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Abstract 

Background This pilot study aims to identify and functionally assess pharmacovariants in whole exome sequenc-
ing data. While detection of known variants has benefited from pharmacogenomic-dedicated bioinformatics tools 
before, in this paper we have tested novel deep computational analysis in addition to artificial intelligence as possible 
approaches for functional analysis of unknown markers within less studied drug-related genes.

Methods Pharmacovariants from 1800 drug-related genes from 100 WES data files underwent (a) deep compu-
tational analysis by eight bioinformatic algorithms (overall containing 23 tools) and (b) random forest (RF) classifier 
as the machine learning (ML) approach separately. ML model efficiency was calculated by internal and external cross-
validation during recursive feature elimination. Protein modelling was also performed for predicted highly damag-
ing variants with lower frequencies. Genotype–phenotype correlations were implemented for top selected variants 
in terms of highest possibility of being damaging.

Results Five deleterious pharmacovariants in the RYR1, POLG, ANXA11, CCNH, and CDH23 genes identified in step (a) 
and subsequent analysis displayed high impact on drug-related phenotypes. Also, the utilization of recursive fea-
ture elimination achieved a subset of 175 malfunction pharmacovariants in 135 drug-related genes that were used 
by the RF model with fivefold internal cross-validation, resulting in an area under the curve of 0.9736842 with an aver-
age accuracy of 0.9818 (95% CI: 0.89, 0.99) on predicting whether a carrying individuals will develop adverse drug 
reactions or not. However, the external cross-validation of the same model indicated a possible false positive result 
when dealing with a low number of observations, as only 60 important variants in 49 genes were displayed, giving 
an AUC of 0.5384848 with an average accuracy of 0.9512 (95% CI: 0.83, 0.99).

Conclusion While there are some technologies for functionally assess not-interpreted pharmacovariants, there is still 
an essential need for the development of tools, methods, and algorithms which are able to provide a functional pre-
diction for every single pharmacovariant in both large-scale datasets and small cohorts. Our approaches may bring 
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new insights for choosing the right computational assessment algorithms out of high throughput DNA sequencing 
data from small cohorts to be used for personalized drug therapy implementation.

Keywords Pharmacogenomics, High throughput DNA sequencing, Pharmacovariants, Functional assessment, Deep 
computational analysis, Artificial intelligence, Machine learning

Introduction
The genomics revolution, caused by the advancement 
of high throughput sequencing technologies, resulted in 
unravelling several novel genetic variants in pharmacog-
enomics (PGx) studies [1, 2]. While clinical, evidence-
based reports are still the gold standard for assigning a 
true functional outcome to most drug-related variants, 
computational assessments for functional interpretation 
of a vast number of pharmacovariants (genetic variants 
in drug-related genes), obtained through advanced gen-
otyping methods, are truly considered by many inves-
tigators and research groups as the main approach in 
the field [3–5]. Since the number of identified variants 
in pharmacodynamic (PD), pharmacokinetic (PK), or 
drug absorption, distribution, metabolism, and excre-
tion (ADME) genes is rapidly increasing, the necessity 
for integration of computational genomics into clinical 
PGx tests will be needed more than before [6]. However, 
two main barriers in this area still need to be addressed: 
(a) common bioinformatics tools, like SIFT, Polyphen2, 
Provean, CAAD, Mutation Assessor, etc., are not suitable 
for functional evaluation of every pharmacovariant and 
doing subsequent haplotype/diplotype calling and phe-
notype prediction [7]. (b) PGx dedicated software and 
algorithms like Stargazer, Aldy, PharmCAT, etc., are lim-
ited to particular genes and specific numbers of known 
variants [8–10]. Recent studies have reported the utiliza-
tion of multi-tools and artificial intelligence approaches 
that may help in decoding potential malfunction alleles 
in drug-related genes [11, 12]. Applying deep learning 
(which is the utilization of a neural network in a collec-
tion of machine learning algorithms) has been proposed 
for the prediction of personalized treatment outcomes 
and drug-dosage modification as well [13]. Neverthe-
less, computational prediction of drug response is heavily 
dependent on the available data from the patients.

The current study employs the utilization of multiple 
bioinformatics tools and random forest machine learning 
[14] approaches on 100 whole exome sequencing (WES) 
data files, along with clinical information from cardio-
vascular disease patients and a healthy control cohort 
for unravelling novel PGx markers of adverse drug reac-
tions (ADRs) in less studied, drug-related genes. The two 
approaches were used separately for analysis of variants 
identified in just one patient and/or repeated in several 
patients. Our workflow may help other researchers, who 

investigate “not very well-known” PD, PK, or ADME 
genes to design a method for classifying large-scale geno-
typing data and finding malfunction alleles in a fast and 
easy way. We also introduced “Gene Walking” as a novel, 
helpful approach for predicting pathogenic/likely patho-
genic effect(s) of new and unreported and/or not func-
tionally annotated variants within drug-related genes.

