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Abstract 

Introduction  The ability to accurately predict whether a woman will develop breast cancer later in her life, should 
reduce the number of breast cancer deaths. Different predictive models exist for breast cancer based on family 
history, BRCA status, and SNP analysis. The best of these models has an accuracy (area under the receiver operating 
characteristic curve, AUC) of about 0.65. We have developed computational methods to characterize a genome by a 
small set of numbers that represent the length of segments of the chromosomes, called chromosomal-scale length 
variation (CSLV).

Methods  We built machine learning models to differentiate between women who had breast cancer and women 
who did not based on their CSLV characterization. We applied this procedure to two different datasets: the UK 
Biobank (1534 women with breast cancer and 4391 women who did not) and the Cancer Genome Atlas (TCGA) 874 
with breast cancer and 3381 without.

Results  We found a machine learning model that could predict breast cancer with an AUC of 0.836 95% CI 
(0.830.0.843) in the UK Biobank data. Using a similar approach with the TCGA data, we obtained a model with an AUC 
of 0.704 95% CI (0.702, 0.706). Variable importance analysis indicated that no single chromosomal region was respon-
sible for significant fraction of the model results.

Conclusion  In this retrospective study, chromosomal-scale length variation could effectively predict whether or not 
a woman enrolled in the UK Biobank study developed breast cancer.
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Introduction
Over 600,000 women die annually from breast can-
cer around the world [1], but breast cancer is curable 
(through mastectomy) in the early stages and could be 
preventable, through prophylactic mastectomy, if one 
could better predict who will develop breast cancer [2].

Breast cancer predictive models based on genet-
ics already exist. The effectiveness of these predictive 
models can be characterized by the area under the 
receiver operating characteristic curve, known as the 
AUC. One commonly used predictive model, the Gail 
model [3], has an AUC of 0.58 (95% confidence interval 
[CI] = 0.56 to 0.60) [4]. The Gail model incorporates a 
number of parameters including first degree relatives 
who were diagnosed with breast cancer. The Tyrer-Cuz-
ick model includes a more detailed picture of genetics 
including BRCA1/BRCA2 status and a hypothetical 
low-penetrance gene that is designed to encompass 
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all other genetic factors [5]. The Tyrer-Cuzick model 
is an improvement over the Gail model and has an 
AUC = 0.62, with a 95% CI of (0.60 to 0.64) [6]. The 
Tyrer-Cuzick model has been extended using a 313 var-
iant polygenic risk score. This extension improves the 
AUC to 0.64 with a 955 CI of (0.61 − 0.68) in women 
over 50 years of age [7].

Family history is encoded in the germline genetics. In 
fact, models based on detailed germline genetics should 
perform better than models based on family history 
alone, since family history is often incomplete; limited 
to just a generation or two, and genetic factors present 
in relatives might not be inherited. The more recent 
approach to predicting breast cancers is to incorporate 
polygenic risk scores.

Polygenic risk scores, computed from linear combi-
nations of SNPs, should provide superior predictions 
compared to models that rely on family history ques-
tionnaires, but they do not show a substantial improve-
ment. The most complete study to date used a group 
of 313 SNPs to predict breast cancer with an AUC of 
0.630 (95% CI 0.628–0.651) [8].

One plausible reason that polygenic risk scores do 
not substantially increase the AUC for breast cancer 
prediction models is that these polygenic risk scores 
only consider linear combinations of SNPs [9]. Detailed 
models of interactions within a cell reveal complex 
pathways with many redundancies. Hence, genetic risk 
for breast cancers might entail non-linear interactions 
between different genetic factors. Modern machine 
learning algorithms allow one to consider the effects 
of non-linear combinations in a model. However, these 
machine learning algorithms require many more sam-
ples (patients) than features (SNPs).

