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Abstract 

Alzheimer’s disease (AD) poses a profound human, social, and economic burden. Previous studies suggest that extra 
virgin olive oil (EVOO) may be helpful in preventing cognitive decline. Here, we present a network machine learning 
method for identifying bioactive phytochemicals in EVOO with the highest potential to impact the protein network 
linked to the development and progression of the AD. A balanced classification accuracy of 70.3 ± 2.6% was achieved 
in fivefold cross-validation settings for predicting late-stage experimental drugs targeting AD from other clinically 
approved drugs. The calibrated machine learning algorithm was then used to predict the likelihood of existing drugs 
and known EVOO phytochemicals to be similar in action to the drugs impacting AD protein networks. These analyses 
identified the following ten EVOO phytochemicals with the highest likelihood of being active against AD: quercetin, 
genistein, luteolin, palmitoleate, stearic acid, apigenin, epicatechin, kaempferol, squalene, and daidzein (in the order 
from the highest to the lowest likelihood). This in silico study presents a framework that brings together artificial 
intelligence, analytical chemistry, and omics studies to identify unique therapeutic agents. It provides new insights 
into how EVOO constituents may help treat or prevent AD and potentially provide a basis for consideration in future 
clinical studies.
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Introduction
Alzheimer’s disease (AD) is a chronic neurodegenera-
tive disorder that manifests clinically with a progressive 
decline in cognitive functions and memory. The disease 
is characterized primarily by the pathological presence of 
deposits of misfolded proteins (i.e., amyloid beta peptides 
and phosphorylated microtubule-associated tau protein) 
and cell loss in brain areas important for language and 
memory. Despite decades of research, the exact patho-
genesis of AD remains unknown and there exist no treat-
ments to reverse or prevent its neurocognitive decline 
[1]. For this reason, worldwide the disease exerts a pro-
found impact on the affected individuals and the caregiv-
ers, society, and healthcare systems that support them. 
Given the profound human, social, and economic burden 
that AD causes, the limited understanding of its patho-
physiology, and lack of effective treatment modalities, it 
behooves researchers to consider novel and unconven-
tional therapies for prevention and treatment of this dis-
ease [2].

In recent years, there has been growing interest in the 
potential neuroprotective effects of extra virgin olive oil 
(EVOO). This stems from EVOO being a key component 
of the Mediterranean diet, the consumption of which has 
been associated with a lower incidence of dementia and 
cognitive decline in large epidemiological studies [3–
5]. Moreover, several interventional clinical studies have 
also shown promising results in the use of olive oil and 
EVOO phytochemicals to improve cognitive outcomes in 
individuals with AD [6–8]. However, the specific phyto-
chemicals responsible for these effects remain unknown 
due to the complex nature of EVOO [5, 7, 9], and the 
time and cost associated with isolating sufficient quanti-
ties of individual constituents and examining their effects 
on the development and progression of AD.

Different methods have been used to identify bioac-
tive molecules in food that may have therapeutic poten-
tial, particularly for complex diseases like AD. One of 
the most prominent computational approaches involves 
investigation of bioactive food molecules based on their 
structural similarity to the approved or experimentally 
validated drugs for treatment. This approach assumes 
that similarities in the chemical structures of food mole-
cules and drug molecules would result in similar biologi-
cal effects [10]. However, this method has its limitations. 
Even minor changes in a molecule’s chemical structure 
can lead to significant differences in biological effects. 
Consequently, a subtly modified molecule may not pos-
sess the same therapeutic potential as the original com-
pound, or it may even cause undesirable side effects. The 
other approach involves exploration of bioactive food 
molecules by examining their individual protein tar-
gets, an approach often referred to as “one disease–one 

