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Abstract 

Background  Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Our study 
aimed to predict the phenotype using the allelic genotype.

Methods  A total of 1291 PKU patients with 623 various variants were used as the training dataset for predicting 
allelic phenotypes. We designed a common machine learning framework to predict allelic genotypes associated with 
the phenotype.

Results  We identified 235 different mutations and 623 various allelic genotypes. The features extracted from the 
structure of mutations and graph properties of the PKU network to predict the phenotype of PKU were named PPML 
(PKU phenotype predicted by machine learning). The phenotype of PKU was classified into three different categories: 
classical PKU (cPKU), mild PKU (mPKU) and mild hyperphenylalaninemia (MHP). Three hub nodes (c.728G>A for cPKU, 
c.721 for mPKU and c.158G>A for HPA) were used as each classification center, and 5 node attributes were extracted 
from the network graph for machine learning training features. The area under the ROC curve was AUC = 0.832 for 
cPKU, AUC = 0.678 for mPKU and AUC = 0.874 for MHP. This suggests that PPML is a powerful method to predict allelic 
phenotypes in PKU and can be used for genetic counseling of PKU families.

Conclusions  The web version of PPML predicts PKU allele classification supported by applicable real cases and pre-
diction results. It is an online database that can be used for PKU phenotype prediction http://​www.​bioin​fogen​etics.​
info/​PPML/.
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Background
Phenylketonuria (PKU, OMIM# 261600) is a common 
autosomal recessive inherited metabolic disease with an 
inborn error of phenylalanine (Phe) metabolism, which 
is caused by pathogenetic variants in the phenylalanine 
hydroxylase (PAH) gene [1]. In the BIOPKU database, 
approximately 73% of genotypes were compound het-
erozygous, 27% were homozygous, and 55% of genotypes 
occurred in only a single individual [2]. Untreated PKU 
can generally lead to severe irreversible damage, such as 
intellectual disability, seizures, behavioral problems and 
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mental disorders, and it may also result in a musty smell 
and lighter skin [3, 4]. A baby born to a mother who has 
poorly treated PKU may have heart problems and low 
birth weight [5, 6]. The danger and complexity of PKU 
make it a challenging task to understand and explore the 
relationship between PAH mutant genes and phenotypes.

It is difficult for patients with phenylalanine hydroxy-
lase (PAH) gene variants that result in elevated concen-
trations of Phe in the blood to convert phenylalanine to 
tyrosine [7]. The severity of the disorder varies between 
patients depending on the blood Phe level at the time 
of diagnosis or dietary Phe tolerance. In earlier stud-
ies, the phenotypes of PAH deficiency were classified 
into four categories: classic PKU (cPKU), moderate 
PKU (moPKU), mild PKU (miPKU) and mild hyperphe-
nylalaninemia (MHP) with pretreatment blood Phe 
concentrations of > 1200  μmol/L, 900–1200  μmol/L, 
600–900 μmol/L, 360–600 and 120–360 μmol/L, respec-
tively [8, 9]. Recently, more research has combined mod-
erate PKU and mild PKU, dividing the phenotype into 
three categories [2, 3, 8, 10]. The prevalence of PKU var-
ies among ethnicities and geographic areas. The global 
prevalence of PKU was estimated to be 1:23,930 new-
borns, and the prevalence of PKU in China was 1:15,924 
[2]. The phenotype prevalence of the three categories in 
the chain was 62% cPKU, 25% mPKU and 35% MHP [1].

Genotype–phenotype plays an important role in PKU 
patients that can guide the treatment strategy and can 
also predict the prognosis. Several methods of genotype-
based phenotype prediction have been reported, such as 
the arbitrary values method (AV) [9] and allelic pheno-
type values method (APV) [10]. The AV method classi-
fied the PKU phenotype into four arbitrary phenotype 
categories (cPKU, moderate PKU, mPKU and MHP) 
based on 297 functionally hemizygous patients and 
105 PAH mutations. The APV method used 9336 PKU 
patients with 2589 different genotypes carrying 588 vari-
ants to investigate the PKU phenotype. This study identi-
fied 251 0-variant encoding inactive PAH and 88 variants 
in PAH functional hemizygous patients and classified the 
PKU phenotype into three categories (cPKU, mPKU and 
HPA). Both methods share a common feature: They score 
genotypes based on hemizygous patients, and then, the 
scores of the two combined alleles are summed to pre-
dict the final PKU phenotype. However, this approach 
has the inherent limitation that sufficient information 
on hemizygous patient mutations must be available for 
predicting PKU phenotypes; otherwise, the prediction is 
difficult to perform. Therefore, we propose a method to 
predict PKU phenotypes for arbitrary allele combinations 
without using the status of hemizygous patients.

