 
methods described in the Kairos™ amino acid kit man-
ual of Waters™ (Milford, MA, USA). The precipitated 
samples were derivatized using the AccQ Tag™ Deri-
vatization kit (Waters Corporation). The LC‒MS system 
consisted of an ACQUITY® UPLC® H-Class Plus System 
(Waters Corporation) and an ACQUITY® QDa® Mass 
Detector (mass spectrometry detector; Waters Corpora-
tion) equipped with an electrospray ionization interface. 
Ultra-performance liquid chromatography‒mass spec-
trometry (UPLC-QDa, UPLC‒MS) was used for analysis. 

A CORTECS® UPLC® C18 column (2.1 mm × 150 mm, 
1.6 μm particle size) was used for compound separation. 
Information regarding the identified metabolites was 
confirmed in our preliminary results by matching the 
LC‒MS or NMR information with the analysis of various 
metabolites of the internal standard.

Results
Characteristics of cancer cell lines and matching
The metabolite and gene expression data of 902 cancer 
cell lines were identified in the DepMap database. Of 
these cancer cell lines, 827 were associated with MSS 
cancers, whereas 75 were associated with MSI cancers. 
We selected and matched cell lines on a 1:3 basis for both 
MSI and MSS cancers (Additional file 4: Table S1). APC 
mutations, TP53 mutations, and cancer cell lines from 
GI, breast, gynecologic (GYN), hematologic (Hema), 
genitourinary (GU), and other cancer cell lineages were 
used to match MSI (n = 75) and MSS (n = 225) cancers. 
Additional file  4:  Table  S1 presents comparisons of 
MSI- and MSS-matched cancer cell lines. The percent-
age of APC mutations was 25.3% in MSI cancers and 

n1 n2 n3 n4 nx nyn5 nz n1 n2 n3 n4 n14 n16n5 nan6 n7

n1 n2 n3 n4 n14 n16n5 na

Metabolomics Tensor
Predictors Genomics Confounder

Covariates

Tensor
Regression

CATCH  model Random Forest

B Classical approach

A Tensor regression approach

Adjusted
Metabolomics

Metabolomics Genomics

ny nzn1 n2 n3 n1 nan2

ny nzn1 n2 n3 n1 nan2

Direct Effect
Simultaneous

Fig. 1  Integration models for metabolomic and genomic data. A Tensor regression approach. Tensor datatype was used to represent the 
metabolomic data for predicting MSI cancer status. The genomic data were treated as confounding covariates. The adjusted metabolomic and 
genomic data were correlated using a tensor regression model. B Classical approach. The metabolomic and genomic data were integrated with a 
simultaneous approach for classification and correlated using a linear regression model
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20.4% in MSS cancers. No discernible distinction could 
be made between MSI and MSS cancers in terms of the 
clinical characteristics of TP53 mutations and cancer 
cell lineages. There were 32% TP53 mutations in both 
MSI and MSS cancers. Regarding cancer lineages, GI 
cancers accounted for 33.3%, breast and gynecological 
cancers accounted for 34.7%, and hematological cancers 
accounted for 17.3% of cancer cell lines. Based on data 
from 300 cancer cell lines, CATCH model analysis was 
applied to adjust metabolite data using gene expression 
data as covariates.

Identification of adjusted metabolite features affecting MSI 
cancer status by the CATCH model
To use the CATCH method for predicting MSI can-
cer status, 225 metabolite data points were considered 
25× 25 tensor data, and 87 metabolic genes were consid-
ered confounding covariates (Fig. 1A). The 87 metabolic 
genes were selected from four major metabolic pathways 
associated with 225 metabolites (Additional file 5: Tables 
S2 and Additional file  6: Table  S3), namely, the amino 
acid, carbohydrate, lipid, and nucleotide metabolic path-
ways [31]. The eight most significant adjusted metabolite 

features were selected based on the variable selection 
algorithm in the CATCH model for predicting the MSI 
cancer status (Additional file  7: Table  S4 and Fig.  2). 
The adjusted metabolite features distinguished MSI 
from MSS cancer. The direct effect, coefficient B in the 
CATCH model, on the MSI cancer status ranged from 
− 0.17–0.56 (Table 1).

Positive coefficient values implied that the metabolite 
features were more relevant to the MSI cancer status. 