target–one drug” [11]. This reductionist approach to 
therapeutic intervention development links a specific 
disease to a single target molecule (such as a protein or 
enzyme), which is then modulated by a single drug or 
food molecule to treat the disease. The underlying idea 
is that a disease can be understood as a consequence of 
a single molecular dysfunction, and that correcting this 
dysfunction can lead to the cure or management of the 
disease. In such a scenario, the drug or food molecule 
would interact specifically with the target molecule in a 
specific manner (e.g., inhibiting its activity, enhancing its 
activity, or modulating it in some other way) that inter-
venes with the disease process. This approach has proven 
to be successful in some cases, such as the development 
of targeted therapies for certain types of cancer. For 
example, pembrolizumab (Keytruda®) and nivolumab 
(Opdivo®) drugs target the programmed cell death pro-
tein 1 (PD-1) pathway, which helps cancer cells evade the 
immune system. They are used to treat various types of 
cancer, including melanoma, non-small cell lung can-
cer, and head and neck cancer [12]. Generally, “one dis-
ease–one target–one drug/food molecule” approach may 
be of more limited utility for complex and multifactorial 
diseases (i.e., involving multiple molecular pathways and 
genetic factors).

Recent advances in artificial intelligence (AI), coupled 
with the explosive growth of large-scale, multi-source 
data on food, drugs, and diseases, offer a unique oppor-
tunity to identify molecules within foods that may pre-
vent and/or reverse disease by using more holistic and 
systems-based approaches [13]. Among these, network 
machine learning [14, 15] and graph neural networks 
[16] have shown promising results in predicting bioac-
tive molecules within foods based on their ability to tar-
get disease network (i.e., dysregulated genes and protein 
pathways). An example of this approach is the virus–host 
interaction network responsible for COVID-19 [17].

In the present study, we hypothesize that a successful 
prevention or treatment strategy for AD should focus 
on the modulation of multiple biochemical networks 
involved in its pathogenesis including amyloid beta pro-
duction and aggregation, tau hyperphosphorylation, and 
neuroinflammation [18]. Drawing on our prior research 
investigating bioactive compounds in food against can-
cer [16] and COVID-19 [17], we utilized network-based 
machine learning methods and human protein–protein 
interaction data to identify EVOO-based bioactive mol-
ecules that could target AD.

Methodology
Our approach is based on the modeling of the interplay 
between disease-causing proteins and proteins disrupted 
by drugs or EVOO phytochemicals, while accounting 
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for network interactions. In simple terms, human bio-
logical processes can be seen as a complex network of 
interacting genes and proteins, with humans having over 
20 thousand protein-encoding genes and millions of 
protein–protein interactions. This complex network is 
known as an interactome [19].

In a healthy state, the system can be represented as a 
baseline or ground level. Disease-causing protein dys-
functions would disturb or disrupt their biochemical 
and signaling processes; this can be represented as a per-
turbation from the baseline. Such a disturbance would 
impact other proteins through protein–protein inter-
actions, leading to a chain reaction, known as “network 
propagation” [14]. As a result, a single protein dysfunc-
tion can influence many other proteins and pathways 
in a cascade of perturbations. Different proteins will be 
impacted differently, depending on how “far” they are in 
the interaction network from the dysregulated protein. 
We have modeled the extent of these perturbations for 
over 20,000 proteins by using the known dysfunctional 
proteins linked to AD as starting perturbation points and 
employing a network propagation technique called “ran-
dom walk with restarts” [20]. The resulting > 20,000 levels 
of protein disruption are referred to as a disease pertur-
bation profile of the AD. Similarly, drugs or phytochemi-
cals can interact with specific proteins and their effect on 
the ground state of those proteins can propagate through 
the network. In this case, the overall levels of perturba-
tion of proteins are referred to as a drug or phytochemical 
perturbation profile (see Fig. 1A).

