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Abstract 

Background Individuals infected with SARS-CoV-2 vary greatly in their disease severity, ranging from asympto-
matic infection to severe disease. The regulation of gene expression is an important mechanism in the host immune 
response and can modulate the outcome of the disease. miRNAs play important roles in post-transcriptional regula-
tion with consequences on downstream molecular and cellular host immune response processes. The nature and 
magnitude of miRNA perturbations associated with blood phenotypes and intensive care unit (ICU) admission in 
COVID-19 are poorly understood.

Results We combined multi-omics profiling—genotyping, miRNA and RNA expression, measured at the time of 
hospital admission soon after the onset of COVID-19 symptoms—with phenotypes from electronic health records to 
understand how miRNA expression contributes to variation in disease severity in a diverse cohort of 259 unvaccinated 
patients in Abu Dhabi, United Arab Emirates. We analyzed 62 clinical variables and expression levels of 632 miRNAs 
measured at admission and identified 97 miRNAs associated with 8 blood phenotypes significantly associated with 
later ICU admission. Integrative miRNA-mRNA cross-correlation analysis identified multiple miRNA-mRNA-blood 
endophenotype associations and revealed the effect of miR-143-3p on neutrophil count mediated by the expression 
of its target gene BCL2. We report 168 significant cis-miRNA expression quantitative trait loci, 57 of which implicate 
miRNAs associated with either ICU admission or a blood endophenotype.

Conclusions This systems genetics study has given rise to a genomic picture of the architecture of whole blood 
miRNAs in unvaccinated COVID-19 patients and pinpoints post-transcriptional regulation as a potential mechanism 
that impacts blood traits underlying COVID-19 severity. The results also highlight the impact of host genetic regula-
tory control of miRNA expression in early stages of COVID-19 disease.
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Introduction
The three years since the emergence of SARS-CoV-2 have 
brought unprecedented progress in our scientific under-
standing of the SARS-CoV-2 infection and COVID-19 
disease. However, one overarching question remains: 
why do individuals infected with SARS-CoV-2 vary in 
their clinical symptomatology, from asymptomatic infec-
tion to severe, and oftentimes, lethal disease [1, 2]? The 
answer to this complex question lies in layers of genetic, 
biological, environmental, and social factors. Previous 
studies have found that both men and older patients, as 
well as those with underlying medical conditions such as 
diabetes, hypertension and obesity are at a higher risk for 
severe disease, requirement of intensive care and death 
[3-6]. Studies have also identified a number of blood 
phenotypes associated with severe disease, including ele-
vated levels of D-dimers, C-reactive protein (CRP), neu-
trophil-to-lymphocyte ratio (NLR), Interleukin 6 (IL-6), 
IL-10, lactate dehydrogenase (LDH), procalcitonin and 
albumin [7-14]. Neutrophils have been found to play a 
critical role in the pathophysiology of COVID-19 [15-17], 
with activation of circulating neutrophils—as observed in 
transcriptomic data—pinpointed as a predictor of clinical 
illness in COVID-19 [18, 19]. Genetic variation has also 
been shown to influence COVID-19 susceptibility, sever-
ity and clinical outcomes [20, 21]. While there has been 
extensive research to unpack the different sources of vari-
ation that influence COVID-19 disease severity, only a 
few studies to date have focused on the potential roles of 
human-encoded microRNA (miRNA). 

miRNAs are a class of small, non-coding RNAs that 
regulate gene expression by binding to complementary 
mRNA transcripts to either block translation or mark 
the target mRNA for degradation [22, 23]. miRNAs can 
regulate both neighboring or distal genes; one miRNA 
can regulate either one or multiple genes; and multiple 
miRNAs can target the same gene in either a synergis-
tic or antagonistic manner [24]. Since regulated miRNA 
expression is crucial for the differentiation, activation 
and survival of immune cells [25], dysregulated miRNA 
expression can be indicative of aberrant immune func-
tion, and has been implicated in numerous diseases 
including cancers, inflammatory disorders and malaria 
[26-28]. miRNA expression is also influenced by host 
genetics, with a few studies describing genetic variation 
associated with miRNA expression in healthy donors and 
disease contexts like malaria and cancer [29-32].

Despite the contributions of miRNAs to immune 
function, our understanding of the roles of miRNAs in 
response to SARS-CoV-2 is still in its nascency. There 
are a number of studies (reviewed in Geraylow et  al. 
[33]) that have identified aberrant miRNA expres-
sion during COVID-19 disease progression. Farr and 

colleagues reported the differential expression of 55 
miRNAs between COVID-19 patients during the early 
stage of disease and healthy donors matched for age and 
gender [34];  Fernández-Pato and colleagues identified 
200 differentially expressed miRNAs between COVID-
19 patients and healthy controls which were also cor-
related with proinflammatory cytokines such as IL-6, 
IL-12, IP-10, and TNFɑ [35];  Pinacchio and colleagues 
highlighted increased levels of miR-122a and miR-146a 
in the serum of COVID-19 patients compared to con-
trols, and reported a negative correlation between miR-
146a and Interferon alpha-inducible protein 27 (IFI-27) 
[36]; de Gonzalo-Calvo et al. identified 10 miRNAs that 
were dysregulated in hospitalized patients admitted to 
the intensive care unit (ICU), compared to patients that 
did not require ICU care, reported correlations between 
miRNA levels and length of ICU stay, and found that 
the expression of miR-192-5p and miR-323a-3p differ-
entiated ICU non-survivors from survivors [37];  Li and 
colleagues used mendelian randomization to pinpoint 
two miRNAs (hsa-miR-30a-3p and hsa-miR-139-5p) 
as potentially causal for COVID-19 severity [38]; and 
early in the pandemic, Kim and colleagues identified five 
miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-
221-3p, hsa-miR-140-3p, and hsa-miR-422a) predicted to 
commonly bind the SARS-CoV, MERS-CoV and SARS-
CoV-2 viruses, and showed that they were differentially 
expressed in hamster lung tissues before and after SARS-
CoV-2 infection [39]. Importantly, many of the miR-
NAs highlighted across these studies were shown to be 
enriched in inflammatory and antiviral immune response 
pathways [33]. Another set of studies have focused on 
uncovering the mechanisms behind miRNA regulation. 
Latini and colleagues showed a functional role for hsa-
let7b-5p in modulating levels of ACE2 and DPP4—two 
receptors that play an important role in the onset and 
progression of COVID-19 disease—and established that 
low expression of this miRNA was associated with ACE2 
and DPP4 overexpression in naso-oropharyngeal swabs 
in COVID-19 patients [40]. Meanwhile, seeking to better 
understand the mechanism behind neurological symp-
toms in COVID-19, Trampuž and colleagues highlighted 
98 miRNAs that have been implicated in both COVID-
19 and one of five neurological disorders [41]. Together, 
these studies implicate miRNAs in the human immune 
response to COVID-19 infection; however, most of them 
only included patient populations from Australia, Europe 
and North America, and none examined the effect of 
genome-wide genetic variation on host miRNA expres-
sion during SARS-CoV-2 infection.