Methods
Data collection
Exome sequencing results from our previous study on 
comprehensive clinical PGx profiling of a cohort of 100 
individuals, comprised of 50 cardiovascular disease 
patients with pulmonary hypertension and ischemic 
diseases, using a particular list of drugs (with/without 
ADRs), and 50 healthy people, were used in the cur-
rent investigation [15]. Our study has been approved 
by the Bioethics Committee of the Medical Univer-
sity of Białystok (approval number R-I-002/630/2018). 
Demographic information for all participants and data 
concerning clinical manifestation for patients with 
ADRs were obtained. Known and actionable SNPs were 
decoded by PGx-dedicated bioinformatic algorithms and 
reported previously [15]. The rest of the genomic markers 
(unknown/not interpreted within PGx area) are used in 
the current manuscript for unravelling potential impact-
ful variants in drug-related genes.

Data filtration
A type of custom filtered VCF files were used in the cur-
rent study. The related setting for filtration of VCF files 
described below. Based on previous reports on the limi-
tations of common bioinformatics tools to identify and 
highlight different types of altered pharmacovariants 
(especially for those which are responsible for intermedi-
ate and ultrarapid metabolizers), after some initial assess-
ment, we did an extensive pre-filtration on the original 
WES VCF files for 1800 drug-related genes in the human 
genome. The genes within the list were collected from 
the PharmGKB [16] comprehensive gene list (only genes 
with at least one annotated variant extracted), (n = 1707), 
CPIC gene-drug records (n = 119), and the table of “Phar-
macogenomic Biomarkers” from FDA for drug labelling 
(n = 132). Also, a systematic search within PubMed for 
possible newly introduced but not completely annotated/
interpreted as an evidence-based record was performed 
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while preparing our comprehensive drug-related gene 
list. We used the keywords: “Pharmacogenomics genes, 
Pharmacogenetic gene, drug-related gene, drug metabo-
lizer gene, drug transporter gene, drug target gene, per-
sonalized medicine + gene, personalized therapy + gene, 
individualized therapy + gene” for studies published after 
2021. The abstracts were screened to check if the selected 
keyword expansion were related to PGx context. Finally, 
full-text article assessed for the genes of direct implica-
tion on PGx research. After combining input from all 
sources, duplicate genes were removed. Next, the related 
BED file including the genes’ symbols along with the 
related genomic coordinates and positions in a “.CSV” 
format was created by the BioMart tool in ENSEMBL 
105. Finally, the BCFtools V.1.15.1 package [17] used for 
massive filtration of VCF files for drug-related genes only. 
The outcome is named PGx-VCFs which contained only 
the variants in genes, related to drug metabolism, trans-
ferring, targeting, and receptors. PGx-VCFs then used in 
both common bioinformatic tools (see the next section 
for the names) and machine learning steps for functional 
assessment and identification of malfunction alleles 
(mostly loss of function, InDels, and short duplications).

Deep computational analysis for extremely rare 
variants:

In silico functional assessments
VEP [18] and SnpEFF [19] were initially applied on raw 
VCF files of WES, containing ~ 32,000 variants for each 
sample. Damaging variants were identified and compared 
to pathogenic/likely pathogenic variants in filtered VCF 
files later. VarSeq of Golden-Helix® [20] was utilized for 
molecular profiling of filtered VCFs (~ 3500 variants for 
each sample) through the following conditions:—rare 
variants were selected based on minor allele frequency 
(MAF) < 0.01 in 1  K Genomes [21], gnomAD (V.3.1.2), 
and ExAC (LOF) [22]—Heterozygotes and Homozygotes 
were separated and the read depth < 10 was assigned as 
low quality—Genotype quality ≥ 10 remained for further 
analysis—SIFT, Polyphen2, Mutation Taster, Mutation 
Assessor, FATHMM, and Provean scores, through the 
integration of dbNSFP 154v2 [23, 24], were applied for 
functional assessment of selected variants (see “Apply-
ing multiple bioinformatics tools” section for further 
details)—ExAC functional gene constraints 0.3, Clin-
VAR [25] haplotypes/variants 2021, and PharmGKB drug 
associations with the 2019 level of evidence were also 
included in the filtration steps.—CAAD 1.5 [26, 27] as 
an independent tool was applied for the filtered variants 
from the previous steps. The outcome considered novel 
damaging variants only from drug-related genes in our 
samples.

Additional data collection and gene walking
Filtered genes by VarSeq with finalized variants were 
used in BioMart again and the related BED file was 
employed for filtration of publicly available VCF files 
from 1  K Genomes, GET-RM [28], Complete-Genom-
ics, Genome in a bottle consortium [29], KAVIAR [30], 
gnomAD, and ENSEMBL. A list of clinically associated 
markers was also obtained from PharmGKB and evalu-
ated along with other VCF files for finding VarSeq intro-
duced variants and their neighbour variants. We called 
this process "Gene Walking," as it follows the proce-
dure of finding the nearest interpreted functional vari-
ant in the closest genomic coordinates to infer possible 
similar activity for an unknown target genomic marker. 
STRINGdb [31] and KEGG [32, 33] databases were also 
utilized for looking for genes functionally connected to 
our selected genes within cellular pathways.