Sarcosine

C36:1 PC

6-phosphogluconate

C18:0 LPE

Glutathione reduced 

C14:0 CE

3-phosphoglycerate

Hippurate

TP53
M/W Breast GYN/GI/GU/Hema/Other MSI/MSSM/W

APC Lineages MS
3
2
1
0
-1
-2
-3

TP53
APC 
Lineages 
MS

Adjusted metabolites

Fig. 2  Adjusted metabolite features with confounding covariates in MSI and MSS cancers. The heatmap illustrates the relationship between 
adjusted metabolite features and microsatellite instability (MSI)/microsatellite stable (MSS) cancer status. In the CATCH model, the Y-axis displays 
adjusted metabolite features and levels. Eight crucial adjusted metabolite features were found to distinguish between MSI and MSS cancers. The 
cancer cell lineages (gastrointestinal (GI), breast, and gynecologic (GYN), hematologic (Hema), genitourinary (GU), and others), MSI/MSS cancer 
status, and APC and TP53 mutations (mutation/wild type: M/W) are displayed on the X-axis. Positive values for adjusted metabolite features suggest 
a stronger association with MSI cancers, while negative values represent a strong association with MSS cancer. The eight different metabolite 
features were Hippurate, 3-phosphoglycerate, cholesterol ester (CE, C14:0), lysophosphatidylethanolamine (LPE, C18:0), 6-phosphogluconate, 
phosphatidylcholine (PC, C36:1), reduced glutathione (GSH), and sarcosine

Table 1  Direct effect of adjusted metabolite features

Features Coefficient

Hippurate − 0.17

3-phosphoglycerate 0.01

C14:0 cholesterol ester (CE) 0.01

C18:0 lysophosphatidylethanolamine (LPE) 0.07

6-phosphogluconate 0.09

C36:1 phosphatidylcholine (PC) 0.10

Glutathione reduced 0.20

Sarcosine 0.56
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Seven adjusted metabolite features were present in MSI 
cancer cell lines, namely, 3-phosphoglycerate, cholesterol 
ester (CE, C14:0), lysophosphatidylethanolamine (LPE, 
C18:0), 6-phosphogluconate, phosphatidylcholine (PC, 
C36:1), reduced glutathione (GSH), and sarcosine. All 
had a positive relationship with MSI cancer.

3-phosphoglycerate is related to cellular energy. The 
glycolytic intermediate 3-phosphoglycerate is a source 
of sarcosine and serine. The oncometabolite sarcosine 
has been associated with invasive prostate cancer cells 
[32]. 6-phosphogluconate affects nucleotide metabolism, 
which aids cell growth. CEs, LPE, and PC are also related 
to lipid metabolism in cancer [33]. Glutathione is asso-
ciated with the survival of cancer cells through reactive 
oxygen species (ROS) mechanisms. Clinical studies have 
also linked glutathione to chemotherapy resistance [34].

If the coefficient value was negative, then the metabo-
lite feature exhibited greater relevance to MSS cancer. 
One metabolite feature, Hippurate, was associated with 
MSS cancer. Based on the CATCH model, we demon-
strated the direct effect of adjusted metabolites on the 
prediction of MSI cancer status.

Performance of the CATCH model
Using metabolomic and genomic data, we compared the 
performance of the CATCH model with that of RF, the 
most common classification algorithm in machine learn-
ing. To evaluate the performance, we randomly split the 
entire dataset into training and testing datasets. MSI 
and MSS cancer cell lines were maintained at a 1:3 ratio 
throughout the training and testing datasets. The train-
ing dataset contained 90% of the entire data, whereas 
the testing dataset contained 10%. The splitting process 
was run for 100 iterations, and the average performance 
metrics were calculated. Table 2 shows the performance 
of the RF and CATCH models. The CATCH model per-
formed well, with high accuracy (0.82), sensitivity (0.66), 
specificity (0.88), precision (0.65), and F1 score (0.65). 
For RF, a simultaneous approach was used to predict MSI 
cancer status. The RF model had an accuracy of 0.77, sen-
sitivity of 0.10, specificity of 0.99, precision of 0.81, and 
F1 score of 0.26. The CATCH model was more accurate 
in classifying MSI and MSS cancer status than the RF 
model in terms of accuracy and F1 score.