In this study, we generated and analyzed a multi-omics 
dataset—genotypes, miRNA and mRNA expression—
and phenotypes derived from electronic health records 
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(EHRs) to understand the genetic and biological under-
pinnings of ICU admission and its associated blood 
phenotypes for a diverse group of 259 unvaccinated 
COVID-19 patients in Abu Dhabi, the United Arab Emir-
ates (UAE). This systems genetic approach revealed miR-
NAs associated with blood traits underlying COVID-19 
disease severity and progression and provide evidence 
for the role of post-transcriptional regulation of neutro-
phils in COVID-19. We also report the impact of host 
genetic regulatory variation on miRNA expression traits 
supporting the hypothesis that severity of COVID-19 is 
under host genetic control of post-transcriptional events 
in circulating immune cells.

Results
Systems genetics to study early stages of COVID‑19 
in a diverse unvaccinated cohort
To understand the clinical and biological factors under-
pinning COVID-19 disease severity, we analyzed elec-
tronic health records (EHRs) data for 259 unvaccinated 
patients and multi-omics data—genotypes, miRNA and 
RNA expression—for a subset of 96 patients (Fig.  1A). 
Among the 259 patients, 61 were admitted to the ICU 
(23.6%) at some point during their hospital stay; 65.3% 
of patients identified as male; the average age was 46.9 
(SD = 14.2); and patients were predominantly from 
the Middle East and North Africa (MENA, 54.4%) and 
Southeast Asia (40.0%) (Additional file 2: Table S2A, see 
Additional file 1: Note 1 for classification of nationalities 
into regions). Around 75% of the cohort had at least one 
pre-existing condition, most commonly hypertension 
(47.1%) or diabetes (41.3%) (Additional file 2: Table S2A). 
The most common symptoms reported at the time of 
hospital admission were fever (54.4%) and cough (53.3%) 
(Additional file  2: Table  S2B). Of the 259 patients, 96 
were selected for miRNA and mRNA sequencing and 
genotyping (see Methods for selection criteria), including 
29 patients (30.2%) that were admitted to the ICU. Due to 
technical reasons, RNA-seq data was not available for 2 
of the 96 individuals. Notably, the distribution of demo-
graphics, pre-existing conditions and symptoms did not 
significantly differ between the full sample (n = 259) and 
the miRNA subset (n = 96) (Additional file 2: Table S2A).

Several clinical variables and miRNA levels at the time 
of hospital admission are associated with later ICU 
admission
To identify factors associated with COVID-19 disease 
severity—using ICU admission as a proxy—we com-
puted correlations between 62 variables from the EHR 
with ICU admission (see Additional file  1: Note 2 for a 
list of the 62 factors) in the full dataset of 259 individu-
als, and identified 18 significant correlations (FDR < 0.05). 

Being male (r = 0.20), from Southeast Asia (r = 0.18), and 
previously diagnosed with acute kidney failure (r = 0.21), 
sepsis (r = 0.16) or myocardial infarction (r = 0.16) were 
all positively correlated with ICU admission. At the 
time of hospital admission, self-reported symptoms of 
fever (r = 0.17) and cough (r = 0.22), as well as clinician-
recorded body temperature (r = 0.22), oxygen saturation 
(r =  − 0.32) and respiratory rate (r = 0.39) were all cor-
related with later ICU admission. Notably, we identified 
8 blood phenotypes significantly correlated with ICU 
admission, of which urea (r = 0.17), CRP (r = 0.33), IL-6 
(r = 0.40), absolute neutrophil number (r = 0.30), NLR 
(r = 0.37) and D-dimers (r = 0.28) were positively corre-
lated, while chloride (r = − 0.26) and absolute lymphocyte 
number (r = − 0.31) were negatively correlated (Fig.  1B; 
Additional file  2: Table  S3A–B). Some of these associa-
tions are not independent,  considering the correlation 
between some of the blood phenotypes (Additional file 1: 
Fig. S1). Interestingly, the viral load at time of hospital 
admission was not associated with later ICU admission 
in our dataset.

To understand whether miRNA levels at the time of 
hospital admission are associated with later ICU admis-
sion, we performed logistic regression analyses for each 
of the 632 miRNAs (see Methods for details on quality 
control of miRNA-seq data, Additional file  1: Fig. S2) 
in the sub-sample of 96 individuals, controlling for age 
and self-reported time from symptom onset to hospital 
admission (we did not control for gender because out of 
the 27 ICU patients, only 3 identified as women, Addi-
tional file 2: Table S3B). We identified 21 miRNAs whose 
levels at the time of hospital admission—10 downregu-
lated, and 11 upregulated—were significantly associated 
(p < 0.01) with later ICU admission (Fig.  1C; Additional 
file  2: Table  S4A; see results from a model adjusted for 
gender in Additional file  1: Fig. S4, Additional file  2: 
Table  S4B). To understand the biological significance of 
the 21 ICU-associated miRNAs, we sought to identify 
their putative mRNA targets. After computing the Spear-
man correlations between the levels of the 21 miRNAs 
and 44,586 unique mRNA transcripts measured from the 
same blood sample collected at hospital admission (see 
Methods for details on quality control of RNA-seq data, 
Additional file 1: Fig. S4), we identified 15,336 correlated 
miRNA-mRNA pairs (FDR < 0.05), of which 6490 were 
negatively-correlated (mean r =  − 0.37, SD = 0.05), con-
cerning 12 miRNAs (Additional file 1: Fig. S5A–B). Using 
IPA miRNA Target Prediction, we annotated the experi-
mentally validated and/or highly predicted gene targets 
of the 12 miRNAs of interest (data was not available for 
2 miRNAs), and found that 18 highly predicted miRNA-
gene target pairs (6 miRNAs, 18 genes) were negatively 
correlated in our dataset (Additional file  2: Table  S5; 
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Fig. 1 Clinical variables and miRNA levels at the time of hospital admission, prior to any clinical intervention or treatment, are associated with later 
ICU admission for COVID-19 patients. A Study design. B Significant Pearson correlations (FDR < 0.05) between 18 factors from electronic health 
records and ICU admission. C Volcano plots of miRNAs associated with ICU admission. Age and self-reported time from symptom onset to hospital 
admission were used as covariates in a logistic regression model. miRNAs significant at p < 0.05 are highlighted in blue, and miRNAs significant at 
p < 0.01 are highlighted in red, with the 5 most significant miRNAs labeled
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Additional file 1: Fig. S5C–H). These findings suggest that 
beyond clinical variables and blood phenotypes, miRNAs 
may also play a role in the host immune response to early 
COVID-19 infection. However, admission to the ICU is 
a complex phenotype resulting from both the patient’s 
clinical manifestation and the decision making of their 
clinical team. As such, ICU-associated miRNAs may not 
be most informative of underlying cellular mechanisms, 
which is why we next turned to study the miRNA archi-
tecture of the 8 ICU-associated blood endophenotypes.