Applying multiple bioinformatics tools
Next, a deep computational functional assessment 
of all selected variants within our selected genes was 
performed by free source annotation tools as well 
as Variant Validator [34], VarSome [35], ENSEMBL 
variant table, ACMG [36], ClinVar, gnomAD, and 
OMIM clinical features. The tools applied in follow-
ing sequence: Ensembl variant table, gnomAD, Variant 
Validator, Varsome, ACMG classifier as part of Var-
Some, ClinVar, and OMIM. Different settings for each 
of these bioinformatic tools were as follow as well: for 
the ENSEMBL, we tracked the variant within “vari-
ant table” for the related genes. Then, “deleterious” 
assigned to the variant if 4-6/6 annotation tools (SIFT, 
PolyPhen, CADD, REVEL, MetaLR, and Mutation 
Assessor) predicted that as pathogen/damaging. The 
SIFT score ranges from 0.0 (deleterious) to 1.0 (toler-
ated). Variants with scores in the range between 0.0 
and 0.05 are considered deleterious. The PolyPhen, on 
the other side, assigns the scores within ranges from 
0.0 (tolerated) to 1.0 (deleterious) but variants with 
scores of 0.0 are predicted to be benign. Values closer 
to 1.0 are more confidently predicted to be deleterious. 
CADD provides score ranges from 1 to 99, higher val-
ues indicating more deleterious outcome. Scores above 
30 are considered deleterious. The REVEL score for an 
individual variant can range from zero to one; missense 
variants with a REVEL score above 0.5 are considered 
damaging while missense variants with a REVEL score 
below 0.5 are considered tolerated. The MetaLR score 
can range from 0 to 1, when higher values are more 
likely to be deleterious. Missense variants with scores 
> 0.5 are classified as deleterious and missense variants 
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with scores < 0.5 are classified as benign. Mutation 
Assessor score range is between 0 and 1 and vari-
ants with higher scores (closer to 1) are more likely to 
be deleterious. gnomAD v3.1.2 (GRCh38) dug for the 
selected variants and both “Variant Effect Predic-
tor” and “In Silico Predictors” including SIFT, Poly-
Phen, REVEL, CADD, SpliceAI, and PrimateAI taken 
into account for determination of deleterious effect of 
variant. AI tools assign the score from 0.0 to 1.0, while 
closer to 1.0 is deleterious. “Population Frequencies” 
tables also checked for confirming the low allele fre-
quency of evaluated variants. Genomic coordinate plus 
altered allele used as input variant description in vali-
dator tool from Variant Validator. After confirmation 
of related data, links to external resources for OMIM 
and VarSome obtained and followed, respectively. 
Through Varsome, we checked the “Germline Variant 
Classification” and entered the pathogenic, likely path-
ogenic and uncertain significant variants into the list. 
Again, both the pathogenicity scores and frequencies of 
exomes and genomes assessed and deleterious variants 
selected. To end of this point, the OMIM clinical fea-
tures for each variant in addition to ClinVar categoriza-
tion on pathogenic or uncertain significance for them 
were added to our list. Duplicates were removed from 
the result of different tools’ interpretation. Then, a list 
of pathogenic/likely pathogenic variants with the high-
est damaging scores from chosen genes were prepared 
out of previous step and assigned as the input for the 
VarAFT tool [37] (containing Annovar, CADD, SIFT, 
PolyPhen2, Mutation Taster, Mutation Assessor, Eigen, 
FATHMM, GERP++, LRT, PROVEAN, SiPhy, UMD-
prediction, VEST3, and ClinSIG score). For “Variant 
Type” in VarAFT, exonic, splicing, synonymous, non-
synonymous, stoploss, stopgain, frameshift deletion, 
frameshift insertion, and frameshift sub selected from 
Refseq model. For the “Frequency” within the pub-
lic databases, we included gnomAD E-All- < = 0.01 
and 1000G- < = 0.01. In “Prediction” category, all the 
damaging and deleterious plus unknown options 
selected. CADD > = 15, DANN > = 0.9, Eigen > = 1, 
and GERP++ > = 2 assigned by default and other tools 
as well as SIFT, PolyPhen, UMD predictor, Mutation 
Taster, etc., set for damaging, pathogenic or probable 
pathogenic. Also, “Human Splice Finder” only included 
probable effect and most probable effect on splicing 
options. “Genes Information” followed the setting of 
RVIS score < = 0.25, LoFTool < = 0.01, GHIS > = 0.5, and 
GDI score low for all disease. As expected, amino acid 
substitution might result in protein misfolding, insta-
bility, trafficking, aberrant protein–protein interac-
tions and affect protein’s function negatively. The result 

of VarAFT underwent protein modelling for proving 
negative effects for variants from selected genes in our 
patients as well.