The methodology employed in the present study 
assumes that drugs and EVOO phytochemicals with 
anti-AD properties influence the proteins and pathways 
involved in the AD onset and progression. However, 
the disease and the drugs/phytochemicals do not have 
to target the exact same genes or protein, but rather 
share common network regions connected to them. To 
exert an anti-AD effect, a drug perturbation profile or 

phytochemical perturbation profile would be expected to 
be similar (but not necessarily identical) to the AD dis-
ease perturbation profile. A drug that does not affect AD 
(i.e., non-anti-AD) would be expected to have a perturba-
tion profile that shares little overlap with the AD disease 
perturbation profile. To determine the level of similar-
ity necessary to identify a unique drug/phytochemical 
candidate with anti-AD properties, the machine learn-
ing predictive model is trained using drugs expected to 
intervene with AD (anti-AD drugs, e.g., midostaurin) 
and drugs that do not affect AD (non-anti-AD drugs, 
e.g., enoximone) as positive class and negative class refer-
ences, respectively (Fig. 1A, B and Sect. “Model training 
and application”).

AD protein‑encoding gene selection
In the present study, we identified proteins involved 
in AD using the extensive public dataset called Dis-
GeNET [21]. From this dataset, 3,397 protein-encod-
ing genes were found and then manually refined using 
expert-curated databases to ensure high-quality data. 
The databases used included UniProt [22], Comparative 
Toxicogenomics Database [23], Orphanet [24], Clinical 
Genome Resource [25], Genomics England PanelApp 
[26], Cancer Genome Interpreter [27], and the Psychiat-
ric Disorders Gene Association Network [28].

Our study concentrated on proteins that influence AD 
onset or development, excluding those marked as thera-
peutic to exclude circularity in the analysis. This selection 
process led to the identification of 101 “key” protein-
encoding genes strongly associated with AD risk and 
progression. These “key” genes were then mapped onto 
the STRING database [16] which provides a list of known 
protein–protein interactions for various organisms, along 
with their confidence scores (0–999). This step resulted 
in identification of 73 “key” AD proteins (Additional 
File 1). Protein–protein interactions were filtered later 
by thresholding the confidences scores, as part of the 

Fig. 1 Summary of the methodology used to identify EVOO phytochemicals that potentially disrupt the interactome associated with AD onset 
and progression. Panel A illustrates the core principles of network propagation applied to generate protein perturbation profiles for disease, drugs, 
and EVOO phytochemicals. Human interactome is shown as a graph of interconnected nodes (numbered circles), where each node represents 
a protein and the edges (connections) represent protein–protein interactions. Numbers are arbitrarily chosen to serve as unique protein identifiers 
to allow for quick visual cross-referencing. Proteins directly affected by drugs or EVOO compounds were identified from the STITCH database 
and proteins directly dysregulated in AD were identified using DisGeNET database (as indicated by arrows on the left-hand side of panel A). 
The extent of a protein’s perturbation is reflected by the intensity of the color associated with the protein circle for AD (blue), an anti-AD drug 
in late-stage clinical trials (i.e., a positive class drug example like midostaurin) (yellow), a non-anti-AD drug (i.e., a negative class drug example 
like enoximone) (cyan), and the query EVOO compound (like quercetin) whose probability of being effective as anti-AD drug we are aiming 
to predict (magenta). Network propagation section illustrates how perturbation propagates through protein–protein connections in the network. 
The further the propagation spreads through the network, the less perturbation is generally expected unless many paths lead to the same hub 
proteins, amplifying the perturbation of these proteins. Color intensity indicates the level of perturbation. Highly correlated profile regions are 
shown in red ovals and the poorly correlated profile regions are shown in blue ovals. Panel B depicts an overall machine learning-based approach 
for predicting EVOO phytochemicals targeting the AD interactome in a similar way as do the advanced-stage anti-AD drugs in clinical trials. 
A logistic regression classifier was trained to discriminate between anti-AD drugs (positive class) and non-anti-AD drugs (negative class) based 
on profile correlations, which was then used to predict the probability of EVOO phytochemicals exhibiting anti-AD properties

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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machine learning process (described below in the Meth-
ods Sect. “Network propagation”).