Numerous miRNAs are associated with ICU‑associated 
phenotypes measured at the time of hospital admission
To identify miRNAs associated with the 8 ICU-correlated 
blood endophenotypes, we performed linear regression 
analyses of the 632 miRNAs with each of the 8 blood 
endophenotypes, using standardized miRNA and blood 
phenotype levels, and adjusting for age and gender. We 
identified 9 miRNAs significantly associated with urea, 
5 with chloride, 32 with CRP, 28 with neutrophil count 
(Fig.  2A), 20 with lymphocyte count, 18 with NLR, 16 
with D-dimers (p < 0.01), and no miRNAs significantly 
associated with IL-6 (Additional file 1: Fig. S6; Additional 
file 2: Table S6A). We also quantified 5 of these miRNAs 
with qPCR, and found consistent associations between 
these miRNAs and their associated blood phenotypes in 
all 15 cases, of which 10 were also significant with qPCR-
based data (Additional file  2: Table  S6B). A total of 97 
unique miRNAs were associated with at least one blood 
phenotype (for a comparison of results between models 
adjusted for age and gender, and models with no covari-
ates, see Additional file 1: Fig. S7). In fact, we found that 
out of the 21 ICU-associated miRNAs, 5 were also asso-
ciated with at least one blood phenotype: hsa-miR-4443, 

hsa-miR-450b-5p, p-hsa-miR-14, hsa-miR-150-3p, and 
hsa-miR-3615 (Additional file  1: Fig. S8), and noticed 
that many miRNAs were associated with more than one 
blood endophenotype, with neutrophil count and CRP 
sharing the maximum of 12 significant miRNA associa-
tions (Additional file  1: Fig. S9). These findings indicate 
that miRNAs may contribute to the complex biological 
mechanisms that regulate blood phenotypes during early 
stages of COVID-19 infection.

To understand the regulatory roles of the miRNAs 
associated with blood endophenotypes, we calculated 
Spearman correlations between the 97 miRNAs and 
44,586 unique mRNA transcripts, and identified 50,427 
significant negative correlations (FDR < 0.05), with a 
mean of − 0.37 (SD = 0.07), concerning 37 unique miR-
NAs (Additional file 1: Fig. S10). Using the IPA miRNA 
Target Prediction tool, we annotated the experimentally 
observed and highly predicted gene targets of the 37 
miRNAs (data was not available for 9 miRNAs). We iden-
tified 16 experimentally observed miRNA-gene pairs that 
were negatively correlated in our dataset, corresponding 
to 16 genes targeted by 4 miRNAs—hsa-miR-21-5p, hsa-
miR-338-5p, hsa-miR-199b-5p and hsa-miR-143-3p—
most of which were associated with CRP, neutrophil 
count and NLR. We also observed 184 highly predicted 
miRNA-gene targets (20 miRNAs, 184 gene targets) 
that were negatively correlated in our dataset (Addi-
tional file  2: Table  S7; Additional file  1: Fig. S11). Using 
IPA pathway enrichment analysis, we found that the 197 
unique genes—pooled across experimentally observed 
and highly predicted gene targets—were implicated in 
MYC mediated apoptosis signaling, crosstalk between 
dendritic cells and natural killer cells, and p53 signaling, 
among others, and enriched in cancer, infectious disease 

Fig. 2 The positive association between hsa-miR-143-3p and neutrophil count is mediated by BCL2 expression. A Numerous miRNAs are associated 
with neutrophil count, including hsa-miR-143-3p (labeled). Both miRNA expression and blood phenotype levels were measured from the same 
blood sample, collected at the time of hospital admission. miRNAs significant at p < 0.05 are highlighted in blue. miRNAs significant at p < 0.01 are 
highlighted in red. Both miRNA expression and blood phenotype levels were standardized. B Correlation between hsa-miR-143-3p expression 
(x-axis) and BCL2 transcript expression (y-axis). C Correlation between BCL2 transcript expression (x-axis) and absolute neutrophil count (y-axis). The 
Pearson correlation and p value are in blue. miRNA expression, transcript expression and neutrophil count have all been standardized
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and immunological disease (Additional file 2: Table S8A–
B). Overall, these results imply that miRNAs associated 
with ICU-associated blood endophenotypes at the time 
of hospital admission putatively regulate genes involved 
in apoptotic and immunological pathways.

