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Abstract 

Background The Million Veteran Program (MVP) participants represent 100 years of US history, including significant 
social and demographic changes over time. Our study assessed two aspects of the MVP: (i) longitudinal changes in 
population diversity and (ii) how these changes can be accounted for in genome‑wide association studies (GWAS). To 
investigate these aspects, we divided MVP participants into five birth cohorts (N‑range = 123,888 [born from 1943 to 
1947] to 136,699 [born from 1948 to 1953]).

Results Ancestry groups were defined by (i) HARE (harmonized ancestry and race/ethnicity) and (ii) a random‑forest 
clustering approach using the 1000 Genomes Project and the Human Genome Diversity Project (1kGP + HGDP) refer‑
ence panels (77 world populations representing six continental groups). In these groups, we performed GWASs of 
height, a trait potentially affected by population stratification. Birth cohorts demonstrate important trends in ancestry 
diversity over time. More recent HARE‑assigned Europeans, Africans, and Hispanics had lower European ancestry 
proportions than older birth cohorts (0.010 < Cohen’s d < 0.259, p < 7.80 ×  10−4). Conversely, HARE‑assigned East Asians 
showed an increase in European ancestry proportion over time. In GWAS of height using HARE assignments, genomic 
inflation due to population stratification was prevalent across all birth cohorts (linkage disequilibrium score regression 
intercept = 1.08 ± 0.042). The 1kGP + HGDP‑based ancestry assignment significantly reduced the population stratifica‑
tion (mean intercept reduction = 0.045 ± 0.007, p < 0.05) confounding in the GWAS statistics.
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Conclusions This study provides a characterization of ancestry diversity of the MVP cohort over time and compares 
two strategies to infer genetically defined ancestry groups by assessing differences in controlling population stratifica‑
tion in genome‑wide association studies.

Keywords Ancestry, Race, Ethnicity, Population stratification, Height, Million Veteran Program

Background
Genome-wide association studies (GWAS) success-
fully identified loci associated with thousands of human 
traits and diseases using extremely large sample sizes 
[1]. Multi-ancestry cohorts, such as the Department of 
Veterans Affairs (VA) Million Veteran Program (MVP), 
offer unique opportunities to study the genetic archi-
tecture of complex traits across diverse populations [2]. 
As of June 2021, MVP has enrolled more than 840,000 
Veteran volunteers, > 650,000 of whom have been 
genotyped, and includes a wide range of phenotypic 
and health outcome information. Generally, GWAS 
are conducted within samples stratified by genetically 
determined ancestry groups and using genetic princi-
pal components to account for within-ancestry popula-
tion structure [3]. Recently, other methods have been 
proposed to improve the modeling of genetic diversity 
and the gene discovery of complex traits in diverse 
populations [4–6]. With respect to MVP diversity clas-
sification, the HARE (harmonized ancestry and race/
ethnicity) approach was developed to inform genetic 
ancestry assignments by leveraging self-identified racial 
and ethnic (SIRE) background under the hypothesis 
that these variables provide complementary informa-
tion and may improve the appropriateness of popula-
tion strata in genetic studies [3]. The HARE approach 
uses supervised machine learning and genetically 
defined ancestry to refine SIRE information for GWAS 
in three ways: (i) identify individuals whose SIRE is 
inconsistent with genetic information, (ii) reconcile 
conflicts among multiple SIRE sources, and (iii) impute 
missing racial/ethnic information when the predic-
tive confidence is high. Although the HARE approach 
aims to increase the inclusivity of the population group 
definition to reduce the number of unclassified indi-
viduals, it can also, by the same process, increase the 
heterogeneity and the complexity of genetic structure 
within each HARE-defined group. Additionally, the 
inclusion of SIRE information can introduce biases 
related to specific racial and ethnic classifications used. 
For example, SIRE information used in MVP is based 
on racial and ethnic categories defined by the US Cen-
sus. In this classification, the “Asian” group includes 
two distinct ancestry groups—Central/South Asian 
and East Asian—that are very different from a genetic 
perspective [7]. Therefore, a GWAS conducted on a 

HARE-assigned “Asian” superpopulation has a high risk 
to be biased by population stratification unaccounted 
for by genetic principal components. To a lesser extent, 
population stratification could also affect GWAS con-
ducted in samples defined using HARE assignment due 
to an increased genetic heterogeneity.