The significance of metabolite data with or without 
adjustment
To better understand the confounding effects of gene 
expression covariates on metabolite features, we com-
pared their significance between non-adjusted and 
CATCH-adjusted metabolite data. Additional file 2: Fig. 
S2 displays a boxplot comparing the non-adjusted, stand-
ardized, and CATCH-adjusted metabolite data between 
MSI and MSS cancers. Considering the confounding 
covariates of metabolic genes, we obtained eight adjusted 
metabolite features that were strongly correlated with 
MSI and MSS cancers (p < 0.05, Supplementary Fig. S2). 
Supplementary Fig. S2 shows that three metabolite fea-
tures, namely, 3-phosphoglycerate (non-adjusted and 
standardized, p = 0.855), LPE (C18:0) (non-adjusted and 
standardized, p = 0.056), and GSH (non-adjusted and 
standardized, p = 0.25), were initially not correlated with 
MSI and MSS cancers, but after adjustment, they had a 
significant correlation with MSI cancers (p < 0.001). Hip-
purate, CE (C14:0), 6-phosphogluconate, PC (C36:1), 
and sarcosine were five non-adjusted and standardized 
metabolite features that were substantially associated 
with MSI or MSS cancers (p < 0.05).

Hippurate, for example, had a higher level in MSS 
cancers (non-adjusted and standardized, p = 0.026) 
(Fig.  3A, 3B). After adjustment, it was more signifi-
cantly associated with MSS cancers (CATCH-adjusted, 
p value < 0.001) (Fig.  3C). Without adjustment for 
metabolic gene expression, the level of 6-phosphoglu-
conate was negatively correlated with MSI cancers (non-
adjusted and standardized, p value = 0.008) (Fig. 3D, 3E). 
In contrast, it was positively associated with MSI can-
cers after elimination of the confounding effect of meta-
bolic gene expression (CATCH-adjusted, p value < 0.001) 
(Fig. 3F). Sarcosine had a higher value and was positively 
correlated with MSI cancers (non-adjusted and standard-
ized, p value = 0.001) (Fig. 3G, 3H). After adjustment for 
metabolic gene expression, sarcosine was more signifi-
cantly associated with MSI cancers (CATCH-adjusted, 
p < 0.001) (Fig. 3I).

The relationship between adjusted metabolite features 
and metabolic genes
We quantified the relationship between adjusted metab-
olite levels and metabolic gene expression in cancer cell 
lines to identify the potential metabolic pathways in MSI 
cancers. The α coefficients are listed in Additional file 8: 
Table  S5. In Fig.  4, we present a heatmap visualization 
based on eight adjusted metabolite features and 87 met-
abolic genes. Table  3 shows the eight adjusted metabo-
lite features and metabolic genes in the same metabolic 
pathway. Hippurate is correlated with the expression of 

Table 2  Performance of CATCH and random forest models

CATCH Covariate-adjusted, proposed tensor classification in high dimensions

Methods Accuracy Sensitivity Specificity Precision F1 score

Random 
forest

0.767 0.096 0.991 0.805 0.258

CATCH 0.824 0.656 0.880 0.654 0.647
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metabolic genes such as QDPR, FAH, PAOX, MPST, and 
SLC7A5, which are involved in the metabolism of amino 
acids and their derivatives. 3-phosphoglycerate is related 
to ST3GAL2, PFKP, HS3ST1, HPSE, and PGM1 meta-
bolic gene expression, which are involved in carbohydrate 
metabolism. LPE is linked to the expression of meta-
bolic genes such as PTGS1, CHPT1, SC5D, PLA2G3, and 
DHCR24, which are involved in lipid metabolism. Sarco-
sine has been associated with ALDH4A1, GPT2, AGMAT, 
ASL, AADAT, and MPST metabolic gene expression 
involved in the metabolism of amino acids. By investigat-
ing the relationship between adjusted metabolite features 

and metabolic gene expression, we found potential bio-
logical relevance in cancer metabolic pathways.