In this study, we provide a new method to predict geno-
type–phenotype based on the machine learning method. 

A total of 1291 PKU patients were used as the training 
data for classifying the PKU phenotype into three catego-
ries: cPKU, mPKU and HPA. The features were extracted 
from the information of nucleotide mutations and amino 
acid change information, as well as the property of the 
allelic mutation linkage graph, for training with machine 
learning classification models. PKU phenotype predic-
tion based on intrinsic information of PAH gene muta-
tion loci can avoid the constraint of obtaining sufficient 
information on hemizygous patients, thus allowing the 
prediction of arbitrary allele combinations. Furthermore, 
this work improves the accuracy of PKU phenotype pre-
diction by the ML method.

Materials and methods
Participants
A total of 1291 PKU cases over 14 years were collected in 
this study; 769 PKU patients were recruited at the Third 
Affiliated Hospital of Zhengzhou University between Jan-
uary 2016 and January 2022, and the remaining 522 PKU 
patients were collected from a study by Liu et al. [11], in 
which PKU patients were recruited from January 2008 
to January 2016. We excluded patients with BH4 cofac-
tor deficiency in this work. In this study, all subjects or 
guardians provided signed informed consent. This study 
was approved by the Medical Ethics Committee of the 
Third Affiliated Hospital of Zhengzhou University and 
was performed according to the principles of the Decla-
ration of Helsinki.

Training data
In this study, we classified all PKU cases into three meta-
bolic phenotype groups, classical PKU (cPKU, pretreat-
ment blood Phe > 1200  µmol/L), mild PKU (mPKU, 
pretreatment blood Phe 600–1200  µmol/L) and mild 
hyperphenylalaninemia (MHP, pretreatment blood Phe 
120–600  µmol/L). Of the 1291 PKU cases, 638 patients 
were classified as cPKU, 295 as mPKU and 358 as MHP. 
We then obtained three group training datasets for 
cPKU, mPKU and MHP. For cPKU, the training dataset 
contained 638 positive alleles and 653 negative alleles; the 
training dataset for mPKU contained 295 positive alleles 
and 996 negative alleles, and the MHP training dataset 
contained 358 positive alleles and 993 negative alleles.

Structure feature
We designed a new method to predict the phenotype of 
PKU based on allelic genotype by the ML method. The 
most critical part of this approach is extracting the cor-
responding feature values based on the obtained informa-
tion for the training of machine learning models. First, we 
extracted the feature based on the mutation information, 
which we call the structure feature. We encoded the nucleic 
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acid mutations, amino acids and exon/intron informa-
tion with a different real number, and then, we extracted 
7 dimensions for each mutation. For the allele genes, 
the dimension is 7 + 7 = 14. The detailed method about 
encodes structure feature can be found in Additional file 1: 
Supplementary note.

Graph features
We extracted 8 feature values from the network graph of 
the alleles. In the network, we identified three hub nodes 
by Cytoscape software [12]. We extracted 3 distance fea-
tures that calculated the minimum distances to three hub 
nodes, including the minimum distance to the cPKU hub 
node, minimum distance to the mPKU hub node and mini-
mum distance to the MHP hub node. Five node attributes 
were also calculated, including the degree measures and 
the number of direct interacting partners of this muta-
tion. PageRank is the famous algorithm used by Google 
Search to rank web pages. Here, we used this algorithm to 
estimate how important the mutation was in the network. 
Edge betweenness measured how often the mutation was 
involved in the shortest paths in the network. By the net-
work graph, we extracted 8 features from each mutation. 
The total dimension of alleles is 8 + 8 = 16. The detailed 
method for encodes graph feature can be found in Addi-
tional file 1.