We have introduced a new method of comput-
ing genetic risk scores based on chromosomal scale 
length variation [10–13]. Chromosomal scale length 
variation characterizes each person with a series of 
numbers. Each number represents the “length” of a 
germline chromosome. The “length” is computed from 
copy number variation measurements made at SNP 
locations. This “length” varies from person to person 
because of chromosomal rearrangements: insertions, 
deletions, translocations, and duplications. These chro-
mosomal rearrangement values are combined across 
each chromosome (or fractions of a chromosome) to 
provide a measure of “length.”

After characterizing each person with a series of num-
ber derived from their chromosomal scale length varia-
tion, we can use the power of modern machine learning 
algorithms to identify patterns in the germline genet-
ics. The purpose of this paper is to evaluate how well, 

measured by the AUC, that chromosomal scale length 
variation can predict breast cancer in patients.

Methods
To test how well chromosomal length variation can pre-
dict breast cancer we acquired germline genetic data on 
breast cancer patients and non-breast cancer patients 
(for a control group) from two different data sources, the 
Cancer Genome Atlas (TCGA) [11, 14, 15] and the UK 
Biobank [16] project.

The Cancer Genome Atlas (TCGA) characterized 
molecular differences in 33 different human cancers [14, 
15]. The project collected samples from about 11,000 dif-
ferent patients. The project collected multiple samples 
from each patient, including tissue samples of the tumor 
and normal tissue adjacent to the tumor and normal 
blood samples.

Each patient’s germline DNA was extracted from the 
normal blood samples. A single laboratory processed all 
germline DNA samples. Each patient’s germline DNA 
was genotyped by single nucleotide polymorphisms 
(SNPs) using an Affymetrix SNP 6.0 array. This SNP data 
were then processed (by the TCGA project) through a 
bioinformatics pipeline, which included the packages 
Birdsuite [17] and DNAcopy [18]. The pipeline produced 
a listing of a chromosomal regions (characterized by the 
chromosome number, a starting location, and an ending 
location) and an associated value given as the “segmented 
mean value” for each patient. The segmented mean value 
is defined as the logarithm, base 2, of one-half the copy 
number. A normal diploid region with two copies will 
have a segmented mean value of zero.

The Genomic Data Commons, an NCI sponsored data 
repository, contains most of the TCGA data [19]. In the 
Genomic Data Commons, the copy number variation 
data is called the masked copy number variation. The 
masking process removes “Y chromosome and probe sets 
that were previously indicated to have frequent germline 
copy-number variation.”

We refer to the final TCGA dataset we used as the 
masked copy number variation dataset. This dataset 
originates from normal blood samples extracted from 
8826 different patients: 4692 females and 4134 males. The 
patients’ ages ranged from 10 to 90 years old.

This dataset contains about 695,000 different copy 
number variations that appear in at least one patient. 
Copy number variations are genomic regions character-
ized by the chromosome number, a start position, an end 
position, and a copy number value. The copy number 
value is represented as the log base 2 of the ratio of cop-
ies present to the expected number of copies, two. A “0” 
would represent the expected number of copies log2(1), a 
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negative number indicates deletions, and a positive num-
ber indicates multiple copies. In the TCGA dataset, nor-
mal regions, those with a log_2 CNV equal to 0 are not 
recorded.

While most copy number variations output by this 
TCGA pipeline are relatively short, less than the size 
of a gene, we noted that a few are relatively long, con-
sisting of most of the chromosome’s entire length. For 
instance, the copy number variation output by the 
TCGA pipeline that we use to characterize chromo-
some 1 is 244 megabases long, while the full length of 
chromosome 1 is 249 megabases. This process pro-
duced a dataset with 8,826 rows (each representing a 
different patient) and 23 columns (each representing 
one of the chromosomes 1–22 and the X chromosome).

We created a case/control study to differentiate 
between people with breast cancer and those without 
breast cancer. For the case/control study, we included 
all cases in the TCGA dataset that included “normal 
blood” samples from women patients with a breast 
cancer diagnosis. No cases were excluded. Patients 
included also have measurements of copy number 
variation from DNA derived from normal blood in the 
database.