EVOO phytochemical selection
We have developed a comprehensive list of 782 phyto-
chemicals present in extra virgin olive products, includ-
ing EVOO, table olives, and olive leaves (Additional File 
2). This list includes plant-based chemicals and excludes 
metabolic intermediates, such as glucose [29]. Of these 
782 phytochemicals, only those unique to EVOO or 
found in high concentrations were selected [30]. This 
selection was done by searching the literature for evi-
dence of these chemicals in the olive oil matrix, a screen-
ing step that resulted in the identification of 117 EVOO 
“marker” phytochemicals.

DrugBank [31] and  DrugCentral [32]  databases were 
used to compile a list of experimental and available FDA-
approved drugs, and FoodDB [33] database was used to 
compile a list of known phytochemicals (as described 
previously [16]). The STITCH database [34] was then 
used to find human proteins with which the molecules 
could interact, resulting in 67 EVOO marker phyto-
chemicals. The database provides a confidence score 
(0–999) for each chemical–protein interaction, which is 
a measure of the likelihood of a true interaction based on 
the available evidence. In the present study, a fixed con-
fidence cutoff of 200 was used, meaning that only inter-
actions with a score of 200 or higher were considered. 
This threshold was chosen to ensure that the interactions 
being studied were more likely to be biologically relevant 
and supported by experimental evidence rather than only 
predicted computationally.

Network propagation
After compiling the lists of drugs and EVOO phyto-
chemicals and their impacted genes/proteins, and iden-
tifying the dysfunctional proteins associated with AD, we 
employed our previously developed network propagator 
tool (used in cancer [16] and COVID-19 [17] projects) 
to perform “random walk with restarts” [20]. This step 
enabled us to generate drug, EVOO phytochemical and 
disease perturbation profiles based on the STRING pro-
tein–protein network, consisting of 1,048,574 connec-
tions between 20,256 human proteins (matched between 
STITCH and STRING databases).

The random walk propagation was executed indepen-
dently for drugs/EVOO phytochemicals and for the AD 
interactomes, using a range of restart probability val-
ues and several protein–protein connection thresholds 
(STRING protein connection thresholds of 400, 600, and 
800; restart probability parameter c ranging from 0.0001 
to 1.0). This range was selected based on our previous 
experience with random walk propagation in application 

to cancer and COVID-19 [16, 17]. Pearson correlation 
coefficients were calculated to assess the extent of over-
lap between the AD perturbation profile and each of 
the drug or EVOO phytochemical perturbation profiles. 
For each molecule–disease pair, a total of 2,160 Pearson 
correlation coefficients were calculated with different 
propagation settings, allowing for the assessment of mol-
ecule–disease perturbation similarities.

Model training and application
Leveraging molecule–disease perturbation similarities, 
the machine learning models were trained to predict 
which FDA-approved drugs, of all those available in in 
DrugBank and DrugCentral (N = 1,802), are undergoing 
advanced stages (3 and 4) of FDA clinical trials (N = 32) 
for the treatment of AD. These 32 drugs are FDA-
approved for other disease states and are being re-eval-
uated as potential therapeutic agents for the treatment of 
AD. A logistic regression classifier (based on the scikit-
learn Python library for machine learning [35]) was fitted 
to the calculated Pearson correlation coefficients for each 
propagation settings from the previous step. The best 
settings were selected using fivefold stratified cross-vali-
dation. This approach is similar to the one we employed 
to predict phytochemicals with anticancer properties 
[16]. The overall predictive capacity of this approach was 
validated using 25 repeats of fivefold stratified cross-val-
idation, with the optimal predictive model/propagation 
setting being selected by the internal fivefold stratified 
cross-validation.