To test this hypothesis, we compared the HARE 
approach with a classification based on genetic ances-
try categories derived from a high-resolution reference 
panel (77 world populations representing six continental 
groups) [8, 9], testing how they model genetic diversity 
in a GWAS of height. Previous studies demonstrated that 
height polygenic architecture can be strongly affected 
by unaccounted population stratification [10]. To inves-
tigate scenarios related to the different compositions 
that characterize the US  population and therefore the 
MVP cohort, we stratified the MVP cohort, which spans 
almost 100  years (from 1904 to 1999), into five birth 
cohorts of approximately 130,000 MVP participants each. 
Consistent with US demographics and changes in mili-
tary policies, the demographic characteristics of US mili-
tary personnel changed drastically over time with more 
personnel self-identifying as Black, Hispanic, Asian, or 
other non-European descent categories in more recent 
decades [11]. Accordingly, the five birth cohorts will 
present different ancestry compositions reflecting these 
social and demographic changes. But they also reflect 
demographic changes reflected in differing admixture in 
ancestry groups over time and social changes in self-iden-
tification. These cohorts permitted us to assess how dif-
ferent superpopulation-assignment approaches work in 
different scenarios to correct the population stratification 
affecting height polygenic architecture [10]. This trait was 
selected due to the well-documented unaccounted-for 
effects of population stratification in large genetic stud-
ies [10]. Our findings highlight the challenges in mod-
eling the diversity of human populations in the context 
of multi-ancestry GWAS. Additionally, we character-
ized the longitudinal changes of ancestry composition in 
the MVP cohort, showing how social and demographic 
changes can affect the genetic structure and introduce 
specific challenges in the design of GWAS. This study 
presents one possible solution, a higher resolution ances-
try reference panel, to mitigating these effects on genetic 
structure in GWAS.
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Results
Birth cohort description
Birth years among MVP participants span 96  years 
(1904–1999). Five birth cohorts were defined (Table  1), 
each consisting of approximately 130,000 participants: 
1904–1942 (BC1), 1943–1947 (BC2), 1948–1953 (BC3), 
1954–1963 (BC4), 1964–1999 (BC5). The distribution 
of HARE superpopulations and service era descriptive 
statistics are shown in Additional file 1: Table S1. In line 
with US military population demographic shifts, more 
contemporary birth cohorts included more females and 
members of non-European ancestry populations.

Longitudinal changes in ancestry diversity
Using PCs calculated within HARE superpopulations, 
observational changes are seen in the two-dimensional 
projections of participants’ genetic diversity. Consist-
ent with conventional expectations of two-dimensional 
PC space, clustering of the first two HARE PCs sepa-
rates EUR, EAS, and AFR continental population groups. 
When projected as independent birth cohorts (Fig.  1), 
we show that over time, areas of two-dimensional feature 
space occupied by genetically heterogeneous individu-
als become more populous while continental population 
clusters become more heterogeneous. In other words, 
admixture increased over time and the younger cohorts 
were more genetically heterogeneous than the older ones. 
Across different projections of feature space (Fig. 1), the 
most recent cohort (BC5 1964–1999) appears to have 
more participants being projected between clusters than 
the other birth cohorts investigated.

We compared ancestry proportions across birth 
cohorts. Among HARE-EUR participants, there was 
a decrease in GBR ancestry proportion from oldest to 
most recent birth cohort, while YRI and CHB ances-
try proportions increased. While significant due to the 
large MVP sample size (FDR Q < 0.05), the effect size 
of these changes among HARE-EUR participants was 

relatively small (0.01 ≤|Cohen’s d|≤ 0.14; Fig.  2). HARE-
AFR and HARE-HIS population groups demonstrated 
similar significant changes in ancestry proportion across 
birth cohorts, but these differences also were relatively 
small. Conversely, HARE-EAS showed a significant 
decrease in CHB ancestry proportion and an increase 
in GBR ancestry proportion across birth cohorts. The 
mean GBR ancestry proportion among HARE-EAS was 
3.04% ± 10.2 (BC1 1904–1942), 6.17% ± 14.7 (BC2 1943–
1947), 7.76% ± 16.4 (BC3 1948–1953), 8.95% ± 17.0 (BC4 
1954–1963), and 9.66% ± 18.1 (BC5 1964–1999). These 
observations translate to large standardized effect sizes 
(1.69 ≤|Cohen’s d|≤ 3.43). All ancestry proportions esti-
mated by ADMIXTURE and effect sizes are shown in 
Additional file 1: Table S2.