Control samples
A set of 39 well-known pharmacovariants (validated in 
PharmVAR 5.1 [38]) in 11 very important pharmaco-
genes (VIPs) comprised the control group. PGx mark-
ers in CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A5, 
F5L, SLCO1B1, DPYD, TPMT, UGT1A1, and VKORC1 
were selected and examined by bioinformatics tools 
used in the previous steps to check the capability of 
such algorithms to reveal actionable and/or annotated 
pharmacovariants.

Applying homology modelling
In this stage, we first modelled protein to visualize the 
main conformational effect of amino acid substitution. 
Additionally, we analysed the effect of variants on hydro-
gen bonds (H-bonds) to adjacent residues using a Swiss 
pdb viewer (version 4.1.0) and evaluate possible changes 
in functional outcome of amino acid substitution. A 
total of five missense variants, the most highly patho-
genic (received highest scores of damaging by bioinfor-
matic tools) and phenotype-related in our patients, were 
modelled via SWISS-MODEL tools [39] using the best 
appropriate templates, chosen according to the results of 
the reference protein blast using NCBI BLAST (BLASTP 
2.13.0+). Next, the designed models were visualized by 
Pymol1.1 software [40]. The mutated and wild type pro-
teins were modelled and compared to demonstrate nega-
tive effects of altered amino acids on protein structures.

Haplotype/diplotype identification
The linkage disequilibrium (LD) calculator of Ensembl 
was used for displaying the LD results among the vari-
ants of interest from the deep computational analysis 
steps. According to the Ensembl variation resources, 
the calculated LD results are based on the 1000 
Genomes Project.

Machine learning for PGx variants
Input data and machine training
The PGx-VCF files were also mined and transformed into 
a meaningful table subsequently used to train the predic-
tive algorithm for the classification of genomic variants 
in drug-related genes that may act as the potential phar-
macovariants for developing ADRs in carriers. The initial 
dataset had 23,615 variants (variables). However, before 
machine training, all the VCFs underwent an extra three 
step filtration consisting of: removing non-informative 
variants (variables identified only in 1, 2 ,3 or all patients), 
a chi-squared test between the group (ADRs or not) and 
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the existence or not of a variant genotype, and recursive 
feature elimination (RFE) to further decrease the number 
of variables and select only statistically meaningful mark-
ers. The outcome was employed as the training set and 
was assessed with fivefold internal cross-validation in 
the random forest (RF) model. Similar simulated exter-
nal data were used for external cross-validation (fivefold 
cross-validation with 10 iterations) to check the reliabil-
ity and significance of our developed model.

PGx phenotype prediction
ClinVar, OMIM, and Phenolayzer [41] were considered 
for identification of any association with phenotype data 
(ADRs in our patients). Drug-drug conflicts and gene-
drug interactions for final interpreted phenotypes or 
PGx alleles in all participants were also assessed, using 
registered demographic data and complete history of 
intake medicines plus clinical manifestations in the 
case of patients with reported ADR phenotypes. Differ-
ent sources including: DRUGBANK [42], PharmGKB, 

Flockhart table [43], and Drugs.com were employed for 
such measurements in details. SIDER 4.1 of EMBL [44] 
was also utilized for listing possible or existing side-
effects for drugs used by our patients.

Results
Multiple bioinformatics tools outcome
The control study for the software revealed the ability of 
common bioinformatics tools to identify loss of function 
pharmacovariants more than other types of PGx mark-
ers in selected genes. According to this fact, the designed 
algorithm in VarSeq for PGx-VCFs detected 96 highly 
damaging variants in 90 less-studied drug-related genes 
within the participants’ samples (the list of genes and 
related variants’ genomic coordinates are available in 
Additional file 1). Figure 1 illustrates the distribution and 
functional impact of all rare variants (including the high-
lighted 96) in filtered VCFs, which contain only drug-
related genes. Also, extraction of all 96 selected variants 
and previously interpreted neighbour markers for each, 

Fig. 1 Rare variants in WES data. Frequency and functional impact of identified rare pharmacovariants within PGx-VCFs (see the text for further 
information). WES: whole exome sequencing, PGx: pharmacogenomics
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obtained from public VCF files, resulted in the identifica-
tion of 562 detrimental variants (gene walking outcome). 
Deep computational functional assessments (in silico 
assessment) of all 562 variants then revealed 351 patho-
genic/likely pathogenic, 54 benign/likely benign, and 106 
variants of unknown significance, plus 51 unreported 
variants before duplications were removed. Finally, a list 
of the top 50 variants with the highest damaging scores 
in five genes with consistent data for selected ADRs was 
regained and 5 final most pathogenic predicted mark-
ers were isolated after re-analysing the list of VarAFT 
top 50 variants (rs2230641, rs201076440, rs1049550, 
rs113994096, and rs775643457). Figure  2 also displays 
the outcome of each computational analysis step in our 
workflow in detail.