Cancer metabolism in MSI and MSS cancers
Figure  5 displays the results of the metabolic pathway 
analysis using the HMDB and the KEGG databases [28, 
29]. Cancer metabolism involves eight critical adjusted 
metabolites and four metabolic genes. Metabolic path-
ways are related to glycolysis, nucleotide, glutamate, 
and lipid metabolism. In MSI cancers, the four major 
metabolic pathways for cancer metabolism are the 
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6-phosphogluconate

C18:0 LPE

Glutathione Reduced 

C14:0 CE

3-phosphoglycerate

Hippurate

0.2

0.1

0

-0.1
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-0.3

Metabolic Pathway

Amino acids

Carbohydrates

Lipids

Nucleotides

Correla�on

Metabolic Pathway

Fig. 4  The relationships between adjusted metabolite features and metabolic gene expression. The correlation between eight significantly 
adjusted metabolite features and 87 metabolic genes was used to create a heatmap. The Y-axis displays eight adjusted metabolite features, 
including Hippurate, 3-phosphoglycerate, CE (C14:0), LPE (C18:0), 6-phosphogluconate, PC (C36:1), GSH, and sarcosine. On the X-axis, each 
metabolic pathway is represented by 87 metabolic genes, including amino acids, carbohydrates, lipids, and nucleotides

Table 3  The relationship between adjusted metabolites and metabolic genes in the same metabolic pathway

CE Cholesterol ester, LPE Lysophosphatidylethanolamine, PC Phosphatidylcholine

Features Metabolic pathway Associated genes

Hippurate Metabolism of amino acids QDPR/FAH/PAOX/MPST/SLC7A5

3-phosphoglycerate Metabolism of carbohydrates ST3GAL2/PFKP/HS3ST1/HPSE/PGM1

C14:0 CE Metabolism of lipids AGPS/SGPP1/SQLE/EPHX2

C18:0 LPE Metabolism of lipids PTGS1/CHPT1/SC5D/PLA2G3/DHCR24

6-phosphogluconate Metabolism of carbohydrates B4GALT2/PFKFB2/PPP1R3C/SLC25A13/IDUA

C36:1 PC Metabolism of lipids CYP51A1/CERS6/PTGS1/PLA2G3/CERS4/SQLE

Glutathione reduced Metabolism of amino acids MRI1/FAH/GAMT/PAOX/CHDH/CDO1

Sarcosine Metabolism of amino acids ALDH4A1/GPT2/AGMAT/ASL/AADAT/MPST
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serine synthesis pathway (3-phosphoglycerate and 
sarcosine), pentose phosphate pathway (6-phospho-
gluconate), glutamate pathway (GSH), and lipid metab-
olism pathway (CE, LPE, and PC). After integrating the 
adjusted metabolite features and metabolic genes in 
the glycolytic and glutamate metabolic pathways, we 
found that 3-phosphoglycerate increased with phos-
phofructokinase 1 (PFKP) metabolic gene expression 
in the CATCH model. Sarcosine was associated with 
the expression of ALDH4A1 and GPT2 metabolic genes 
(Table  3). Proline is converted to glutamate through 
the expression of the ALDH4A1 metabolic gene. GPT2 
metabolic gene expression is involved in the conver-
sion of 2-oxoglutarate to glutamate. These findings 
suggest that an increase in sarcosine levels may occur 
due to glycolytic and glutamate metabolism. The con-
version of choline to PC, which increases LPE metabo-
lism, involves CHPT1 metabolic gene expression. These 
results indicate that dysregulation of PFKP, ALDH4A1, 
GPT2, and CHPT1 metabolic gene expression may lead 
to cancer metabolism in MSI cancer cell lines.

Discussion
To identify more metabolite biomarkers and therapeu-
tic targets for MSI cancers, we developed a new strat-
egy using the tensor regression approach. Our results 
highlight the following crucial points: (i) we integrated 
metabolite and metabolic gene data using a power-
ful CATCH model for predicting MSI cancer status, (ii) 
seven adjusted metabolite features were identified for 
MSI metabolite biomarkers, and one metabolite fea-
ture was identified for MSS cancers, (iii) the relation-
ship between adjusted metabolite features and metabolic 
genes was quantified, and (iv) we established metabolic 
pathways related to glycolysis, nucleotide, glutamate, and 
lipid metabolism in MSI cancers. These results provide 
information on cancer metabolism and possible thera-
peutic targets for MSI and MSS cancers.