Height changes over time
There were relatively small changes in height across 
birth cohorts (Additional file  1: Table  S3). Compared 
to the oldest birth cohort, more contemporary HARE-
AFR individuals were shorter (difference in means = 0.83 
inches, Cohen’s d = 0.23, p = 4.26 ×  10–127), HARE-ASN 
individuals were taller (difference in means = 0.96 inches, 
Cohen’s d = 0.31, p = 4.84 ×  10–23), HARE-EUR individu-
als were taller (difference in means = 0.08 inches, Cohen’s 
d = 0.03, p = 2.73 ×  10–7), and HARE-HIS individuals 
were taller (difference in means = 0.34 inches, Cohen’s 
d = 0.11, p = 1.34 ×  10–14). In the MVP, the change in GBR 
ancestry proportion between two birth cohorts, dGBR 
(beta = 0.856, p = 0.001), was a significant independent 
correlate of the change in height between the same two 
birth cohorts (dheight; Additional file  2: Fig. S1). No sig-
nificant correlation was observed with respect to other 
ancestry proportions (p > 0.05).

Distribution of MVP participants across ancestry groups
Using a random forest assignment of ancestry based on 
the high-resolution reference panel composed of the 

Table 1 Distribution of sex and HARE superpopulation classification across birth cohorts. HARE unclassified individuals are not 
included. The numbers reported are derived from Additional file 1: Table S1, which does not include service patterns with less than 11 
participants to preserve data privacy of the participant

Additional details are available in Additional file 1: Table S1

AFR African, ASN Asian, EUR European, HIS Hispanic

Female Male

AFR ASN EUR HIS AFR ASN EUR HIS

1904–1942 164 0 2197 84 11,329 816 109,698 5306

1943–1947 377 0 2069 52 14,077 756 98,071 6673

1948–1953 1610 29 4812 329 23,768 1057 93,946 8895

1954–1963 5627 126 10,622 955 33,024 1179 63,256 9368

1964–1999 8549 653 13,723 3320 21,800 2980 59,032 14,959
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Fig. 1 Observational changes in HARE superpopulation heterogeneity across birth cohort in the MVP. Each plot represents an independent birth 
cohort of approximately 130,000 participants. a Projects PCs 1 and 2 into two‑dimensional space for each birth cohort. b, c The oldest and youngest 
birth cohorts are projected on PC1‑versus‑PC3 and PC2‑versus‑PC3, respectively, demonstrating comparable observations when using different 
combinations of PCs. Clusters of participants are circled to draw attention to observational changes in population heterogeneity across birth 
cohort. The colors differences used to identify these regions are arbitrary but permit easy tracking of highlighted regions across plots. AFR African, 
ASN Asian, EUR European, HIS Hispanic
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1kGP + HGDP (N = 3,284 unrelated reference individu-
als from 77 populations across six continental ancestries, 
described here: https:// pan. ukbb. broad insti tute. org/), the 
MVP was stratified into six distinct ancestries (Fig.  3). 
Table  2 shows negligible differences in the numbers of 
European, African, and Admixed American MVP partici-
pants applying the two classification methods. Relative to 
HARE, the higher diversity ancestry panel applied here 
permitted the statistical resolution of East Asian, Central/
South Asian, and Middle Eastern ancestries. We report 
a 31.3% increase in the sample size of MVP participants 

with genetically more homogeneous East Asian ancestry. 
Additionally, the 1kGP + HGDP-based ancestry reduced 
the number of unclassified individuals compared to the 
HARE method (4750 vs. 9989, respectively).

GWAS of height
We performed GWASs of height in the MVP stratified 
by BC, ancestry, and ancestry-assignment methods (5 
BCs × 4 superpopulations × 2 superpopulation-assign-
ment methods). Due to the lack of a HARE comparator 
group, height was not assessed in the 1kGP + HGDP Cen-
tral/South Asian or Middle Eastern ancestries. There were 
no significant differences in SNP-heritability across meth-
ods (Additional file 2: Fig. S2 and Additional file 1: Tables 
S4 and S5). Among HARE superpopulations, 14 of 20 
LDSC intercepts from GWAS of height were greater than 
1.05 (HARE-EUR mean intercept = 1.13 ± 0.02, HARE-
AFR mean = 1.07 ± 0.04, HARE-ASN mean = 1.06 ± 0.03, 
and HARE-HIS mean = 1.05 ± 0.02; Fig.  4). Accounting 
for population stratification using the high-resolution 
1kGP + HGDP ancestry reference panel reduced the 
LDSC intercept of 18 of 20 GWAS, reflecting lower effects 
of confounding by population stratification on these 
GWAS relative to HARE assignments. In four analyses, 
the LDSC intercept of height GWAS was significantly 
lower (p < 0.05) in the 1kGP + HGDP population relative 
to the HARE superpopulation assignment: EUR 1954–
1963 (HARE intercept = 1.12 ± 0.017, 1kGP + HGDP 
intercept = 1.07 ± 0.016, pdiff = 0.033), EUR 1964–1999 
(HARE intercept = 1.11 ± 0.018, 1kGP + HGDP inter-
cept = 1.06 ± 0.016, pdiff = 0.034), EAS 1964–1999 
(HARE intercept = 1.10 ± 0.010, 1kGP + HGDP inter-
cept = 1.05 ± 0.010, pdiff = 0.003), and HIS 1943–1947 
(HARE intercept = 1.07 ± 0.010, 1kGP + HGDP inter-
cept = 1.03 ± 0.010, pdiff = 0.008). There was no difference 
in attenuation ratio (i.e., the ratio between LDSC intercept 
and mean χ2 statistics that aims to estimate the relative 
balance of confounding and genetic effects) across meth-
ods suggesting that the proportion of test statistic infla-
tion attributable to ancestry stratification has not changed 
(Additional file 2: Fig. S3).