Controls for the TCGA dataset include all women in 
the dataset who had “normal blood” samples without a 
breast cancer diagnosis. We included only women (no 
men) in the control sample. Due to the nature of TCGA, 
each woman in the “control” sample had another type of 
cancer diagnosis (not breast cancer). The final dataset 
included 874 women with breast cancer and 3381 women 
as controls.

To ensure that the results from the TCGA dataset were 
not due to systematic effects in producing the data, we 
tested the same methods in a second independent data-
set, the UK Biobank. Because of differences in the way in 
which the data was made available, we could not directly 
test the predictive power of a model developed on TCGA 
data with UK Biobank data and vice versa.

We obtained data from the UK Biobank under Appli-
cation Number 47850. The UK Biobank project collected 
genetic data and medical records from about 500,000 
people who were between the ages of 40 and 69 during 
the 2006–2010 recruitment years. Most have supplied 
biological samples and filled out questionnaires about 
their health. Most of the participants’ medical records 
are linked, through the National Health Service, to the 
UK Biobank records. This linkage provides for ongoing 
follow-up of health conditions [20, 21].

As previously described [12], we first downloaded the 
“l2r” files from the UK Biobank (version 1). Each chro-
mosome has a separate “l2r” file. Each “l2r” file contained 
488,377 columns and a variable number of rows. Each 

column represented a unique patient in the dataset, who 
can be identified with an encoded ID number. Each row 
represented a different location in the genome. The val-
ues in the file represent the log base 2 ratio of intensity 
relative to the expected two copies measured at the SNP 
location.

We next computed the mean l2r value for different por-
tions of each chromosome for each patient in the data-
set, which we refer to as the “length”. We compute the 
length for each person’s chromosome using the l2r files 
by taking the average of all l2r values measured across 
that chromosome. A value of 0 represents the nominal 
average length of that portion of the chromosome. We 
call this dataset the chromosome-scale length variation 
(CSLV) dataset.

This CSLV dataset was joined with the UK Biobank 
Health records dataset. UK Biobank matched the per-
son in the Public Health England data with UK Biobanks 
internal records to produce the person’s encoded partici-
pant ID. The dataset we have, provided by UK Biobank, 
contains the participant ID and whether the participant 
had been diagnosed with breast cancer.

The UK Biobank dataset that we used consisted of 
measurements at 820,967 genetic markers across 23 
chromosomes for each of 488,377 different patients. 
From the UK Biobank population, we constructed a data-
set of positive cases that included all women who both 
self-reported having been diagnosed with breast cancer 
and were identified by cancer registries as having been 
diagnosed with breast cancer, a total of 1534 women. We 
then constructed a control dataset from a pool of 10,000 
UK Biobank participants. From this pool of 10,000 we 
excluded all men and any women that had any type of 
cancer diagnosis, either self-reported or from a cancer 
registry. This gave a control group of 4391 cancer-free.

We quantified the germ line DNA of each of these 
women with 88 numbers, each representing the length 
variation of one quarter of each of 22 chromosomes. We 
did not use the X chromosome.

For both the TCGA data and the UK Biobank data, we 
set up as a binary classification supervised learning task 
that was trying to distinguish between patients diagnosed 
with breast cancer from those not diagnosed with breast 
cancer.

We performed the analysis using the statistical lan-
guage R. The data were reformatted for analysis, and 
then was fed into the machine-learning algorithm. The 
data included whether the subject had breast cancer, 
and measurements of copy number variation at distinct 
locations across the genome derived from the patient’s 
peripheral blood sample. The data fed into the machine-
learning algorithm did not include age since germline 
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DNA should not depend upon age. The results are inde-
pendent of the patient’s age.