To test whether the effect of miRNAs on blood pheno-
types is mediated by their regulation of gene expression, 
we performed medication analysis on the 599 unique tri-
plets of miRNA, gene target and associated blood phe-
notype reported in Additional file 2: Table S7 (for genes 
with multiple transcripts, we only tested the transcript 
with the lowest p value). We identified 74 Bonferroni-
significant mediations (p < 0.05), 8 of which concerned 
experimentally observed miRNA-gene target pairs. Most 
interestingly, we found that hsa-miR-143-3p—which 
is highly expressed in neutrophils (Juzenas et  al., [42], 
Additional file 1: Fig. S12)—affects neutrophil count and 
NLR through the expression of BCL2, an apoptotic gene 
that regulates cell death (Fig.  2B, C; the negative corre-
lation between hsa-miR-143-3p and BCL2 was also rep-
licated in qPCR, r =  − 0.38, p = 2.4 ×  10−8). We observed 
a few other notable examples: hsa-miR-199b-5p affect-
ing NLR through the expression of ETS1, a transcription 
factor; hsa-miR-21-5p affecting neutrophil count and 
NLR through the expression of FASLG, an apoptosis-
inducing transmembrane protein, as well as affecting 
NLR through the expression of TNF, a proinflammatory 
cytokine involved in cell proliferation, differentiation and 
apoptosis; and lastly, hsa-miR-338-5p influencing NLR 
by regulating BACE1, a protein involved in the proteo-
lytic processing of the amyloid precursor protein (Addi-
tional file 2: Table S9). These patterns in our data provide 
further evidence for the role of miRNAs in regulat-
ing the  expression of genes that are important for the 
host immune response to infection, and therefore, for 
response to SARS-CoV-2.

To further probe the relationship between miRNA 
expression and COVID-19 disease severity, we tested the 
association between miRNAs and ICU-associated clini-
cal symptoms and self-reported symptoms at hospital 
admission (see Additional file 1: Note 2 for the full list of 
variables). We identified 2 miRNAs significantly associ-
ated with body temperature, 4 with oxygen saturation, 
and 16 with respiratory rate (p < 0.01) (Additional file 1: 
Fig.  S13A–C; Additional file  2: Table  S10A). Classify-
ing individuals with 4 or more self-reported symptoms 
at hospital admission (out of 13) as highly symptomatic 
(note that the threshold of 4 symptoms was chosen 
because 4 is both the median and the mean of the num-
ber of symptoms reported), we found only 1 miRNA 
associated with being highly symptomatic (Additional 
file 1: Fig. S13D; Additional file 2: Table S10B).

Some of the implicated miRNAs are genetically controlled 
by nearby genetic variants
Lastly, we tested whether genetic variation influenced 
the expression of miRNAs associated with the 8 blood 
endophenotypes. We performed cis-eQTL analysis using 
expression levels for 632 miRNAs and SNP data from 91 
individuals (Additional file  1: Fig. S14; see Methods for 
details on quality control of genotyping data). For each 
miRNA, we tested between 1 and 671 SNPs, depending 
on the density of the SNP array within 300,000 base pairs 
(bp) from the miRNA (59 miRNAs were excluded from 
this analysis since there were no SNPs within this win-
dow). We identified a total of 168 significant cis-eQTLs 
(Bonferroni p < 0.05), of which 57 concerned 28 unique 
miRNAs that were associated with either ICU or an 
ICU-associated blood endophenotype (Additional file 2: 
Table S11). For each of the 28 miRNAs, we annotated the 
SNP with the lowest Bonferroni P value as the top SNP, 
and used wANNOVAR [43] to assign SNPs to genes, 
resulting in 28 top cis-eQTLs consisting of an e-SNP and 
an e-miRNA (Table  1,  Fig.  3A). These cis-eQTLs reflect 
a significant linear relationship between the genotype 
(number of minor alleles) and miRNA expression levels 
(Fig.  3B, E, G), with 6 of the peak e-SNPs found within 
a 1000 bp window from the miRNA (Fig. 3D), and other 
e-SNPs found closely downstream (Fig. 3F) or upstream 
(Fig.  3H). In most scenarios, the top e-SNP was near 
other significant e-SNPs, likely due to linkage disequilib-
rium (e.g. Fig.  3F). The volcano plots and fine-mapping 
plots for other cis-eQTLs can be found in Additional 
file  1: Fig. S15. To test whether the effect of the e-SNP 
on the blood phenotype was mediated by e-miRNA 
expression, we performed mediation analysis for the 28 
cis-eQTLs and their associated blood phenotypes, or 
for a total of 39 unique triplets of e-SNP, e-miRNA and 
blood phenotype. We identified 2 e-SNP-neutrophil asso-
ciations that are mediated through miRNA expression 
(p < 0.00128, using a Bonferroni threshold): rs1256522 
has effects on both neutrophil count and neutrophil/lym-
phocyte ratio that are mediated through the expression 
of hsa-miR-625-3p and rs79260648 has an effect on neu-
trophil/lymphocyte ratio mediated through the expres-
sion of hsa-miR-576-3p (Additional file  2: Table  S12). 
Altogether, these results show that allelic variation influ-
ences the expression levels of miRNAs that contribute to 
the variation of ICU-associated blood endophenotypes 
during early stages of SARS-CoV-2 infection.

Discussion
In the three years since the emergence of SARS-CoV-2, 
scientific undertakings have improved our understanding 
of the host immune response to infection, and have led 
to the development of effective vaccines and improved 
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treatments for COVID-19 disease. Yet the question of 
what contributes to the variation in COVID-19 disease 
severity—ranging from asymptomatic to severely symp-
tomatic, and sometimes, lethal infection—remains stand-
ing. In this study, we pinpoint miRNA expression as a 
previously underappreciated mechanism for regulating 
blood phenotype levels during early stages of COVID-19, 

which, as correlated with later ICU admission, can be 
indicative of disease severity. We highlight 21 miRNAs 
whose levels at the time of hospital admission are asso-
ciated with ICU admission, and 97 miRNAs associated 
with ICU-correlated blood endophenotypes, of which 
5 are associated with both ICU admission and an endo-
phenotype. Many of these miRNA have been reported as 

Table 1 List of top cis-eQTLs for 29 miRNAs associated with one of the 8 blood phenotypes correlated with ICU admission

For each unique miRNA, the top SNP (lowest Bonferroni P value) is listed

SNP miRNA SNP position A1 MAF P Bonferroni Distance SNP 
to miRNA (in 
BP)