Discussion
Minorities have been historically excluded from genetic 
studies of health and disease stemming from several 
social, political, ideological, scientific, and practical fac-
tors [12]. Because of this disproportionate recruitment of 
study participants, many efforts are now being employed 
to diversify genetic data collection and make better use 
of existing data from genetically diverse populations [13–
15]. However, accurate modeling of human genetic vari-
ation is essential for unbiased gene discovery in diverse 

Fig. 2 Statistical changes in ancestry diversity in four HARE 
superpopulations. Each facet per row shows the ancestry proportion 
for three major continental populations (CHB is an East Asian 
reference population of Han Chinese in Beijing, China; GBR is a 
European reference population from Great Britain; YRI is a West 
African reference population of Yoruba in Ibadan, Nigeria). Birth 
cohorts are shown across the x‑axis and are arranged from oldest 
(BC1) to most recent (BC5). Black lines connecting colored bars 
designate significant differences in ancestry proportion between 
those two birth cohorts (p < 2.0 ×  10−4 based on five birth cohorts, 
five ancestry proportion references, and ten birth cohort pairwise 
comparisons). All proportions, specific p‑values from comparisons, 
and HARE assignments are shown in Additional file 1: Table S2. AFR 
African, ASN Asian, EUR European, HIS Hispanic

https://pan.ukbb.broadinstitute.org/
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populations [5, 16–18]. One approach to accomplish this 
goal this is HARE [3]. Using machine learning, HARE 
blends SIRE with genetic data to classify individuals for 
which these measures of identity and ancestry align. 
Based on the notion that self-identified race/ethnicity 
generally correlates with genetically defined ancestry [3], 
an individual’s HARE and SIRE are identical when SIRE 
is unambiguous; however, SIRE in the MVP is culturally 
tuned to the demographics of the USA and may not per-
mit generalization of HARE outside genetics research in 
the USA. Here, we demonstrated that the use of SIRE by 
the HARE approach captures population dynamics that 
do not reflect the ancestry of the participants investi-
gated. Most notably, we quantify a longitudinal reduction 

Fig. 3 Principal components analysis for genetic ancestry of MVP participants using the random forest classifier method and the 1kGP + HGDP 
reference panel. AFR African, CSA Central/South Asian, EAS East Asian, EUR European, MID Middle Eastern, AMR Admixed American

Table 2 Sample size for each superpopulation of the Million 
Veteran Program cohort using HARE and a high‑resolution 
ancestry panel from the 1000 Genomes Project and Human 
Genome Diversity Project (1kGP + HGDP)

Superpopulation group 1kGP + HGDP-based random 
forest classification

HARE

European 459,697 464,961

Central/South Asian 709 –

African 123,687 123,120

Admixed American (referred 
to as “Hispanic/HIS” by HARE)

58,034 52,183

East Asian (referred to as 
“Asian/ASN” by HARE)

10,942 8329

Middle Eastern 763 –

Unclassified 4750 9989

Total 658,582 658,582

Fig. 4 LDSC intercept comparisons across GWAS of height 
performed in HARE superpopulations and populations assigned 
using a high‑resolution ancestry reference panel composed of 1000 
Genomes Project plus Human Genome Diversity Project individuals 
(1kGP + HGDP). Red asterisks indicate significant difference in 
intercept estimates (p < 0.05). Each GWAS was performed in 
unrelated participants of the indicated ancestry with age, sex, and 10 
within‑population principal components as covariates. EUR European, 
AFR African, EAS East Asian, HIS Hispanic
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in East Asian ancestry among HARE-ASN individuals 
which likely reflects (i) recent admixture in the most con-
temporary birth cohort that was not present in the old-
est birth cohort and/or (ii) the known inclusion of South 
Asian participants in the HARE-ASN group [3].