We used the H2O package in R for machine learn-
ing. This package implements several common machine 
learning algorithms, including gradient boosting 
machines, deep learning neural networks, distributed 
random forests, and generalized linear models. The 
best performing algorithms for our datasets are invari-
ably stacked ensembles, which are combinations of other 
machine learning algorithms. This combination often 
provides superior results to any particular algorithm [22, 
23]. The H2O package implements stacked ensembles as 
super learner algorithms [24].

Machine learning We used the H2O Automatic 
Machine Learning (automl) function to identify a good 
machine learning model. The automl function is given a 
specific amount of time and then proceeds to train and 
tune a series of models, searching for the best model. 
To obtain confidence intervals, we repeated the training 
multiple times (at least 10) with different initial rand-
omization. This process provides independent test/train 
splits to the data.

The TCGA dataset we used included 874 women with 
breast cancer and 3381 women who did not have breast 
cancer as controls. We used 10 × cross validation, so the 
test set had 87 women with breast cancer and 338 women 
as controls.

Statistical tests were performed in R. We computed the 
95% confidence intervals using the R command t.test. 
Normality was first confirmed with the Shapiro test. 
More information is available in Additional file 1.

Results
Using the TCGA dataset, consisting of 4,255 women (874 
with breast cancer and 3381 controls), we found a classi-
fier with an AUC of 0.704 CI (0.702–0.706) for identify-
ing breast cancer, see Fig. 1. The best classifier identified 
with the H2O automl package was the gradient boosting 
machine (GBM) for the TCGA data. We varied the time 
that automl was allowed to search for better models from 
one hour to ten hours, but the AUC of the best classifiers 
were essentially the same, for this range of training times.

Using our subset of the UK Biobank dataset, consisting 
of 5925 women (1534 with breast cancer and 4391 nor-
mal) with 88 measurements for each, we found a classi-
fier with an AUC of 0.836 with a 95% CI (0.830, 0.843) 
for identifying breast cancer, see Fig. 2. In this case, the 
best classifier was a deep learning network, which H2O 
describes as a multi-layer feedforward artificial neural 
network trained with stochastic gradient descent. Using 
the H2O automl function with a time of just one hour, 
the best individual model was a GBM model, which had 

an AUC of 0.69 (and a stacked ensemble model with 
an AUC of 0.76). By increasing the time provided to 
the automl function to 24  h, it identified a deep learn-
ing model with an AUC of 0.81 (and a stacked ensemble 
model with an AUC of 0.836).

To simulate a real-world application, we then split the 
UK Biobank dataset into a training set and a test set. 
The test set consisted of 889 women (233 with breast 
cancer and 656 without). After obtaining a model from 
the training set, we applied the model to a test set. The 
model returns a score for each woman in the test set. 
The higher the score, the more likely the woman is 
to have breast cancer. We ranked each woman by the 
assigned score and then evaluated how accurate the 
model was for each decile. For instance, about 25% of 
the women in the test set had breast cancer, but 85% 
of women who scored in the highest decile had breast 
cancer. See Table 1 for the detailed results.

We quantified the importance of the different vari-
ables (regions of chromosomes) using the summary 
plot of different SHAP (Shapley Additive exPlanations) 
contributions. This summary plot assigns each variable 
an importance for different predictions [25]. The SHAP 
contribution summary plot for a GBM model on the 
UK Biobank data is shown in Fig. 3. The algorithm used 
to generate the SHAP summary plot, TreeSHAP [26], 

Fig. 1  We identified 874 women in the TCGA dataset with breast 
cancer and 3381 women as controls, women who had another 
form of cancer but not breast cancer. We characterized the germ 
line genetics of each of these women with 22 numbers, each one 
representing the average copy number of a chromosome, or the 
“length”. Based on this genetic characterization, we found a machine 
learning algorithm that can classify women with breast cancer 
compared to other women in the TCGA dataset with an area under 
the curve of (AUC) of 0.72. This figure depicts the receiver operator 
characteristic curve
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requires a tree based model. Figure  3 is based on the 
best performing GBM model generated.