Negative associations 
with ICU

Positive associations 
with ICU

rs34088055 hsa-miR-5189-5p Chr16:88469262 T 0.44 1.70E-16 296 Neutrophil count

rs7501512 hsa-miR-6868-3p Chr17:76097225 A 0.41 2.10E-12 794 D-dimers

rs1031034 hsa-miR-1255a Chr4:101302229 A 0.29 2.18E-10 28,136 D-dimers

rs2925983 hsa-miR-7854-3p Chr16:81533035 C 0.38 5.96E-07 907 D-dimers

rs12447180 hsa-miR-5189-3p Chr16:88451314 C 0.45 4.42E-06 17,670 Neutrophil count, 
D-dimers

rs28370965 hsa-miR-4999-5p Chr19:8408107 T 0.22 9.60E-06 18,747 C-reactive protein

rs9914549 hsa-miR-4525 Chr17:82667081 G 0.23 7.41E-05 1200 Lymphocyte count

rs1765566 hsa-miR-3675-5p Chr1:16708741 T 0.05 8.44E-05 150,247 Interleukin-6

rs77318922 hsa-miR-7976 Chr3:127757054 C 0.07 8.64E-05 169,878 C-reactive protein

rs9364148 hsa-miR-30a-3p Chr6:71277249 A 0.07 0.000146 126,305 Urea D-dimers

rs1434282 hsa-miR-181a-3p Chr1:199041592 C 0.33 1.65E-04 182,502 D-dimers

rs11569501 hsa-miR-3940-3p Chr19:6691620 A 0.08 1.03E-03 275,165 C-reactive protein

rs76321536 hsa-miR-636 Chr17:76976432 G 0.12 0.001286 239,944 D-dimers

rs79260648 hsa-miR-576-3p Chr4:109205695 C 0.09 4.06E-03 283,057 Urea Neutrophil count, 
Neutrophil-to-lympho-
cyte ratio

rs1256522 hsa-miR-625-3p Chr14:65271311 C 0.44 0.004111 199,842 Neutrophil count, 
Neutrophil-to-lympho-
cyte ratio

rs1997243 hsa-miR-339-3p Chr7:1044141 G 0.14 0.00711 21,164 C-reactive protein

rs7710462 hsa-miR-5003-3p Chr5:172643217 G 0.07 0.007797 19,005 C-reactive protein, 
Neutrophil-to-lympho-
cyte ratio

rs60095937 hsa-miR-3177-3p Chr16:1732963 A 0.05 0.009533 2075 D-dimers

rs941449 hsa-miR-6777-3p Chr17:17746517 C 0.2 0.01199 66,963 C-reactive protein, 
D-dimers, ICU admission

rs4756822 hsa-miR-6073 Chr11:15695412 T 0.45 0.01375 274,143 C-reactive protein, 
D-dimers

rs2495972 hsa-miR-1275 Chr6:33964665 G 0.49 0.0181 35,353 Lymphocyte count

rs11768761 hsa-miR-339-5p Chr7:1030171 G 0.14 0.02617 7159 Urea

rs59088240 hsa-miR-342-5p Chr14:99827961 A 0.06 0.02867 281,712 C-reactive protein, 
Neutrophil-to-lympho-
cyte ratio, D-dimers

rs2382817 hsa-miR-6810-3p Chr2:218286495 C 0.49 0.03112 55,463 Interleukin-6, D-dimers

rs9787810 hsa-miR-7155-5p Chr11:64317826 T 0.24 0.0337 24,060 Neutrophil count, 
D-dimers

rs1499294 hsa-miR-4742-3p Chr1:224564806 C 0.32 0.04451 166,557 D-dimers

rs62130995 hsa-miR-4746-5p Chr19:4460286 A 0.13 0.0462 14,277 D-dimers, ICU admission

rs4144630 hsa-miR-181a-2-3p Chr9:124676921 T 0.36 0.04954 15,597 Chloride, Lymphocyte 
count



Page 8 of 15Gjorgjieva et al. Human Genomics           (2023) 17:49 

differentially expressed between COVID-19 patients and 
healthy controls (Additional file 1: Note 3, [34, 35, 39, 40, 
44-47]). Through integrative miRNA-mRNA analysis, 
we identify 194 experimentally observed or highly pre-
dicted miRNA-gene target pairs that are negatively cor-
related in our dataset, and, using mediation analysis, find 
8 instances where the miRNA affects neutrophil counts 
likely through transcriptional regulation of immune cell 
apoptosis. We furthermore describe the role of genetic 
variation in shaping miRNA expression levels—we char-
acterize 28 top cis-eQTLs, and, using mediation analysis, 
document 3 examples of SNPs influencing neutrophil 
counts, mediated by miRNA expression.

Our results highlight two interesting aspects of the 
biology of SARS-CoV-2 infection that warrant fur-
ther investigation. The first is the role of neutrophils in 
early response to SARS-CoV-2 infection. Not only were 
both neutrophil counts and neutrophil/lymphocyte 
ratio at the time of hospital admission correlated with 
later ICU admission, but also most of the miRNAs that 
negatively co-varied with their experimentally validated 
gene targets in our dataset were also associated with 
these two blood traits. We found that four of these miR-
NAs—hsa-miR-143-3p, hsa-miR-199b, hsa-miR-21-5p 
and hsa-miR-338-5p—affect these blood endopheno-
types by regulating BCL2, ETS1, FASTLG, TNF and 
BACE1, many of which are involved in apoptotic (BCL2, 
FASTLG) and immune-related pathways (BCL2, TNF). 
These trends in our data are consistent with prior stud-
ies that have show enrichment of COVID-19-associated 
miRNAs in inflammatory and immune pathways [33] 
and highlighted neutrophils as key players in COVID-19 
pathophysiology [15-17]. Secondly, some of the miRNAs 
highlighted in our study are strong candidates for func-
tional follow-up. For instance, hsa-miR-143-3p—which 
affects neutrophil counts mediated by BCL2 expres-
sion—has been implicated in numerous immunological 
diseases such as cancers and ischemic stroke [48-50], has 
been found to influence inflammatory factors and cell 
apoptosis [51, 52], and to inhibit Wnt and MAPK signal-
ing [53]. Similarly, hsa-miR-199b, which influences neu-
trophils through ETS1 expression, has previously been 
implicated in breast cancer [54, 55], and    described as 
a tumor suppressor in acute myeloid leukemia [56] and 

an inducer of apoptosis in oral cancer [51, 57]. Another 
promising candidate for functional follow-up is hsa-miR-
21-5p, which affects neutrophils by regulating FASTLG 
and TNF expression, and has been previously implicated 
in colon, breast and gastric cancers [58-60].