To evaluate HARE, we used a more objective com-
parator that did not rely on self-report at all: a differ-
ent approach to cluster MVP participants according 
to their genetically defined ancestry with a high-res-
olution reference panel. In GWAS of height based on 
1kGP + HGDP ancestry assignment, we identified sig-
nificant reductions in LDSC intercepts when compared 
to intercepts obtained from the GWAS conducted 
using HARE superpopulation assignments. The dif-
ferences were most pronounced among more recent 
EUR and EAS populations and may be due to longitu-
dinal changes in ancestry proportion over the five birth 
cohorts spanning almost 100  years. MVP participants 
in HARE-EUR and HARE-EAS superpopulations who 
were born between 1964 and 1999 had a lower propor-
tion of EUR ancestry than earlier birth years. These dif-
ferences in recent birth cohorts likely indicate that more 
granular modeling is important to account for recent 
demographic changes that occurred in the USA. Our 
results highlight that genetic studies in more genetically 
diverse cohorts may be more confounded by popula-
tion stratification when using very broad definitions of 
ancestry, such as HARE, and that this increased genetic 
diversity can be modeled better using a high-resolution 
ancestry reference panel.

A major pitfall to including SIRE categories is that 
they are based on historical population classifications 
that are specific to the country(s) where the recruitment 
and the assessment are performed. MVP SIRE informa-
tion is based on the classification used by the US Cen-
sus. This can be very different from those used in other 
countries and do not reflect the continuum of genetic 
diversity across human populations. Though SIRE could 
potentially be included as a covariate in future GWAS 
focused on US populations, results of such a study still 
present genetic admixture concerns that complicate the 
meta-analysis  between US and non-US cohorts. The 
strongest example is the fact that MVP HARE classifica-
tion groups together all Asian populations. In the MVP, 
these include individuals who identify as “Chinese,” “Jap-
anese,” “Asian Indian,” “Other Asian,” or “Filipino,” but 
Asian populations are extremely heterogeneous, with 
the largest genetic differences between Central/South 
Asia and East Asia. Another important difference is the 
classification of ethnicity, which is specifically related 
to Hispanic or Latin origin in the US census while in 
other countries the term “ethnicity” is a much broader 

concept encompassing social and cultural characteristics 
of human populations. Accordingly, applying the HARE 
approach to international settings or combining cohorts 
modeled using HARE assignment with samples mod-
eled with genetically inferred ancestry groups can cre-
ate harmonization issues. For instance, meta-analyzing 
MVP HARE Asian (including Central/South and East 
Asian in the same population) with Biobank Japan (i.e., 
East Asian individuals) can lead to a reduction in statis-
tical power. Similarly, applying the HARE assignment to 
the UK Biobank cohort will lead to a different classifi-
cation than the ones obtained when applying HARE to 
the MVP cohort, because of the differences in the SIRE 
classification in UK and US. The 1kGP + HGDP-based 
ancestry assignment is based only on genetic informa-
tion and therefore, serves as an international reference 
panel that can be applied for harmonized classifica-
tion of cohorts recruited in different parts of the world. 
Indeed, our 1kGP + HGDP-based ancestry assignment 
perfectly overlaps with that performed by the Pan-
Ancestry analysis recently done in the UK Biobank (see 
https:// pan. ukbb. broad insti tute. org/). The consistent 
ancestry assignment performed in these cohorts there-
fore can permit meta-analyses across two of the largest 
genetic data repositories in the world in a harmonized 
fashion. A harmonized definition of ancestry across 
datasets reduces heterogeneity across the meta-analyzed 
datasets, increasing the statistical power of the gene dis-
covery analysis [19, 20]. However, population stratifica-
tion among the recently admixed American groups (e.g., 
African Americans and Latin Americans) still requires 
careful consideration for within-population adjustment 
of ancestry diversity [4–6].

We demonstrated statistically significant improve-
ments in the modeling of ancestry diversity in the MVP 
cohort, but our study has limitations to consider. First, 
the MVP is a unique cohort whose diversity reflects many 
cultural changes through US history filtered through a 
lens of military service. Over the twentieth century, leg-
islation and military policies gradually expanded oppor-
tunities for participation in the US military for women, 
people of color, and people with diverse sexual orienta-
tions and gender identities. Though demographics of the 
US military correspond broadly to similar changes in the 
general population of the US, it remains unclear if they 
are truly representative, and if our observations reflect 
directly comparable changes in ancestry proportions 
across the USA. Second, our findings rely on height as a 
model phenotype to investigate population stratification 
biases. Accordingly, the scenarios investigated may differ 
from those that would be seen for other phenotypes such 
as medical outcomes that are associated with cultural 

https://pan.ukbb.broadinstitute.org/
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characteristics and shifts in their recognition, diagnosis, 
and treatment, possibly introducing additional opportu-
nities for confounding by birth cohort. Third, our study 
applies a standard set of covariates to adjust for popula-
tion stratification within each GWAS (e.g., 10 PCs). The 
inclusion of additional PCs on a case-by-case basis may 
further reduce evidence of unaccounted-for population 
stratification, but this may be a costly adjustment result-
ing in over-correction of test statistics in the GWAS 
model.