Discussion
Genetic risk scores have been developed for many differ-
ent ailments [27–30], including cardiovascular disease 
[27, 31, 32] and different forms of cancer [8, 11, 33, 34].

Breast cancer was the first target of genetic risk scores 
with the discovery of BRCA1 [35]. A 2015 study that 
computed a polygenic risk score based on 77 SNPs found 
that women who scored in the top 1% had a three-fold 
increase in risk compared to a woman who scored in the 
middle quintile [36]. For comparison, in the breast cancer 
prediction presented based on UK Biobank data, here 8 
of 9 in the top 1% had breast cancer, while 5 of 27 in the 
middle 3% had breast cancer.

Machine learning techniques have been used to build 
polygenic risk scores to predict other complex traits 
[37, 38]. For instance, diabetes can be predicted from 
SNP data with an area under the receiver operator curve 
(AUC) of 0.602 using a gradient boosted regression tree 
[37].

We evaluated different machine learning algorithms. 
We used the h2o platform for machine learning and 
selected the best algorithm by weighing computation 
time and AUC. The h2o platform evaluated four different 
algorithms (generalized linear model, distributed random 
forest, gradient boosting machine, and deeplearning). 
For the TCGA data, the gradient boosting machine algo-
rithm and the deep learning algorithm provided com-
parable AUCs, but the gradient boosting algorithm was 
faster. For the UKBiobank data, the deep learning algo-
rithm provided larger AUCs than all other algorithms 
evaluated.

Several factors could contribute to the difference 
between the results we see in TCGA compared to the 
UK Biobank. The TCGA dataset includes only cancer 
patients, so the normal people in our TCGA analysis of 
breast cancer are women who do not have breast can-
cer but do have some other type of cancer. The TCGA 
dataset is also more controlled. Each breast tumor in the 
TCGA study was confirmed by a pathologist to be inva-
sive and either ductal or lobular. The UK Biobank relies 
more on medical records indicating a diagnosis of “breast 
cancer.” This diagnosis may include a number of differ-
ent conditions. Second, the genetic characterization data 
we have from the UK Biobank is much more extensive 
than the data from TCGA. The TCGA dataset we con-
structed relied on the TCGA bioinformatics pipeline, 
which did not always report a number for factors we were 
interested in. Many patients had no values reported for 

Fig. 2  The receiver operator characteristic curves for predicting 
breast cancer using chromosomal scale length variation with 
machine learning algorithms. We used a subset of the UK Biobank 
dataset consisting of 5925 women (1534 who had been diagnosed 
with breast cancer and 4391 who had never been diagnosed with 
any form of cancer). We partitioned this group into a training and 
test set. We used the training set to train algorithms to recognize 
differences in chromosomal scale length variation data between the 
women with breast cancer and those without. We then tested this 
algorithm on the test set. We repeated this process multiple times 
with different training/test set partitions and found that the AUC was 
0.836 with a 95% confidence interval of 0.830 to 0.843

Table 1  We trained a model to predict breast cancer diagnosis 
on some UK Biobank data, then tested it on this dataset, which 
was withheld from the training

This dataset contained 227 patients diagnosed with breast cancer and 662 who 
had not been diagnosed with breast cancer. The model scored each patient on 
the likelihood of being classified as breast cancer. The 889 patients were ranked 
based on their score and split into ten deciles. This table summarized each 
decile. Those patients who scored in the top decile were 16.8 (95% CI 9.3–30.3) 
times more likely to have breast cancer than the average woman

Decile Number of 
cancers

Number 
normal

Odds ratio 95% CI

1 75 13 16.8 9.3–30.3

2 57 32 5.2 3.3–8.2

3 36 53 2.0 1.3–3.1

4 15 74 0.59 0.3–1.0

5 15 74 0.59 0.3–1.0

6 10 79 0.37 0.2–0.7

7 5 84 0.17 0.1–0.4

8 9 80 0.33 0.20–0.60

9 2 87 0.07 0.02–0.20

10 3 86 0.10 0.04–0.3

Total 227 662
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a specific chromosome “length,” presumably because it 
was close normal length and it was not considered a copy 
number variation. Since we had access to the UK Biobank 
SP array measurements, we could compute a value for 
every patient. Third, the UK Biobank population is much 
more uniform than the TCGA population. The TCGA 
patients were selected to represent a diverse population. 
About 76% of the TCGA breast cancer patients were 
identified as “white”, while about 95% of the UK Biobank 
participants are categorized as “white.”