This study has several strengths and some limitations. 
While previous studies have already pointed to genetic, 
miRNA and transcriptomic variation as predictive of 
COVID-19 disease severity, to our knowledge this is the 
first study to investigate the relationship between these 
three sources of biological variation in a matched, multi-
omics dataset. This study design helped us prioritize 
miRNAs with miRNA-gene target correlation patterns 
that are consistent with a regulatory relationship, as well 
as identify miRNAs that are genetically controlled. More 
so, our study enrolled unvaccinated patients and investi-
gated miRNA and RNA expression levels collected at the 
time of hospital admission, after a positive COVID-19 
test, but before any medication or clinical intervention. 
By doing so, our results are free of numerous confound-
ing factors, many of which are abundant in recent stud-
ies enrolling vaccinated patients. Lastly, our study cohort 
consists entirely of patients from MENA and South 
Asia, two geographical regions whose populations have 
been under-represented in COVID-19 research, as well 
as genetic research at large [61, 62]. The diversity of our 
study cohort (Additional file  1: Fig. S11) not only pow-
ered us to detect cis-eQTLs with large effects along a 
larger spectrum of genetic variation, but also to present 
findings that are potentially generalizable to around 30% 
of the world population living in MENA and South Asia. 
Another limitation of our study is the lack of matched 
controls, i.e. individuals uninfected with SARS-CoV-2. 
For this reason, we are unable to discern whether the 
miRNAs we report are induced only upon SARS-CoV-2 
infection.

Conclusion
In conclusion, this systems genetics study has given rise 
to the first genomic picture of the architecture of whole 
blood miRNAs in unvaccinated COVDI-19 patients. 
The results pinpoint post-transcriptional regulation as a 
potential mechanism that impacts blood traits underlying 
COVID-19 severity and warrant similar investigations 

Fig. 3 Expression of numerous miRNAs is genetically controlled by cis-eQTLs. A Manhattan plots showing all cis-eQTLs (defined as an association 
between a miRNA and a SNP in a 300,000 base pairs window). Points highlighted in pink show cis-eQTLs for miRNAs associated with one of the 8 
blood phenotypes The dashed line corresponds to Bonferroni p < 0.05, and all points above the dashed line are significant cis-eQTLs. Labeled points 
refer to cis-eQTLs with Bonferroni p < 0.05, and some of the top cis-eQTLs are annotated with the e-miRNA. B–G Pairs of violin and fine-mapping 
plots for cis-eQTLs. The violin plot shows the linear relationships between the number of minor alleles and miRNA expression associated with each 
genotype. The dashed line corresponds to the linear regression fit, and the p value is stated on the plot. The fine-mapping plot shows all tested 
SNPs for each miRNA. Points highlighted in blue show e-SNPs significant at Bonferroni p < 0.05. Labeled point shows the top e-SNP for that cis-eQTL. 
The pink diamond shows the genomic position of the miRNA. B–C cis-eQTL hsa-miR-5189-5p and rs34088055. E–F cis-eQTL rs1256522 and 
hsa-miR-625-3p. G–H cis-eQTL rs1434282 and hsa-miR-181a-3p

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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in other populations. The study also reveals the associa-
tion between host allelic genetic regulatory variation and 
miRNA expression levels in the context of COVID-19. 
Moreover, the multi-omics analysis presented demon-
strated the value of the approach in capturing meaningful 
biological associations in cohorts of relatively small sam-
ple sizes.

Methods
Research ethics statement
The project was approved by the Research Ethics Com-
mittee at New York University Abu Dhabi (NYUAD) 
(HRPP-2020-59) and the Abu Dhabi COVID-19 Research 
International Review Board Committee of the Depart-
ment of Health (Ref no: DOH/CVDC/2020/874).

Study participants and enrollment
This was a prospective study of unvaccinated adult 
COVID-19 patients, where baseline sampling and phe-
notyping was done at the time of hospital admission fol-
lowing a positive COVID-19 test. Clinical follow-up was 
done during the course of the hospital stay. The study 
enrolled 264 patients across four hospitals in Abu Dhabi, 
UAE: Al Ain Hospital, Al Rahba Hospital, Mafraq Hospi-
tal and Sheikh Khalifa Medical Center, which are all man-
aged under the same healthcare system authority, and 
therefore have the same procedures and clinical proto-
cols. The recruitment period lasted from June to Septem-
ber 2020. Electronic consent forms were administered in 
English, Urdu, Hindi and Tagalog, depending on the par-
ticipant’s preference; these four languages were selected 
as the most commonly spoken languages among patients 
in these clinics. The exclusion criteria included having 
Hb levels lower than 70  mmol/L, having platelet count 
less than 100,000/ml and/or having received transfusion 
within 24 h of potential study recruitment.

Of the 264 patients, 256 completed a questionnaire 
upon enrollment which asked about the date of symp-
tom onset and the experienced symptoms. Participants 
also provided biological specimens (whole blood sam-
ples for genotyping and miRNA/RNA extraction, and 
saliva for viral load quantification) at the time of hospital 
admission. Sample collection was done following unified 
procedures, and samples were randomized throughout 
downstream experiments to avoid potential batch effects. 
At the end of the study recruitment period, electronic 
health records (EHRs) were extracted for 259 patients 
(from hereafter referred to as the “study cohort”), which 
included information about demographics, pre-exist-
ing conditions and an extensive documentation of their 
COVID-19-related hospital stay, including physical 
measurements and lab tests. All clinical and biological 
data was de-identified. All analyses including correlations 

between EHR variables—for example, correlations 
between blood phenotypes and ICU admission—were 
conducted in the full sample of 259 patients.

RNA extraction
In the clinic, blood was collected in Tempus tubes and 
refrigerated at 4  °C before being transported to the 
research labs at NYU Abu Dhabi (NYUAD). Whole blood 
RNA was isolated using the Tempus Spin RNA Isolation 
Kit (Thermo Fisher) following manufacturer’s instruc-
tions. Quantification and quality control of the extracted 
RNA was performed using a 2100 Bioanalyzer instru-
ment and a Qubit 2.0 Fluorometer.