Conclusions
Our study quantifies the ancestry diversity of MVP 
HARE superpopulations and demonstrates clear changes 
in ancestry proportions over time. We further dem-
onstrate the effects of this unaccounted-for ancestry 
diversity on GWAS and propose one feasible approach 
to mitigate these effects while still boosting diversity in 
genetics research. In line with the recent report of the US 
National Academies of Sciences, Engineering, and Medi-
cine [21], our findings support that population descrip-
tors in genetic research should be based on genetic 
similarities with reference populations rather than race-
based classification. This will permit investigators to 
model more accurately human genetic variation and to 
generalize findings across cohorts recruited in different 
socio-cultural contexts.

Methods
Definitions of race, ethnicity, and ancestry groups
This study compares different cohorts of Veterans 
grouped together based on genetic data or on HARE. 
HARE relies on the blending of self-identity and genetic 
information. We used the following terminology:  “Super-
population” to reference a group of participants defined 
by HARE or genetic data; “Ancestry” is strictly applied 
to population defined by genetic data only; “Ethnicity” 
describes a population of people with common national 
and/or cultural traditions. In the MVP, participants self-
reported one of the following ethnicities: “not Spanish, 
Hispanic, or Latino,” “Mexican, Mexican American, or 
Chicano,” “Puerto Rican,” “Cuban,” or “Other Spanish, 
Hispanic, or Latino” [2]. Finally, “race” is a social con-
struct that groups individuals by self-identity and encom-
passes many aspects of cultural belonging and physical 
appearance. In the MVP, participants self-reported one 
or more of the following races: “White,” “Black or African 
American,” “Chinese,” “Japanese,” “Asian Indian,” “Other 
Asian,” “Filipino,” “Pacific Islander,” and/or “Other” [2]. 
Populations grouped by ancestry, race, or ethnicity gen-
erally overlap in the MVP (e.g., non-Spanish, Hispanic, 
or Latino Black or African American Veterans generally 
have high proportions of continental African ancestry).

Cohort description
The MVP is an ongoing voluntary research cohort of the 
US military population composed of active users of the 
Veterans Health Administration healthcare system who 
learn of the MVP by invitational mailing and/or from 
MVP staff while receiving clinical care. All MVP par-
ticipants provided informed consent and Health Insur-
ance Portability and Accountability Act (HIPAA) of 1996 
authorization. As of 2021, approximately 840,000 Veter-
ans have enrolled in the program [22]. Research involving 
the MVP data was approved by the VA Central Institu-
tional Review Board (IRB). The current project was also 
approved by VA IRBs in Durham (North Carolina), Hou-
ston (Texas), Boston (Massachusetts), and West Haven 
(Connecticut).

The MVP integrates data from the Electronic Health 
Record and at least two surveys administered at the time 
of recruitment [2]. The Baseline Survey collects data 
regarding demographics, family pedigree, health status, 
lifestyle habits, military experiences, medical history, 
family history of illness, and physical features. The Life-
style Survey asks questions from validated instruments in 
domains selected to provide information about sleep and 
exercise habits, environmental exposures, diet, and sense 
of well-being.

SNP genotyping and quality control
For the current analysis, we used the release 4 data freeze 
consisting of genotype data available for 658,582 par-
ticipants (8.9% females and 29.4% from non-EUR HARE 
superpopulations). Genotyping was performed with the 
MVP 1.0 custom Axiom® Biobank array consisting of 
668,418 SNP assays. The details on the quality control, 
superpopulation assignment, relatedness, and imputa-
tion have been described previously [22].

Harmonized ancestry and race/ethnicity (HARE)
HARE was designed to define strata for superpopula-
tion-specific GWAS using a two-stage categorization 
procedure [3]. First, a support vector machine (SVM) 
was built to learn the correspondence between geneti-
cally defined ancestry and SIRE information. Second, 
HARE was assigned based on the harmonization of SIRE, 
genetically defined ancestry, and the trained SVM. There 
are four HARE superpopulations in MVP Release 4: non-
Hispanic Black with predominantly African ancestry 
(N = 123,120), non-Hispanic Asian with predominantly 
East Asian ancestry (N = 8,329), non-Hispanic white with 
predominantly European ancestry (N = 464,961), and 
Hispanic with predominantly Admixed American ances-
try (N = 52,183). HARE unclassified status can be due to 
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(i) lack of SIRE and predicted probability of ancestry can-
not be resolved between two populations or (ii) discord-
ance between genetic information and SIRE [3]. A total 
of 9,989 participants (1.52%) could not be classified by 
HARE.