The tests have not been optimized. The UKBiobank 
test could be further improved in two ways. First, the 
results might improve with further training. The train-
ing was done with a desktop computer (Intel i7-3770 
with 4 cores, no GPU). We believe additional training 
time could slightly improve the AUC. Second, we used 
88 numbers to characterize each genome, splitting the 
22 chromosomes into four equal parts. Some of these 
regions were highly correlated to others. We might be 
able to further improve the AUC by splitting the chromo-
somes into finer parts and ignoring those parts that are 
highly correlated to existing parts of the dataset.

Understanding the predictions made here is difficult. 
Although risk prediction and association studies share 
common methods, the end goals differ. Association stud-
ies often try to identify alterations in specific genes that 

can be mechanistically tied to specific diseases. Risk pre-
diction, however, is only concerned with maximizing the 
predictive power (18). One method of understanding 
machine learning models is through examination of vari-
able importance, identifying which regions contribute 
the most to the model’s predictions. Figure 3 shows the 
SHAP plot for a predictive model for breast cancer. The 
figure reveals that no single chromosomal region con-
tributes significantly more than the others to the model’s 
predictions. The predictions are based on combinations 
of changes throughout the genome.

We considered whether the results were due to two 
common problems faced by GWAS studies: batch effects 
[39] or population stratification. To rule out batch effects, 
we replicated the results in two independent datasets, the 
TCGA dataset and the UKBiobank dataset.

Population stratification occurs in case/control stud-
ies when the cases and controls contain different pro-
portions of genetically discernable subclasses. Most 
TCGA samples were collected in the United States from 
a racially diverse group. The typical process to correct 
for population stratification in GWAS is to use principal 
component analysis, but that process in inherently linear 
and cannot be used with non-linear machine learning 
techniques.

Fig. 3  This Shapley additive explanations plot (known as a SHAP plot) provides interpretability to the machine learning model. This SHAP plot is 
from the UK Biobank machine learning model, shown in Fig. 1. In this model, we used the chromosome-scale length variation on four segments 
from each chromosome, numbered from 0 to 3. The normalized value represents the value of the parameters. For instance, the red points (closer 
to 1.0) represent the people with the “longest” associated chromosome, while the blue points (closer to 0) represent people with the shortest 
associated chromosome. This SHAP plot indicates that the top contribution to the model is from Chromosome 22, segment 3 (the top label on 
the left axis). However, the SHAP contribution plot also indicates that many different chromosomal regions contribute equally to the model. No 
one segment is responsible for a majority of the predictive value of the model. Thus, one should not ascribe any particular significance to the third 
segment of Chromosome 22
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Cancer is the result of a complex interaction between 
genetics and the environment. In some cases, for instance, 
lung cancer and smoking or mesothelioma and asbestos 
exposure, the required environmental exposure is signifi-
cant and well known. In other cases, the required environ-
mental exposure is minor and not well known. The genetic 
signature identified here is a necessary, but not sufficient 
factor in developing the cancer. Since this is a retrospective 
study of people who already developed cancer, sufficient 
environmental exposure has already occurred. A prospec-
tive study would need to be performed to determine the 
effect of environmental exposure on how effective these 
predictions are.

Conclusion
In this retrospective study, chromosomal-scale length vari-
ation could effectively predict whether or not a woman 
enrolled in the UK Biobank study developed breast cancer.
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