Predicting allelic phenotype
Different methods have been proposed to classify pheno-
types. First, the mutations were assigned to four pheno-
type categories (classic PKU, moderate PKU, mild PKU and 
MHP) proposed by Guldberg et al. [9]. In the most recent 
studies, the phenotype of PKU has been classified into 
three different categories by merging moderate PKU and 
mild PKU into one classification (classical PKU, mild PKU 
and MHP) [2, 10]. In this study, we generated an ML train-
ing dataset with three phenotype categories. The random 
forest (RF) method was used to predict allelic phenotypes 
that were implemented by the Python-based library scikit-
learn [13]. To conduct a stringent performance assessment, 
tenfold cross-validation tests were carried out. We chose 
the receiver operating characteristic curve (ROC curve) 
and the area under the ROC curve (AUC) to assess the per-
formance of our models. The formulas to calculate the true 
positive rate (TPR), false positive rate (FPR) and specificity 
(TNR) are as follows:

TPR = sensitivity =
TP

TP+ FN

FPR =
FP

FP+ TN

Results
Distribution of mutations and phenotypes
A total of 1291 unrelated patients were investigated. A 
total of 235 different mutations were discovered, and 623 
various allelic genotypes were identified. Figure 1A shows 
the distribution of mutations for allele genes. What 
stands out in the distribution is that the mutations cov-
ered all exonic regions of the PAH gene, except for Exon 
1, Exon 4 and Exon 13, which were less distributed. The 
highest frequency of mutations was distributed in exon 2 
(c.158G>A); exon 3 (c.194T>C, c.208_210del, c.301G>A, 
c.320A>G, c.311C>T); exon 6 (c.526C>T, c.611A>G); 
exon 7 (c.721C>T, c.728G>A, c.740G>A, c.782G>A); 
exon 11 (c.1068C>A, c.1174T>A, c.1197A>T); and exon 
12 (c.1238G>C, c.1301C>A). Three different phenotype 
categories were classified according to the pretreat-
ment plasma phenylalanine levels: cPKU (classic PKU), 
mPKU (mild PKU) and MHP (mild hyperphenylalanine-
mia). The 623 different mutations (compound heterozy-
gous and homozygous) are shown in Additional file  2: 
Table S1. The high frequency of different PAH mutations 
combined into 43 different genotypes is shown in Fig. 1B. 
The mutations c.728G>A, c.611A>G, c.1.068C>A and 
c.1197A>T are the four most important mutations lead-
ing to the cPKU phenotype. What is striking about the 
cPKU phenotype is that the four mutations combined 
with c.158G>A result in MHP phenotypes. Details about 
the cPKU phenotype are shown in Additional file  3: 
Fig. S1. Moreover, c.158G>A combined with any muta-
tion will lead to the MHP phenotype. This suggests that 
c.158G>A is a significant mutation that leads to the MHP 
phenotype. What is interesting about the combination of 
these mutations is the mPKU phenotype. For example, 
the mutation c.721C>T combined with important cPKU 
mutations (such as c.728G>A and c.611A>G) will lead 
to mPKU, but when c.721C>T is combined with itself 
or an important HPA mutation (c.158G>A), it results 
in MHP (Fig.  1B). The allelic genotypes associated with 
mPKU and MHP are shown in Additional file 4: Fig. S2 
and Additional file 5: Fig. S3. The above results show the 
effect of different allele mutation combinations on phe-
notype and support the AV method proposed by Gul-
dberg et  al., which predicts phenotype by combining 
different genotypes [9]. Since the combination of alleles 
with different mutations (compound heterozygous and 
homozygous) leading to different PKU phenotypes is very 
complex, it becomes very difficult to predict phenotypes 
by simple allele combinations. Therefore, we proposed a 

TNR = specificity =
TN

TN + FP
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new method to predict the allelic phenotype of PKU by 
machine learning.

Predicting the PKU phenotype model
Our research aimed to design a generic framework for 
predicting the allelic phenotype in the PAH gene that 
causes PKU. We designed a new method named PPML 
(PKU phenotype predicted by machine learning) that 
extracts the training features from mutation informa-
tion to predict the allelic phenotype. Figure 2 shows the 
framework of PPML. A total of 1291 PKU cases used as 
a training dataset in this study contained 628 cPKU, 305 
mPKU and 358 MHP patients (Fig.  2A). In the PPML 
framework, the training features are extracted in two 
ways: One way is based on the structural information of 
the mutation, and the other is based on the connectivity 
network graph composed of the mutations. As shown in 
Fig. 2B, the encoding method for structural information 
contains a nucleic acid mutation, amino acid change and 
exon/intron information in the PAH gene. We linked all 
the allelic mutations together to form a network graph. 
Each mutation as a node in the network graph is con-
nected except for 12 mutations (Additional file 6: Fig. S4). 
We suspect that if enough case data are collected, then 
all mutations in the graph will form a linked network. 
This allows us to use the basic properties of graphs to 
encode feature values for ML training. Here, a total of 5 
node attributes were extracted from the network graph, 