Protein modelling and structural analysis
The predicted outcomes of five variants on protein 
structure alteration were explored as follows: RYR1:p.
Arg1954His, modelled using rabbit RYR1 (PDB 
ID = 5GKY) as the template [45], demonstrated the basic 
arginine alternation to basic histidine. POLG:p.Pro-
587Leu modelling showed substitution of proline, which 
is an evolutionary conserved residue [46] and nonpolar 

amino acid, to leucine, a nonpolar and branched amino 
acid in the linker domain. The modelling of ANXA11:p.
Arg230Cys illustrated basic arginine substitution to non-
polar cysteine in the annexin A11 annexin repeat domain, 
which is also highly conserved [47]. CCNH:p.Val270Ala 
leads to nonpolar Val270 alternation to a smaller nonpo-
lar amino acid, Alanine. The EC 26 domain of the cad-
herin-23 protein was modelled to assess the CDH23:p.
Gly2771Ser mutation as well, which showed that Gly-
cine, a nonpolar amino acid, is altered to a polar residue, 
Serine. Also, analysis by Swiss-Pdb Viewer revealed that 
the H-bond length has changed in all of the mutated 
proteins except for POLG:p.P87L. The Pro87 residue 
does not create H-bonds to other residues, either in wild 
type or in mutated (p.P87L) form. In the ANXA11:p.
R230C and CDH23:p.Gly2771Ser mutated protein, the 
H-bonds for Arg230-Ser229, and Gly2771-Glu2773 do 
not exist, respectively. In CCNH:p.Val270Aal, the length 
of one H-bond has increased (Ala270-Arg266) and while 
another one has decreased (Ala270-Lys274). Although 
in RYR1:p.R1954H the Arg1954-Gly2130 H-bond and 
some of Arg1954-Glu1950 H-bonds are disrupted, a new 
His1954-Val2070 H-bond is formed. Table  1 presents 
the homology modelling features in detail. Three altera-
tions of ANXA11:p.Arg230Cys, CCNH:p.Val270Aal, and 
CDH23:p.Gly2771Ser resulted in changes in protein con-
formation as well. Hence, structural modifications and 
abnormal activities in drug processing may be expected 
for these variants. Figure 3 displays changes in POLG and 
ANXA11 proteins as a result of amino acid alterations 
in two conserved residues, in addition to a transformed 
amino acid in CDH23 as a polarity alteration.

Haplotype and linkage disequilibrium for selected variants
Upon testing the variants rs2230641, rs201076440, 
rs1049550, rs113994096, and rs775643457 with 
the linkage disequilibrium calculator of Ensembl, 
it was noticed that two variants (more specifically, 
rs201076440 and rs775643457) had no 1000 Genomes 
data. Referring to the variant rs1049550 and the vari-
ant rs2230641, the linkage disequilibrium calculator 
gave r2 = 0.110263 and D’ = 0.604979. This is consid-
ered to be a low D’ and r2, so no strong LD is predicted 
among them. That is mostly caused from different chro-
mosome locations. The rs1049550 and rs2230641 are 
missense variants, and their location within the human 
genome is 10:80166946 and 5:87399457, respectively.

Machine learning outcome
The limitation of the sample size used as the training set 
(175 pharmacovariants in 135 genes within 50 patients 
with ADRs) could not be ignored as the RFE method was 
utilized for variable selection. At first, extra filtration in 

Fig. 2 WES data deep filtration and computational functional 
assessments. Exome sequencing data were initially filtered for 1800 
drug-related genes and analysed by VarSeq, including multiple 
functional prediction tools as well as SIFT, PolyPhen2, Mutation 
Assessor, Mutation Taster, FATHMM, and CAAD. Next, several publicly 
available VCF files were collected and filtered for VarSeq selected 
genes by related BED file. Frequency of variants in the VarSeq 
result was assessed in public VCFs and data for neighbour 
markers were gathered as well. Deep computational data analysis 
was performed by 23 bioinformatics tools and algorithms for all 
variants from the previous step. Final data analysis and filtration were 
performed in order to extract the five most pathogenic markers 
within the genes with damaging variants in patients with ADRs. (See 
the text for further information). WES: whole exome sequencing, ADR: 
adverse drug reaction
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three steps resulted in reducing the initial variants to 
9861 (informative variants), 187 (statistically significantly 
different between the two sets of patients), and 175 (from 
the RFE process), respectively. The latter were the final 
variants list indicated by the RF model. This subset of 
variants achieved an average accuracy of 0.9818 (95% CI: 
0.84, 0.98—area under the curve (AUC) 0.9736842, area 
under the precision-recall curve (prAUC) 0) when pre-
dicting whether a patient would develop any ADRs or not 
with the following metrics:

Variables Accuracy Kappa AccuracySD KappaSD

175 0.9818182 0.95849057 0.04065578 0.09281792

However, the utilization of a similar simulated dataset 
in the form of external cross-validation in the designed 
model in the next step resulted in the introduction of 
only 60 variants in 49 genes as the important markers 
with potential effects on drug metabolism pathways. 
This outcome was highlighted with the lower AUC of 
0.5384848 with accuracy of 0.9512:

Variables Accuracy Kappa AccuracySD KappaSD

60 0.9512195 0.8918206 0.2987183 0.0627351

Figure 4 demonstrates the comparison of average accu-
racy for the designed model by means of both internal 
and external cross-validation. The compared statistics 
from confusion matrixes of the final deployed model are 

Fig. 3 Homology modelling for three selected pharmacovariants in deep computational analysis. Close view of three damaging variants 
with potential influence on changing protein structure and functions in selected genes: A Wild type POLG protein, produced using 3IKM 
as the template, close view of Pro587. B Mutated POLG (p. Pro587Leu) protein model, produced using 3IKM as the template. C Wild type annexin 
A11 protein modelled using 6TU2 as the template, close view of Arg230. D Mutated annexin A11 protein (p. Arg230Cys) modelled using 6TU2 
as the template. E Wild type EC 26 domain of cadherin-23 protein modelled using mouse cadherin-23 structure (5WJM) as the template, close view 
of Gly2771. F Mutated EC 26 domain of cadherin-23 protein (p. Gly2771Ser), modelled using mouse cadherin-23 structure (5WJM) as the template
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shown in Table 2 and the importance of each variant gen-
otype variable for the model is visualized in Fig. 5.

Genotype–phenotype correlation/predictions
A total number of 278 known genes were identified 
as drug related genes, based on all drugs used by the 

Fig. 4 The comparison of average accuracy for the designed ML model by means of both internal and external cross-validation. Accuracy 
of the prediction model for developing ADRs in cardiovascular patients demonstrated by different cross-validation approaches. A The RFE 
process of machine learning reduced the variables to 175 important genotype variants. These are the final variants indicated by the RF model, 
which employed internal fivefold cross-validation. B The accuracy changed during the testing of the designed model by external cross-validation 
and the number of important pharmacovariants reduced to 60. The subset of the variants achieved an average accuracy of 0.9818 and 0.9512 
on predicting whether a patient will have ADRs or not, respectively. ML: machine learning, ADR: adverse drug reactions, RFE: recursive feature 
elimination, RF: random forest

Table 2 The statistics of confusion matrixes of the final deployed RF model for both internal and external cross-validation

Note that while the accuracies in both types of validation are quite high, the overfitting to the training data within internal cross-validation resulted in an unreal AUC. 
On the other hand, increasing the sample size with external cross-validation displayed more “close to real” performance of the RF model for small cohorts

‘Positive’ Class Patients with ADRs, AUC  area under the curve, RF random forest

Internal cross-validation External cross-validation

Accuracy 0.9808 0.9512

95% CI (0.8974, 0.9995) (0.8347, 0.994)

No information rate 0.6346 0.6341

P-value (ACC > INR) 1.664e-09 2.309e-06

Kappa 0.9581 0.8918

McNemar’s test P-value 1.0000 0.4795

Sensitivity 1.0000 0.8667

Specificity 0.9474 1.0000

Pos pred value 0.9706 1.0000

Neg pred value 1.0000 0.9286

Precision 0.9705882 1.0000000

Recall 1.0000000 0.8666667

F1 0.9850746 0.9285714

Prevalence 0.6346 0.3659

Detection rate 0.6346 0.3171

Detection prevalence 0.6538 0.3171

Balanced accuracy 0.9737 0.9333

Area under the curve (AUC) 0.9736842 0.5384848
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examined patients, as obtained from DRUGBANK and 
PharmGKB. The evaluation of drug-drug interactions by 
Drugs.com and the Flockhart table, plus common side-
effects by SIDER 4.1, revealed no negative effects for the 
specific drugs and resembling observed ADRs in related 
patients. The genes linked to the drugs were synced to 
our comprehensive 1800 gene list in order to check if they 
were found using our two different approaches as well. 
However, since the final selected genes and related phar-
macovariants in our results were not part of so-called 
actionable PGx genes, allele imputation and genotype–
phenotype correlation could not benefit from reference 
databases: CPIC, DPWG, and PharmVAR. Therefore, 
the results of evaluations performed by ClinVar, OMIM, 
and Phenolayzer were considered for running genotype–
phenotype correlations and make predictions. Some 
adverse effects in patients were reported as linked clini-
cal manifestations to the variants in our selected genes. 
Additional file 2 displays the data used for making gen-
otype–phenotype correlations, along with additional 
information concerning drug history for ADR patients in 
our study.