High-resolution ancestry reference panel
A high-resolution ancestry reference panel of non-MVP 
individuals was created following statistical and bioin-
formatic procedures developed in the Pan-ancestry UK 
Biobank initiative (see https:// pan. ukbb. broad insti tute. 
org/ for full details and https:// github. com/ atgu/ ukbb_ 
pan_ ances try/ blob/ master/ plot_ ukbb_ conti nental_ 
pca.R). The reference panel combines individuals from 
the 1000 Genomes Project (1kGP Phase 3; 26 popula-
tions across five continental ancestries) [23] and Human 
Genome Diversity Project (HGDP; 51 populations across 
six continental ancestries) [9]. Hereafter, this panel is 
referred to as 1kGP + HGDP. These data were stratified 
into continental ancestries according to their recruitment 
strategies and the previous genetic inference analyses [9, 
23]. The ancestry groups include African (AFR), Central/
South Asian (CSA), East Asian (EAS), European (EUR), 
Middle Eastern (MID), and Admixed American (AMR). 
SNP coordinates were assigned relative to the hg37 refer-
ence genome. After quality control for minor allele fre-
quency (1%), missingness (SNP = 5% and individual = 3%), 
heterozygosity, and pairwise kinship estimates, the high-
resolution ancestry panel included 3,284 individuals. 
Principal components analysis (PCA) was performed on 
unrelated individuals from the reference panel. First, we 
applied PCA on a high quality and linkage disequilibrium 
(LD)-pruned (r2 = 0.01, 1500-kb window size) dataset of 
genotypes from the MVP using plink 2.0 [24]. The PC 
loadings from top 20 PCs of the 1kGP + HGDP reference 
panel (training data) were projected onto PC loadings of 
genotypes from the MVP participants. Ancestry assign-
ments were performed using the random forest classifier 
implemented in the randomForest R package with default 
settings. The projected ancestry groupings in MVP were 
defined using a classification probability greater than 
50%. These clusters were further refined for ancestry 
outliers using the top 20 PCs within the assigned ances-
try group for the MVP cohort. We defined outliers based 
on PC loadings outside six median absolute deviations 
across the first 20 PCs.

Birth cohort definition
Each MVP participant endorsed service in one of nine 
possible service eras: 1941 or earlier, December 1941 
to December 1946, January 1947 to June 1950, July 
1950-January 1955, February 1955 to July 1964, August 
1964 to April 1975, May 1975 to July 1990, August 1990 

to August 2001, or September 2001 or later [2]. Though 
MVP participants are mapped to service era, these strata 
represent overlapping periods of service with > 22% of 
MVP participants serving in multiple eras (Additional 
file 1: Table S1), 4.3% of whom served in non-contiguous 
eras. For these reasons, military service data were not 
used to stratify the MVP. Using self-reported participant 
birth year from the MVP Baseline Survey [2], we used 
a cumulative distribution function to identify approxi-
mately equally sized birth cohorts (BCs). Each BC con-
sisted of approximately 130,000 participants (Additional 
file 1: Table S2).

Height as a model trait to investigate population 
stratification
This study aims to detect and quantify the effect of 
residual population stratification among ancestry assign-
ments. GWASs of height show severe biases attributed 
to unaccounted-for ancestry diversity among discov-
ery samples [10]. Height in the MVP was measured in 
inches as part of the core vital signs assessment at par-
ticipant enrollment. GWAS of height were performed 
in unrelated participants and included age, sex, and 10 
within-superpopulation PCs as covariates [10, 22, 25]. 
Covariate PCs were calculated per superpopulation per 
classification method resulting in ancestry- and method-
specific PCs for each HARE superpopulation and each 
1kGP + HGDP ancestry group.

Ancestry proportion
The ancestry proportions among MVP participants were 
estimated using ADMIXTURE [26]. With ADMIXTURE, 
each MVP participant was assigned five ancestry pro-
portions using reference populations from 1kGP Phase 
3: Han Chinese in Beijing (CHB), British in England and 
Scotland (GBR), Luhya in Webuye, Kenya (LWK), Peru-
vian in Lima, Peru (PEL), and Yoruba in Ibadan, Nigeria 
(YRI). These reference populations were selected to rep-
resent homogeneous continental ancestries along with a 
relatively large Admixed American reference population 
(PEL).