including degree, edge betweenness, page rank, closeness 
and eccentricity. Moreover, we identified three hub nodes 
(c.728G>A for cPKU, c.721C>T for mPKU and c.158G>A 
for HPA) as each classification center by Cytoscape soft-
ware [12] (Additional file 7: Fig. S5). The distance to each 
hub node is another three features. Therefore, a total of 
8 features were extracted from the allelic mutation net-
work graph. The machine learning workflow is shown in 
Fig. 2C. The collected PKU patient cases were split into 
training data and test data for machine learning. A multi-
model classification method was used in this framework, 
and the best model was chosen to predict PKU. Finally, 
the prediction results were reported by the webserver.

The performance of PPML
In this study, random forest (RF) is the classified model 
for predicting the phenotype of PKU. The receiver operat-
ing characteristic curve (ROC curve) and the area under 
the ROC curve (AUC) were used to assess the perfor-
mance of the three different categories. The performance 
of the various training features is shown in Fig. 3. The best 
performance is the combined graph and structure fea-
ture (AUC = 0.832 in the cPKU test dataset, AUC = 0.678 
in the mPKU test dataset and AUC = 0.874 in the MHP 
test dataset). The structure-based approach was bet-
ter than the graph-based approach in the three different 
test datasets, except for mPKU with AUC = 0.675 (graph 
method) and AUC = 0.665 (structure method). In the 

Fig. 1  Distribution of mutations for allele genes. A Location information of mutations in the PAH gene. B The allele genotype is associated with the 
PKU phenotype
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three different datasets of test results, we can see that the 
structure-based and graph-based approaches perform 
essentially equally, and the performance of the combined 
graph-based and structure-based approaches was best in 
each test dataset. To avoid overfitting and ensure the gen-
eralizability of our method, we split our dataset into two 
subsets, with 80% of the data used for training and tenfold 
cross-validation, and the remaining 20% used as an inde-
pendent validation set. The result of the RF method using 
the train dataset and the independent validation set are 
shown in Additional file 8: Table S2 and Additional file 9: 
Table S3, respectively. We compared the RF method with 
the other four classification methods (AdaBoost, Ber-
noulli, gradient boosting and K-neighbors method) using 
the cPKU training dataset (Additional file 10: Figure S6). 
The AUC results in this test showed that the RF method 
had the best performance with AUC = 0.832. The AUC 
performance by AdaBoost and gradient boosting classi-
fied methods was more than 0.8. Bernoulli and K-neigh-
bors classified methods were poor performers, with AUC 
values of 0.511 and 0.685, respectively.

Prediction of PKU phenotype web server
We built an easy-to-use PKU phenotype prediction web 
server based on the collected 14  years of PKU patient 

data and the PPML common prediction framework 
(Fig. 4). Figure 4A shows an overview of the PPML data-
base. The PPML database provided the prediction entry 
for predicting the PKU phenotype based on any combi-
nation of mutations in PAH genes; the network entry for 
searching the mutation’s highly relative allele mutations 
and calculating the hub phenotype mutation for cPKU, 
mPKU and HPA; and download entry for retrieving the 
training dataset and case database. The predicted PKU 
phenotype, shown in Fig.  4B, contains the predicted 
phenotype and the probability. The combined mutations 
reported in the case database supported the PKU phe-
notype. The blood PHE value contains maximum PHE, 
minimum PHE and mean PHE in each classification. The 
highly relative allele mutations in the PPML case data-
base were reported by a linkage network graph, and the 
mutation as a hub phenotype node was calculated (the 
phenotype classified as cPKU, mPKU and HPA) (Fig. 4C).