Selection of the miRNA subsample
miRNA sequencing was performed on 96 patient blood 
samples collected at the time of hospital admission, prior 
to any clinical interventions or treatments. We focused 
on 96 patients from the full set of 259 participants, maxi-
mizing the number of ICU patients from MENA and 
South Asia—populations that are underrepresented in 
existing COVID-19 studies and well-represented in our 
study cohort—and individuals with complete clinical 
data. To maximize matching between patients admitted 
to the ICU and those who were not, we kept all patients 
who identified as women (since they comprised only 
35% of the full sample), and all patients who identified as 
men and were admitted to the ICU; note that within the 
EHR in the UAE, sex is reported as either a “man” or a 
“woman”. Finally, we prioritized patients with complete 
relevant clinical data in their EHR. All analyses including 
miRNA and RNA expression were conducted in this sub-
sample of 96 patients.

miRNA sequencing
Small RNA libraries were prepared from 400 ng of high-
quality total RNA (RNA Integrity Number RIN > 8) using 
the NEBNext Multiplex Small RNA Library Prep Set for 
Illumina (New England Biolabs). Size selection of small 
RNA cDNA libraries was done using the gel purifica-
tion method. The library size distribution was checked 
using a 2100 Bioanalyzer instrument to ensure correct 
size amplicons are selected for sequencing. All samples 
and libraries were randomized and processed in the same 
way to minimize batch effects. Individual libraries were 
quantified, and equimolar quantities of each library were 
pooled and sequenced on an S1 flow cell using a NovaSeq 
instrument (Illumina). The miRNA data is deposited in 
GEO under accession GSE220077.
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Bioinformatic analysis of miRNA data
Raw miRNA sequencing reads were demultiplexed and 
converted to FASTQ files using the standard Illumina 
pipeline with bcl2fastq. Sequences were processed with 
Trimmomatic v0.36 to remove indexes and adapter 
sequences. Trimmed reads were processed with the 
FASTX Toolkit v0.0.14 to filter out reads with tail qual-
ity < 15 nucleotides and retain reads of 16–25 nucleotides 
for downstream analyses. FastQC v0.11.5 was used to vis-
ualize quality metrics before and after the filtering. High-
quality reads were subject to small RNA annotation and 
quantification using OASIS [63, 64]. miRNAs with a min-
imum count of 5 reads in at least 50% of the samples were 
retained, log2 transformed and standardized (mean = 0, 
SD = 1) (Additional file 1: Fig. S2). For each miRNA, indi-
viduals who were outliers for miRNA expression—having 
miRNAs expression values more/less than + 3/-3 stand-
ard deviations from the mean—were removed.

Replication of miRNA expression with qPCR
The expression of five miRNAs (hsa-miR-21-5p, assay 
ID: 000397; hsa-miR-143-3p, assay ID: 002249; hsa-miR-
150-3p, assay ID: 002637; hsa-miR-625-3p, assay ID: 
002432, and hsa-miR-5189-3p, assay ID: 466901_mat, 
all from Thermo) were validated using quantitative PCR 
(qPCR). Total RNA was extracted from 92 samples (leav-
ing 4 spaces in a 96-well-plate for negative controls), 
which were the same as those used for miRNA-sequenc-
ing, and re-quantified using the Qubit RNA Broad Range 
Kit (Thermo Fisher Scientific). Of those, 88 samples 
passed initial quality control. Next, 20  ng of RNA from 
each sample was reverse transcribed using the TaqMan 
MicroRNA Reverse Transcription Kit following the man-
ufacturer’s instructions. After cDNA synthesis, miRNAs 
were pre-amplified using a mixture of 1 µL of PreAmp 
master mix (Standard Biotools), 1.25 µL of pooled 
TaqMan miRNA Assays (0.2X), 1.5 µL of water, and 1.25 
µL of cDNA. The pre-amplification reaction was cycled 
under the following conditions: 95 °C for 2 min, followed 
by 14 cycles of 95  °C for 15  s and 60  °C for 4  min, and 
finally held at 4  °C. The pre-amplified reactions (5 µL) 
were then diluted in a 96-well plate with 20 µL of low TE 
buffer (Thermo Fisher Scientific). Finally, qPCR of the 
miRNAs was performed using the Gene Expression with 
the 192.24 IFC using Fast TaqMan Assays protocol (PN 
100-6174 C1, Standard Biotools) on the Juno and Bio-
mark HD instruments for sample and assay loading and 
qPCR, respectively.

RNA sequencing
RNA sequencing was performed on RNA extracted from 
the whole blood of the 96 patients with miRNA data gen-
erated. The extracted RNA samples (400 ng) were subject 

to globin and ribosomal RNA depletion using the NEB-
Next® Globin & rRNA Depletion Kit (as per manufac-
turer’s protocol; New England Biolabs). Preparation of 
cDNA libraries was subsequently performed using the 
NEBNext® Ultra II Library Prep Kit for Illumina (New 
England Biolabs). Libraries were checked for quality and 
quantified with a 2100 Bioanalyzer instrument, and then 
pooled into one lane of an S2 flow cell and 101-bp paired-
end sequenced on a NovaSeq instrument (Illumina) in 
XP mode. The mRNA data is deposited in GEO under 
accession GSE220076.

Bioinformatic analysis of RNA‑seq data
Raw reads were processed for quality control: first, using 
Trimmomatic v0.36 to remove adapter sequences and 
low-quality bases (using the parameters ILLUMINA-
CLIP: trimmomatic_adapter.fa:2:30:10 TRAILING:3 
LEADING:3 SLIDINGWINDOW:4:15 MINLEN:36), and 
then, using the Fastp program to remove sequencing arti-
facts and poly-G tails. Filtered reads were then mapped 
to the human reference genome (Ensembl GRCh38.p4 
release-81) using HISAT v2.0.4 with default options other 
than --dta. The resulting SAM output was converted to 
sorted BAM using SAMtools v1.3.1. Raw count per gene 
was calculated from the sorted bam for individual sam-
ples using the options (-s no -t exon -I gene_id) in Htseq-
count program. Transcript abundance quantification was 
performed using Stringtie v1.3.0, and raw gene counts 
from Htseq-count were converted to TPM (transcripts 
per million) using COEX-Seq R shiny app program. Tran-
scripts with a minimum of 1 TPM in 50% of the sam-
ples were retained for downstream analyses, resulting in 
44,629 unique transcripts that mapped to 15,545 unique 
genes. The RNA-seq data was then log10 transformed 
and standardized (mean = 0, SD = 1) (Additional file  1: 
Fig. S4). Following the same pipeline for miRNA filtering, 
for each transcript, we removed individuals who were 
outliers for transcript expression.