Detection of unaccounted-for ancestry diversity
The outcome used to quantify the presence of unac-
counted-for ancestry diversity in each GWAS was the 
linkage disequilibrium score regression (LDSC) inter-
cept and attenuation ratio [27]. The LDSC intercept 
assesses whether the distribution of genome-wide asso-
ciation statistics is consistent with an expected distri-
bution. The LDSC intercept of GWAS typically ranges 
from 1 to 1.05 with values greater than 1.05 often con-
sidered as evidence of systematic bias in the test statis-
tics [27–29]. Attenuation ratios quantify the proportion 

https://pan.ukbb.broadinstitute.org/
https://pan.ukbb.broadinstitute.org/
https://github.com/atgu/ukbb_pan_ancestry/blob/master/plot_ukbb_continental_pca.R
https://github.com/atgu/ukbb_pan_ancestry/blob/master/plot_ukbb_continental_pca.R
https://github.com/atgu/ukbb_pan_ancestry/blob/master/plot_ukbb_continental_pca.R
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of inflation in the mean χ2 statistic that can be ascribed to 
causes other than polygenicity. When the LDSC intercept 
is in an acceptable range, the attenuation ratio typically 
ranges from 0–20%. As the LDSC intercept exceeds 1.05, 
attenuation ratios in this range indicate the presence of 
confounding, typically attributed to unaccounted-for 
ancestry diversity. Two-sided Z-tests were used to com-
pare the statistical difference in LDSC intercepts and 
attenuation ratios between groups. Multiple testing cor-
rection was applied to these results using the false dis-
covery rate (FDR < 5%).
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Additional file 1: Table S1. Patterns of service era per birth cohort and 
across all MVP participants stratified by sex and HARE superpopulations. 
Each row represents a distinct pattern of service across nine service eras; 
the frequency of each is calculated by birth cohort and for all MVP par‑
ticipants. Service patterns with less than 11 participants were omitted to 
preserve data privacy of the participant so HARE total population sample 
sizes are slightly lower than those reported in Table 1. Table S2. Sample 
size per birth cohort derived from cumulative distribution function of year 
of birth. Table S3. Mean ancestry proportion of five 1kGP reference popu‑
lations in all birth cohorts and HARE superpopulations. Two‑sided Z‑tests 
were used to compare the statistical difference in means between groups 
and the corresponding p values reflect this difference. Standardized mean 
differences reflect the magnitude of effect size difference between two 
groups. Table S4. Comparison of height across birth cohorts in each MVP 
HARE superpopulations. Table S5. Metrics for GWAS of height in each 
ancestry per birth cohort using both methods of population assignment. 
Heritability, LDSC intercepts, and attenuation ratios were compared across 
birth cohorts, within each method, using two‑sided Z‑tests. Multiple test‑
ing correction was applied using a false discovery rate of 5%; differences 
surviving multiple testing correction are highlighted in yellow. Table S6. 
Metrics for GWAS of height compared across method used to define 
superpopulations. Two‑sided Z‑tests were used to compare heritability, 
LDSC intercepts, and attenuation ratios between HARE and 1kGP+HGDP 

superpopulation assignments. Multiple testing correction was applied 
using a false discovery rate of 5%.

Additional file 2: Figure S1. Height across birth cohorts. Small changes 
in height exist across birth cohorts in the MVP. The change in height 
between two birth cohorts correlates with change in mean GBR ancestry 
proportion. Each data point is a pairwise comparison of GBR ancestry 
proportion within each HARE superpopulation. EUR European, AFR 
African, EAS East Asian, HIS Hispanic. Figure S2. SNP‑heritability compari‑
sons across GWAS of height performed in HARE superpopulations and 
populations assigned using a high‑resolution ancestry reference panel 
composed of 1000 Genomes Project plus Human Genome Diversity 
Project individuals. Each GWAS was performed in unrelated participants of 
the indicated ancestry with age, sex, and 10 within‑population principal 
components as covariates. EUR European, AFR African, EAS East Asian, HIS 
Hispanic. Figure S3. Attenuation ratio comparisons across GWAS of height 
performed in HARE superpopulations and populations assigned using a 
high‑resolution ancestry reference panel composed of 1000 Genomes 
Project plus Human Genome Diversity Project individuals. Each GWAS was 
performed in unrelated participants of the indicated ancestry with age, 
sex, and 10 withing‑population principal components as covariates. EUR 
European, AFR African, EAS East Asian, HIS Hispanic.
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