A final set of models were identified that exhibited 
individual balanced accuracies higher than the cross-
validation one; this resulted in 64 models. These mod-
els were then used to predict the probabilities of EVOO 
phytochemicals being able to exhibit anti-AD properties 
based on the correlation between their perturbation pro-
files and the perturbation profile of AD. Predicted prob-
abilities were averaged between the selected models to 
provide a more robust ensemble-based probability pre-
diction, further referred to as the correlation probability 
(%).

Pathway analysis
The methodology was completed using GSEA Prerank 
[36] to analyze the top 10 approved drugs and EVOO 
(extra virgin olive oil) phytochemicals predicted by 
our model to have the highest correlation probability. 
We examined significant KEGG 2023 pathways [18] (p 
value < 0.001) for each molecule and ranked them based 
on their p values. KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathways are a collection of databases 
and tools that help researchers understand the biologi-
cal functions, interactions, and networks within cells at 
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a systems level. These pathways represent the molecular 
interactions and reaction networks for various cellular 
processes, such as metabolism, genetic information pro-
cessing, environmental information processing, cellu-
lar processes, organismal systems, and human diseases. 
KEGG pathways help to visualize and interpret complex 
biological data, making it easier for researchers to under-
stand how genes and proteins interact in different cellular 
contexts [18].

In this type of analysis, the pathway’s enrichment 
score measures the extent to which a particular biologi-
cal process is overrepresented among the genes or pro-
teins being studied. The nominal p value indicates the 
likelihood of observing the enrichment score by chance 
(assuming the gene/protein ranking is random and unre-
lated to the biological process under investigation) [18]. 
We calculated the interaction between AD proteins and 
EVOO phytochemical targets by multiplying the AD and 
EVOO phytochemical vectors. This product was then 
used in the GSEA analysis.

All data and Python scripts for the modeling, analysis, 
and figures are available from this Bitbucket repository: 
bitbucket.org/iAnalytica/ai4olive.

Results
Our model allowed us to predict with 70.3% ± 2.6% accu-
racy which previously FDA-approved drugs were in 
phase 3 and 4 trials for AD specifically versus all other 
FDA-approved drugs not in AD trials. The resulting 64 
models were used for scoring the EVOO phytochemicals; 
the probabilities of these phytochemicals predicted to 
be similar to the drugs in FDA phase 3 and 4 trials were 
then averaged to produce the final consensus predic-
tion. EVOO phytochemicals with the highest probability 
of being like compounds in FDA trials were considered 
most likely to be biologically active.

Using our model, the FDA-approved drugs for other 
diseases (i.e., non-anti-AD drugs) were re-evaluated and 
ranked according to their correlation probability as hav-
ing the highest probability of affecting AD (Additional 
File 3). Analysis of the most common pathways targeted 
by these drugs was Alzheimer’s disease (10), Olfactory 
Transduction (10), Insulin Signaling (5), Phosphatidylino-
sitol Signaling System (2) and Long-Term Potentiation (1). 
The numbers in parentheses represent the number of 
times each pathway was identified for these drugs with a 
statistically significant p value for involvement with AD.

Of the 67 EVOO marker phytochemicals (Additional 
File 4), quercetin, genistein, luteolin, palmitoleate, stearic 
acid, apigenin, epicatechin, kaempferol, squalene, and 
daidzein had the highest probability of interfering with 
AD (Table 1). The most common pathways predicted to 
be affected by these phytochemicals include Olfactory 

Transduction (10), Alzheimer’s disease (9), Insulin Sign-
aling Pathway (7), Phosphatidylinositol Signaling System 
(5), and Vascular Smooth Muscle Contraction (3). As 
before, the numbers in parentheses represent the num-
ber of times each pathway was identified for these EVOO 
phytochemicals with a statistically significant p value for 
involvement with AD. Examples of the select EVOO phy-
tochemicals and their connection with the most common 
AD pathways and involved proteins in our analysis are 
depicted in Fig. 2.