Discussion
Several rare genetic variants within drug-related genes 
are anticipated to play important roles in variability in 
drug responses among individuals. Detection of such 
genetic biomarkers is continuously increasing through 
the utilization of NGS technologies in the clinic [6]. Inno-
vative technologies for data mining and computational 
genomic characterizations have paved the way for under-
standing the relationship between the human genome 
and drug-related phenotype. The ability of computational 
approaches in drug repurposing for some specific medi-
cations has been demonstrated before [51]. The current 
investigation also, by confirming the utilization of multi-
bioinformatics tools, may aid in the discovery of novel 
and rare pharmacovariants in NGS-derived data and in 
providing the link between genetic background and clini-
cal manifestations for both rare and common PGx mark-
ers within drug-related genes. However, the clinical value 
and utility of such approaches must be evaluated before 
heading toward implementation in healthcare systems.

In silico tools have been proven a useful platform for 
large-scale genomic data mining and addressing the iden-
tification of functional similarities between various genes 
and variants [52], classifying and assessment of poten-
tial pathogenicity for novel and not interpreted vari-
ants, functional characterization of incidental findings 

Fig. 5 Comparison of ML final selected variants’ importance. 175 final variants by internal and 60 variants by external cross-validation, introduced 
by the RF model as the important variables that may cause ADRs in cardiovascular patients who received particular drugs. The differences and low 
accuracy for external validation must be considered while applying machine learning for small cohorts (see the text for the discussion). Associated 
importance values are available in Additional file 3. ML: machine learning, ADR: adverse drug reactions, RF: random forest
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(IFs) and variants of unknown significance (VUS) in 
different populations with the highest levels of genetic 
diversity [53]. Yet, not all genomic markers (especially 
pharmacovariants) are located within evolutionary con-
served genomic coordinates, and thus would not provide 
straight input data for bioinformatic analysis. Because 
of that, we applied an adapted methodology for related 
PGx data pre-filtration and employed numerous compu-
tational algorithms, including the innovative approach of 
gene walking described herein, with the aim of focusing 
on recognizable genomic markers and their functionality 
assessments in extremely rare variants within pharmaco-
genes. Although gene walking is not expected to demon-
strate one hundred percent true functional consequences 
of novel variants, it may get us closer to the potential 
cellular activity of each variant, especially when the two 
markers are located within the same coding part of the 
gene.

Also, 3D modelling for structurally altered proteins 
may add additional insights about damaging effects of 
pharmacovariants on related molecules. Changing in res-
idues with crucial role in protein conformation, polarity, 
stability, and function will result in negative outcomes in 
handling the related substrates (drugs) within cells. The 
clinical manifestations and patients’ phenotype confirm/
support the predicted consequences as well [54]. In all of 
our five selected variants, amino acid substitution seems 
to affect protein stability, especially in the ANXA11:p.
R230C, CDH23:p.Gly2771Ser, and RYR1:p.R1954H with 
altered H-bonds which may lead to changing in free 
energy levels (altered ΔΔG value). However, no modifi-
cation in H-bonds but altered evolutionary conserved 
residue (POLG structure with mutated variant) may still 
decrease the protein stability and pose a negative func-
tion for that [55].

It is also noteworthy that predictions made using 
machine learning approaches proved to be highly sen-
sitive to the input data used for training the algorithm. 
Moreover, to illustrate the true clinical utility of a tech-
nology, clinical randomized trials that compare treatment 
outcomes through the utilization of artificial intelligence-
derived therapy versus traditional approaches or guide-
line-based treatment must be applied [56]. Random 
forest methods for in silico assessment of pathogenic-
ity for more complex variants in not evolutionary con-
served genes (as well as drug-related genes) have been 
proposed before [57]. Our data, however, demonstrated 
the potential disadvantages of such approaches in rare 
pharmacovariant detection and classification when there 
are a low number of observations (patients with/without 
ADRs). Even though there was an initial desired result 
for the model, low reliability of such approaches in small 
cohorts must be taken into account, especially since it is 

necessary to run external cross-validation to check the 
significance of the model, whether or not complete phe-
notypic data for the patients exists.

Registration of patients’ PGx data in local electronic 
healthcare records (EHR) has already been achieved and 
the PGx card developed as a novel digitalization sys-
tem for quick access to such data [58–60]. The current 
study also added detailed information on novel and/or 
not previously interpreted variants in less studied drug-
related genes into a newly designed local database for 
participants’ PGx actionable data [15]. Included data 
are as follows: applied genotyping technology and bio-
informatics tools, genomic position and frequency for 
the variants, pathogenicity classification, variant con-
sequences, genome-built assembly, and the output of 
functional assessment based on American College of 
Medical Genetics and Genomics/the Association for 
Clinical Genomic Science (ACMG/ACGS) guidelines. 
Also, considerations were added (for research use only) 
for possible interactions and conflicts with current treat-
ment outcomes plus “links to update” data on the related 
gene in PharmGKB. An example of anonymous data is 
available within https:// www. clini calpgx. pl/ data.