Viral load quantification
Automated extraction of viral RNA from 300 μL of 
patients’ saliva was performed using the Chemagic 360 
automated nucleic acid extraction system (2024-0020, 
Perkin Elmer, Waltham, MA, USA) and the Chemagic 
Viral DNA/RNA 300 Kit H96 (CMG-1033S, Perkin 
Elmer, Waltham, USA) according to the manufacturer’s 
instructions. RNA was eluted in 80 μL elution buffer fol-
lowed by reverse transcription (RT), preamplification and 
quantitative PCR (qPCR) using the Fluidigm Real-Time 
PCR for Viral RNA Detection protocol (FLDM-00103, 
Fluidigm, San Francisco, CA, USA).

Viral load was quantified in saliva samples from 161 
COVID-19 patients using a microfluidic ultra-sensitive 
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quantitative test [65]. Per CDC recommendations, two 
assays were used for SARS-CoV-2 detection: 2019-
nCoV_N1 and 2019-nCoV-N2 (2019-nCoV CDC EUA 
Kit, 10006606, IDT). The human RNase P (RP) assay 
was used as a control for RNA extraction and in RT-
qPCR reactions. Each sample was analyzed using 9 
replicates for N1, 9 replicates for N2, and 6 replicates 
for RP assays. Details of the quantitative nature of the 
microfluidic test are described in detail in [65]. The 
Ct values were converted to copies/µL using stand-
ard curves based on 100-fold serial dilutions of Twist 
RNA and SARS-CoV-2 plasmids ranging from 5 to 
50,000 copies/µL. Viral load was calculated as the 
mean viral load from the N1 and N2 assays, given the 
high concordance of the N1 and N2 assays (Pearson 
r = 0.91). The viral load data was log2 transformed and 
standardized.

Genotyping
Whole-genome genotyping was performed for the 96 
samples selected for miRNA/RNA sequencing using the 
UAE Healthy Future Study [66] custom design Axiom 
genotyping array which contains > 850,000 single-nucleo-
tide polymorphisms (SNPs) with 90% similar content to 
the Axiom PMDA array (ThermoFisher). 400 μl of whole 
blood samples were used for genomic DNA extraction 
with the Chemagic DNA isolation kit. DNA quantifica-
tion and quality check were carried out using NanoDrop 
spectrophotometer followed by gel electrophoresis for 
DNA integrity check. Total genomic DNA (200 ng) was 
amplified and randomly fragmented into 25 to 125 base 
pair (bp) fragments. These fragments were purified, re-
suspended, and hybridized to the Axiom arrays. Follow-
ing hybridization, the bound target was washed under 
stringent conditions to remove nonspecific background 
caused by random ligation events. Each polymorphic 
nucleotide was queried via a multi-color ligation event 
carried out on the array surface. After ligation, the arrays 
were stained and imaged on the GeneTitanTM Multi-
Channel Instrument, and a row intensity data file (.CEL 
file) was generated for each sample.

Genotyping calling and quality control
The row intensity files were analyzed using Applied 
Biosystems Axiom™ Analysis Suite software, which 
automates data analysis and includes allele-calling algo-
rithms. Following the best practice genotyping analysis 
workflow, samples were filtered for dish QC ≥ 0.82, QC 
call rate ≥ 97, and average call rate ≥ 98.5. SNPs with a 
call rate cutoff ≥ 95 and Fisher’s linear discriminant cut-
off ≥ 3.6 were retained.

Bioinformatic analysis of genotyping data
Genotyping data was filtered using PLINK [67] 
to remove SNPs with minor allele frequency 
(MAF) < 5%, Hardy Weinberg Equilibrium (HWE) test 
p value < 0.005, genotype missingness > 10% and indi-
vidual missingness > 10%, resulting in 91 individuals 
and 263,838 SNPs. Cis-eQTL analyses were performed 
using a linear model adjusted for age and gender. For 
each of the 632 miRNA and 661 unique genetic posi-
tions, SNPs within 300,000 base pairs from the middle 
genomic position of the miRNA were tested (note that 
for miRNAs with more than one genetic position due 
to copy number variation, each cis region were tested 
independently), and p values were adjusted using Bon-
ferroni correction [68]. The following PLINK com-
mands were used: --bfile --no-pheno --allow-no-sex 
--chr --from-kb --to-kb --pheno --covar --covar-name 
--linear hide-covar --adjust --out. Principal component 
analysis (PCA) was performed with PLINK using geno-
typing data from this study (n = 96) merged with geno-
typing data from 2504 individuals of the 1000 Genomes 
Project (1000 [69] based on 238,313 common SNPs.

Statistical analysis
All statistical analysis and data visualization were per-
formed using R statistical software v. 4.0.2. Results were 
reported as significant if the nominal p value < 0.01, or 
an adjusted p value (FDR or Bonferroni) < 0.05 depend-
ing on the analysis as detailed in the results section. In 
figures and tables, statistical significance was reported 
using the following criteria: ns (p > 0.05), * (p < 0.05), ** 
(p < 0.01), *** (p < 0.001), and **** (p < 0.0001), except in 
the mediation analyses where Bonferroni-corrected p 
value threshold was used and reported as * (p < PBonfer-

onni), ns (p > PBonferonni).
Associations between miRNAs levels at admission and 

ICU admission were calculated using logistic regression 
models adjusted for age and the time from COVID-19 
symptom onset to hospital admission (the self-reported 
time from symptom onset to hospital admission meant 
to control for the fact that hospital admission occurred 
at a different stage of the COVID-19 disease for different 
patients). Associations between miRNAs and continuous 
blood phenotypes, both measured at admission and from 
the same blood sample, were calculated using linear regres-
sion models adjusted for age and gender. For continuous 
variables, outliers—defined as having values + / − 3 SD 
from the mean—were removed, and then variables were 
standardized (mean = 0, SD = 1). Causal mediation analy-
sis was performed using the mediate() function in R. The 
fitted models for the mediator and the outcome were lin-
ear. Results include the average causal mediation effects 
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(ACME), the ACME confidence interval, and bootstrapped 
p values.
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