Discussion
Using machine learning, the present study identified 
FDA-approved drugs and EVOO phytochemicals that 
are likely to interact with genes and proteins associated 
with AD pathophysiology. The model was initially trained 
to differentiate between drugs approved by the FDA in 
phases 3 or 4 to treat AD (= positive class) versus those 
drugs approved by the FDA to treat other diseases aside 
from AD (= negative class). This was the model used to 
predict which EVOO phytochemicals might affect the 
development and/or progression of AD.

The correlation probability scores obtained for model 
EVOO phytochemicals were similar to those obtained for 
the FDA-approved phase 3 or 4 drugs, suggesting that the 
phytochemicals interact with the same pathways as the 
FDA-approved drugs.

The use of machine learning to identify drug targets 
using existing databases is only in its infancy and the 
accuracy of the predictions rests in the quality of the 
databases being used (which are always being updated as 
new knowledge is generated). The results obtained in the 
present study using network propagation (random walk 
with restarts) support the validity of this approach in that 
several of the identified EVOO phytochemicals, such as 
quercetin, have been previously found to have a positive 
effect on preventing the development or progression of 
AD (see discussion below). For example, quercetin, the 
EVOO phytochemical shown to have the strongest cor-
relation probability in the present study, has previously 
been evaluated as a neuroprotective agent in AD [38]. It 
is thought to be protective against AD by decreasing oxi-
dative stress, modulation of cytokines, inhibiting amyloid 
beta aggregation, and decreasing tau phosphorylation 
[37–39]. Genistein, apigenin, catechin (also called epi-
catechin), kaempferol, similarly, have also been identified 
as potential therapeutic agents for AD [40–42, 44–50]. 
The flavonoids luteolin and daidzein, however, are novel 
agents which have not been investigated as a therapeu-
tic in AD. Palmitoleate and stearic acid have undergone 
limited evaluation for their biologic actions in the central 
nervous system [53–56]. To date, squalene has not been 
considered a therapeutic phytochemical, although its 
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metabolism has been considered in the pathogenesis of 
AD [57–59].

Eleven different KEGG pathways were identified as 
being targeted by the ten EVOO marker phytochemi-
cals deemed most likely to interact with AD (Table  1). 
The pathways with the highest number of occurrences 
included Olfactory Transduction, Alzheimer’s disease, 
Insulin Signaling Pathway, Phosphatidylinositol Signal-
ing System, and Vascular Smooth Muscle Contraction, 
respectively. The Alzheimer’s disease pathway includes 
the accumulation of beta-amyloid peptides, the forma-
tion of neurofibrillary tangles, oxidative stress, inflam-
mation, and neuronal apoptosis events [18]. Olfactory 
Transduction is not known to be directly related to AD, 
although there is some evidence to suggest that changes 
in olfactory function may be an early marker of the dis-
ease. For example, AD-affected individuals often have a 
reduced sense of smell [60, 61], and olfactory dysfunction 
may precede the onset of cognitive symptoms by several 
years [62]. In addition, there is evidence to suggest that 

the accumulation of amyloid beta protein (a hallmark of 
AD) may disrupt olfactory function by interfering with 
the olfactory transduction pathway [63]. The Insulin 
Signaling Pathway is involved in several aspects of AD 
pathology, including amyloid beta and tau metabolism, 
neuroinflammation, and synaptic plasticity [64]. Phos-
phatidylinositol Signaling System pathway plays a crucial 
role in the regulation of various cellular processes, such 
as cell growth, proliferation, and survival [65]. In AD, this 
system has been implicated in the regulation of amyloid 
beta production, neuroinflammation, and synaptic dys-
function, and, as such, its dysregulation may contrib-
ute to the pathological processes that underlie AD [65]. 
Finally, Vascular Smooth Muscle Contraction (VSMC) is 
crucial for blood flow and pressure regulation. It is impli-
cated in AD progression, as cerebrovascular dysfunction 
can lead to impaired blood flow, reduced brain oxygen 
supply, and increased AD symptoms and neuronal dam-
age [66]. Amyloid beta accumulation can also disrupt 
blood vessels and impair VSMC, limiting their response 