Although comprehensive DNA sequencing tech-
nologies like WGS or WES can lead to more in-depth 
exploration of genomic and pharmacogenomic data, 
some intrinsic complications like IFs and VUS still pose 
problems for the results. The current investigation also 
revealed several completely novel variants with no avail-
able primary annotation at all. Further processing of such 
potential biomarkers was not possible as our approaches 
initially relied on already existing information for partial 
assessment to continue our analysis. Moreover, machine 
learning only focuses on variants with more frequencies 
within our samples and simply ignores those variants 
that are seen only in one sample. Furthermore, statistical 
reports are thoroughly affected by the number of obser-
vations, resulting in false positive outcomes and overfit-
ted models. This is expected to be seen when there is a 
large number of features compared to the sample size. 
Although different steps were applied to the data for 
reducing the number of variables and dimensional reduc-
tion of features in the current study, common practice 
in statistics rely on at least 100 observations to do the 
related statistical analysis (i.e., in RF models) and sig-
nificance accuracy to be attained. Indeed, finding and 
collecting patients with ADRs and registered clinical 
manifestations would be another challenge in terms of 
time and multicentre collaboration. In addition, com-
plexity and heterogeneity of the data causes discrep-
ancies between internal and external cross-validation 
AUC values as well. Even though the first computational 
method was adapted for analysing variants neglected by 

https://www.clinicalpgx.pl/data
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ML, which may be the causative markers for carrying 
individuals, the statistical analysis may also be affected by 
sample numbers in different ways. Specially, when some 
false negative results for PGx markers appear while using 
common bioinformatic algorithms for detection.

In addition, haplotype analysis may yield no result 
using available LD calculator tools. This will hap-
pen when in silico approaches bring a few variants of 
interest in separate genomic coordinates with no evi-
dence of any correlation between them. Although the 
beginning of the era of large-scale genotype data and 
experimental phasing has caused the identification of 
haplotypes and LD to be regarded with great impor-
tance, with possible applications in the field of clini-
cal pharmacogenomics, it is still possible to detect no 
significant data in a narrow area of the likely candidate 
region of the human genome with functional variants 
of interest. Currently, PHASE, FastPHASE, BEAGLE, 
MATCH, and IMPUTE2 are among the statistical 
methods with a high impact in modelling population 
haplotype frequencies of unrelated individuals for 
computational phasing [61–63]. The more individuals 
taken into consideration, the better the final estima-
tion. For related individuals, identity by descent (IBM) 
could be informative for filling gaps in determining 
the haplotype phase. The association between pairs of 
sites, or loci, is the main point of LD, but the large-
scale data era is providing information for associations 
between large intervening chromosome regions named 
long-range linkage disequilibria (LRLD). Sved and 
coworkers completed an analysis based on HapMap 
phase 3 data [64]. They concluded that possible asso-
ciations between blocks on different chromosomes for 
particular regions might be observed [65, 66].

It has been proposed that bringing multi-omics data 
into PGx studies may result in more invaluable infor-
mation on different regulatory mechanisms and fur-
ther facilitation for drug discovery, especially in cancer 
PGx [67, 68]. Large amounts of high-dimensional data 
alongside the machine learning approaches for bio-
medical computing will fuel future research on geno-
type–phenotype correlations in the area of precision 
medicine [69]. Such methods would be expected to 
increase our understanding of PGx markers’ true func-
tions within cellular pathways and related clinical out-
comes as well [70].

However, advanced non-in silico analysis of PGx 
results may still demonstrate closer to real conse-
quences of PGx variants. Because of that, deep initial 
computational filtration of large-scale genomic data to 
achieve a reduced number of the most potentially dam-
aging markers for in vitro functional characterizations 

seems reasonable. Today, genome editing and CRISPR 
modified cell cultures for pharmacovariants within 
ADME genes have been introduced and the future of 
such methods speculated as well [71, 72]. The same 
can be applied for top scored damaging variants in the 
current study. Here, we may choose the cell culture 
media from the related tissue, which shows the high-
est amount of gene expression for our candidate vari-
ant, and analyse the outcome of the CRISPR-guided 
genetic mutation on drug metabolism as well.

Conclusions
The prediction of functional outcomes for every single 
identified pathogenic/likely pathogenic genetic variant on 
drug response within high throughput DNA sequencing 
results is the major challenge for fast development of PGx 
guidelines and subsequent test implementation in the 
daily clinical setting. While some progress in computa-
tional analysis of large genomic variants has already been 
made, there is still an essential need for the development 
of tools, methods, and algorithms that are able to provide 
functional assessments for all pharmacovariants in both 
large-scale datasets and small cohorts while performing 
haplotype/diplotype inference and phenotype estima-
tion. This development is crucial for the true integration 
of advanced genome profiling technologies, especially 
NGS-guided treatment modifications, into daily clinical 
practice. Artificial intelligence methods may help in find-
ing hidden algorithms and patterns within PGx data and 
perform the clinical classification of rare pharmacovari-
ants as well. But such approaches are clearly dependent 
on the type of input data and the number of observations. 
Advanced technologies may someday enable us to inves-
tigate gene-drug interactions even before medications are 
released on the market and used in clinic.
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