The small-molecule compounds present in biologi-
cal samples constitute the metabolome. Since 2007, the 
Human Metabolome Database (HMDB) has provided 
comprehensive metabolite properties, including biologi-
cal, physiological, and chemical information. Recently, 
HMDB 5.0 (https://​hmdb.​ca) released 1,581,537 
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Fig. 5  Metabolic pathways in MSI and MSS cancers. MSI cancer cells exhibit glycolytic metabolism, including the serine synthesis (sarcosine 
synthesis) and pentose phosphate (nucleotide synthesis) pathways. Sarcosine, 3-phosphoglycerate, and 6-phosphogluconate levels were 
elevated. Additionally, lipid metabolism and GSH synthesis were observed in MSI cancer metabolism. Levels of PC, LPE, CE, and GSH were elevated. 
Phosphofructokinase 1 (PFKP), ALDH4A1, GPT2, and CHPT1 are involved in MSI cancer metabolism. These metabolic pathways promote cancer cell 
proliferation, energy production, and survival. DNA repair genetic mutations drive cancer metabolism, and sarcosine damages the DNA. Sarcosine 
and genomic alterations can regulate each other. In MSS cancers, environmental factors, such as the microbiota, may play a crucial role in Hippurate 
synthesis

https://hmdb.ca
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unannotated derivatized metabolite compounds and 
217,920 annotated metabolite compounds [28]. The 
tensor approach is a useful method for managing high-
dimensional metabolomic data. The tensor-based covari-
ate approach has recently been used in multiomics data 
analysis [35] to predict continuous outcomes. In contrast, 
our model demonstrated the application of tensor pre-
dictors to a high-dimensional metabolome for predict-
ing binary outcomes. Unlike classical methods using a 
simultaneous approach, only the direct effect of adjusted 
metabolite features was identified using the CATCH 
model (Fig. 1). The actual biological relevance can also be 
established by quantifying the relationship between the 
metabolomic and genomic data.

Metabolic gene expression affects the relationship 
between metabolite features and MSI cancer status. The 
primary goal of our study was to eliminate the impact 
of confounding covariates to reflect actual metabolite 
levels. Genetic expression and mutation may also regu-
late cancer-related metabolites. DNA damage signaling, 
such as the TP53 mutation, can control glycolysis [36]. 
As a result of APC mutation, energy metabolic pathways 
may change, which also aids in cancer growth. The APC-
WNT signaling pathway also affects cancer metabolism 
[37, 38]. Additionally, metabolic reprogramming affects 
the genetic alterations that promote cancer growth and 
metastasis. To classify MSI and MSS cancers, we first 
matched APC and TP53 mutations and cancer cell line-
ages. Using the CATCH model (Fig.  1A), we adjusted 
the metabolite data with the confounding covariates of 
metabolic gene expression based on the tensor regression 
model. Four metabolite features, namely, 3-phospho-
glycerate, 6-phosphogluconate, LPE, and GSH, were ini-
tially unrelated to MSI cancers and became significantly 
associated with MSI cancers after adjustment. Metabolic 
gene expression as a confounder may distort the relation-
ship between metabolite features and MSI cancer status. 
By controlling the confounding effects, we can determine 
the actual relevance between metabolites and MSI cancer 
status.

Plasma metabolites may become promising biomark-
ers for MSI cancers. There are numerous methods for 
quantifying MSI, such as immunohistochemistry (IHC) 
for mismatch repair proteins, PCR analysis of micros-
atellite markers [4], and NGS [3]. For the diagnosis of 
MSI cancers, IHC and PCR analyses are frequently uti-
lized; however, for MSI detection, these strategies can 
only be conducted on cancer tissue samples, not liq-
uid biopsy samples. NGS has been established for the 
analysis of ctDNA in plasma for MSI identification but 
has low sensitivity and high cost. A longitudinal study 
based on targeted metabolomics technology was con-
ducted to validate the findings. The study was approved 

by the Institutional Review Board (IRB) of the National 
Cheng Kung University Hospital (NCKUH) (B-ER-
110–418). The study is ongoing. Our aim is to develop a 
series of portfolio-type biomarkers for cancer patients. 
However, we do not yet have enough samples to per-
form statistical analysis. Moreover, sarcosine is the 
most significant adjusted metabolite feature based on 
the CATCH model for predicting the MSI cancer sta-
tus. The direct effect was 0.56 (Table 1). Sarcosine was 
used initially to confirm our results. The preliminary 
results for 4 MSI cancer patients were obtained. We 
compared the sarcosine levels of MSI cancer patients 
with those of healthy controls. There were 1.9- to 3.5-
fold increases in sarcosine levels in MSI cancer patients 
(Additional file  9: Table  S6 and Additional file  3: Fig. 
S3).