Fig. 2 Predicted EVOO phytochemicals targeting dysregulated pathways in AD. The targeted pathways include: Blue denotes (Olfactory 
Transduction), violet denotes (Alzheimer’s disease), green denotes (Insulin Signaling), greenish blue denotes (Phosphatidylinositol Signaling), 
and orange denotes (Vascular Smooth Muscle Contraction). The key protein-encoding genes associated with a specific pathway (Additional File 5) 
are assigned the same color for easy identification. The size of each gene/protein node is proportional to how often the related pathway is targeted 
by the model EVOO phytochemicals listed in Table 1. Nodes associated with EVOO phytochemicals and their interactions with protein-encoding 
genes from AD dysregulated pathways are highlighted in brown. Only experimentally validated protein–protein interactions (STRING score greater 
than 800) are emphasized
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to blood flow and pressure changes and escalating the 
risk of hypoperfusion and neurovascular damage [67].

The analytical approach taken in the present study has 
several limitations, many of which are due to the nature 
of the datasets underlying our data inputs. For example, 
the exact pathogenesis of AD is unknown. If there are 
proteins and genes that have a profound impact on AD 
development but are as yet undiscovered, they will not 
be accounted for in this study. The STITCH and STRING 
databases are themselves incomplete, and while it is 
unlikely, it is possible there are proteins, phytochemical–
protein, or protein–protein interactions known to have 
an impact in AD which are not included in those data-
bases. As these databases improve with advancing knowl-
edge, that approach taken in the present study should 
become more powerful. Furthermore, we only analyzed 
a subset of AD expert-curated genes; it is possible that 
the 73 we selected do not fully characterize the disease 
process. Our analysis also does not discern whether the 
identified EVOO phytochemicals are necessarily effective 
against AD or whether their effects would be anti-AD 
or pro-AD, although they are more likely to be as effec-
tive as the phase 3 and 4 FDA-approved drugs currently 
undergoing AD clinical trials  than any other molecules 
found in EVOO. It is also important to recognize that the 
number of these positive class drugs (i.e., FDA-approved 
drugs undergoing AD trials) was much smaller (32) than 
number of negative class drugs (i.e., FDA-approved 
non-anti-AD drugs) that were used for model training 
(1,745). Such an unbalanced dataset increases the likeli-
hood of bias toward the negative class, leading to under-
estimation of EVOO phytochemicals that may influence 
AD. With identification of more anti-AD drugs and 
updated databases in the future, it should be possible to 
further improve the current model’s predictive capacity.

We hope our in silico work will inspire further studies 
to experimentally address the existing limitations, to vali-
date our findings, and to fully evaluate the EVOO role in 
the prevention of AD.

Conclusion
It is well known that diet and lifestyle influence health. 
Machine learning is a novel, cost-effective way to evalu-
ate the potential health benefits of individual EVOO phy-
tochemicals. The present study provides an approach that 
brings together artificial intelligence, analytical chemis-
try, and omics studies to explore the interactions of phy-
tochemicals with pathways involved in a disease states, 
information that can lead to the identification of novel 
therapeutic entities in a natural product (that contains a 
heterogeneous mixture of phytochemicals). The analy-
ses identified several individual EVOO phytochemicals 
that have a high likelihood of interfering with AD, a few 

of which (e.g., quercetin, genistein) have shown promising 
effects on AD pathogenesis. Others (e.g., luteolin) are wor-
thy of further in vitro and in vivo study. It is only through 
the conduct of such studies will the predictive utility of our 
machine learning approach be validated. While the results 
of the present study shed light on how EVOO may help 
treat or prevent AD, the same approach may be applied to 
identify EVOO phytochemicals (or other food constitu-
ents) that treat other diseases, such as hypertension or 
dyslipidemia.
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