Discussion
Since the activity of PAH, and thus the metabolic phe-
notype of PKU, is determined by genotype, the evi-
dence of genotype–phenotype correlation is growing 
[14–17]. Over the past 20  years, many methods have 
been proposed for predicting PKU genotype–phenotype 

Fig. 2  Scheme of the framework of PPML. A The PKU phenotype is classified in the training dataset. B Encoding the features extracted from the 
structure and graph method. C Workflow of PPML to predict the PKU phenotype
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associations, and they have been widely used. With the 
power of large mutational databases, several methods 
have been proposed to predict the relationship between 
genotype and phenotype in PKU. For example, the AV [9] 
and APV [10] methods are based on the status of hemizy-
gous patients compared to the allelic phenotype of PKU. 
Sarah et  al. used APV methods to explore the geno-
type–phenotype correlation in phenylketonuria using 
data from locus-specific and genotype databases [18]. 
Tianwen et al. [19] and Santos et al. [20] analyzed geno-
type–phenotype correlation and estimated the damage 
caused to PAH by various missense mutations by the AV 
method and pairwise correlation analysis. The AV and 
APV methods for PKU genotype–phenotype inference 
require a large hemizygous patient database for support 
and simple allele combinations for phenotype predic-
tion. The ML-based framework proposed in this study 
for genotype–phenotype inference does not require the 
support of a hemizygous patient database, only a par-
tial training dataset is needed to predict the phenotype, 
and more databases can be added to make the predic-
tion more accurate. On the other hand, Pey et  al. pro-
vided an experimental framework to explore the severity 

relating genotype to phenotype of the mutations in PKU 
[15]. This method inferred PKU genotype–phenotype 
prediction by an experimental approach, which is time-
consuming and labor-intensive. This study is based on a 
machine learning approach for PKU phenotype–geno-
type prediction, which can achieve rapid and large-scale 
inference.

Locus-specific databases play an important role in 
understanding the nature, prevalence and impact of PAH 
deficiency [21, 22]. The locus-specific databases PAH-
vdb, ClinVar, HGMD and LOVD were searched for PAH 
variant information. However, only PAHvdb explored the 
genotype–phenotype for PKU by linking to the BIOPKU 
database. Our research provided a new database for pre-
dicting the phenotype in PKU based on the ML method. 
It is essential to establish more databases for PKU geno-
type–phenotype prediction. Our research built the PPML 
database, which contains genotypes and clinical pheno-
types of more than 1000 patients with PKU. In the PPML, 
49% of patients had the classical phenotype and 24% had 
a mild phenotype, with the remainder having mild HPA. 
We found that if the amount of PKU data in the database 
is large enough, any two alleles can be linked to form a 

Fig. 3  Performance of the structure and graph method for phenotype categories. A Performance in the cPKU training dataset. B Performance in 
the mPKU training dataset. C Performance in the MHP training dataset
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linkage graph (Figure S4). The network of alleles and 
the edges weighted by the count of PKU patients in the 
PPML database can be created. The prediction model of 
PPML explored the PKU phenotype by machine learn-
ing methods and clinical patient cases. PPML is a general 
framework that can be applied to predict PKU pheno-
types in various populations. However, the prevalence 
of PKU is not uniform depending on the region. The 
prevalence of PKU varies substantially among ethnicities 
and between different geographic regions worldwide [1]. 
Here, our training dataset is only based on cases in cen-
tral China, so the prediction results are more applicable 
to central China. In the future, we hope that this database 
can support more population studies with different PKU 
prevalence in different regions.

PAH is an iron-containing monooxygenase enzyme 
that catalyzes the hydroxylation of phenylalanine to form 
tyrosine [23]. This reaction requires molecular oxygen 
and BH4 as a cofactor. In this study, we excluded the 
BH4 responsiveness of patients from the training dataset 
because the relation between genotype and BH4 respon-
siveness is complex [14]. Although approximately 1–2% 
of cases of hyperphenylalaninemia are based on muta-
tions in genes coding for enzymes involved in BH4 bio-
synthesis or regeneration [24, 25], some patients with 
defects in BH4 biosynthesis (such as Segawa disease 

and sepiapterin reductase deficiency) present without 
hyperphenylalaninemia [26, 27]. Our research focuses on 
genotypes based on PAH gene mutations for phenotype 
prediction in phenylketonuria. Therefore, this method 
does not apply to the prediction of the PKU phenotype 
due to BH4 responsiveness. We hope this method pro-
vides great help in being able to infer phenotypes from 
genotypes in clinical diagnosis.
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