Sarcosine (N-methylglycine) is a well-known onco-
metabolite in prostate cancer. In addition to genetic 
mutations in MMR (MLH1, MSH2, MSH6, PMS2, and 
EpCAM), many mutational features, such as ACVR2A 
and RNF, were also present in MSI cancers. Sarcosine 
may significantly contribute to carcinogenesis via DNA 
damage and methylation [39]. MSI cancer cells may have 
increased sarcosine levels owing to MMR genetic muta-
tions. Sarcosine may result in alterations in the cancer 
genome (Fig. 5). Higher levels of sarcosine in MSI cancers 
may be one of the possible mechanisms causing genetic 
alterations in cancer cell lineages that do not carry MMR 
genetic mutations [24]. Sarcosine and genome altera-
tions can reciprocally regulate each other in MSI cancers 
(Fig. 5). Through feedback loops, it can become an essen-
tial signaling pathway for cancer metabolism.

Many metabolic drugs have been investigated as met-
abolic therapeutic targets in MSI cancers, such as gly-
colysis inhibitors (oxamate, lonidamine (LND)) [40, 41], 
glutamate inhibitors (6-diazo-5-oxo-Lnorleucine, CB839) 
[42, 43], and lipid metabolism inhibitors (cerulenin, TVB-
3664, TOFA) [37]. In our study, dysregulated metabolic 
pathways resulted in aberrant glycolysis and nucleotide, 
glutamate, and lipid pathways in MSI cancer cell lines 
[44]. For example, the synthesis of 3-phosphoglycerate 
in MSI cancer cells depends on PFKP, a critical glycolytic 
pathway checkpoint. The Warburg effect is facilitated by 
PFKP in malignancies. In previous research, the HER2, 
EGFR, AKT-PI3K, and WNT signaling pathways were 
linked to the regulation of PFKP, such as epigenetics in 
the PFKP promoter region or activation of phosphoryla-
tion, which were associated with a poor prognosis [45, 
46]. Our study established a link between PFKP gene 
expression and 3-phosphoglycerate in MSI cancers with 
potential clinical applications. We propose that MSI can-
cer treatment regimens should include the use of glycoly-
sis inhibitors to specifically target PFKP.
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After adjustment, GSH levels were found to be higher 
in MSI cancers. There are two distinct facets to GSH 
metabolism. It has both protective and harmful effects 
on various cancers. Glutathione overproduction supports 
cancer cell survival and chemotherapy resistance. The 
role of GSH in MSI cancer cells should be investigated 
in future studies. Depletion therapy for glutamine, a pre-
cursor of glutathione, or glutamate inhibitors should be 
evaluated in MSI cancer cells [47].

In Fig.  5, we hypothesized that Hippurate synthetic 
pathways might be associated with the microbiota and 
glycine [48]. The metabolite Hippurate is associated with 
MSS cancers in our model. However, we could not find 
the biological relevance of Hippurate and associated 
metabolic genes such as QDPR, FAH, PAOX, MPST, and 
SLC7A5 in Table 3. In previous studies, Hippurate, a con-
jugate of glycine and benzoic acid, was used as a metabo-
lomic indicator of gut microbiota diversity [49]. In MSS 
cancers, metabolism may be affected by environmental 
factors. Further information must be collected to validate 
our hypothesis in cancer patients.

One possible therapeutic strategy for MSI cancers is 
lipid-lowering therapy. Cancer cells utilize lipid metab-
olism to obtain energy and materials for proliferation, 
survival, invasion, and metastasis. In the present study, 
we discovered that MSI cancer cells had elevated lev-
els of lipids, including CE, LPE, and PC. CHPT1 is also 
involved in PC and LPE biosynthesis. Clinically, CHPT1 
expression in breast cancer is associated with a poor 
prognosis [50]. In the future, the CHPT1-associated sign-
aling pathway may be targeted in MSI cancer treatment.

Conclusions
By adjusting the metabolite data with metabolic enzyme 
genes as confounding covariates, we demonstrated that 
the CATCH model is an effective tool for predicting MSI 
cancer status. The adjusted metabolite features offer pos-
sible cancer metabolic biomarkers and therapeutic tar-
gets for MSI cancers.
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