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Abstract 

Background Cancer predisposition is most often studied in the context of single cancers. However, inherited cancer 
predispositions can also give rise to multiple primary cancers. Yet, there is a paucity of studies on genetic predisposi‑
tion in multiple primary cancers, especially those outside of well‑defined cancer predisposition syndromes. This study 
aimed to identify germline variants associated with dual primary cancers of the breast and lung.

Methods Exome sequencing was performed on germline DNA from 55 Singapore patients (52 [95%] never‑smokers) 
with dual primaries in the breast and lung, confirmed by histopathology. Using two large control cohorts: the local 
SG10K_Health (n = 9770) and gnomAD non‑cancer East Asians (n = 9626); and two additional local case cohorts 
of early‑onset or familial breast cancer (n = 290), and lung cancer (n = 209), variants were assessed for pathogenicity 
in accordance with ACMG/AMP guidelines. In particular, comparisons were made with known pathogenic or likely 
pathogenic variants in the ClinVar database, pathogenicity predictions were obtained from in silico prediction soft‑
ware, and case–control association analyses were performed.

Results Altogether, we identified 19 pathogenic or likely pathogenic variants from 16 genes, detected in 17 of 55 
(31%) patients. Six of the 19 variants were identified using ClinVar, while 13 variants were classified pathogenic 
or likely pathogenic using ACMG/AMP guidelines. The 16 genes include well‑known cancer predisposition genes such 
as BRCA2, TP53, and RAD51D; but also lesser known cancer genes EXT2, WWOX, GATA2, and GPC3. Most of these genes 
are involved in DNA damage repair, reaffirming the role of impaired DNA repair mechanisms in the development 
of multiple malignancies. These variants warrant further investigations in additional populations.

Conclusions We have identified both known and novel variants significantly enriched in patients with primary breast 
and lung malignancies, expanding the body of known cancer predisposition variants for both breast and lung cancer. 
These variants are mostly from genes involved in DNA repair, affirming the role of impaired DNA repair in the predis‑
position and development of multiple cancers.
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Introduction
Multiple primary cancers (MPCs) refer to two or more 
malignancies arising independently in different organs 
of an individual that are not due to recurrence or 
metastasis. MPCs occur at a frequency of between 2 to 
17% within 20  years of follow-up [1]. An estimated 1% 
(6,269/620,429) of female primary breast cancer patients 
develop primary lung cancer, based on data obtained 
from the Surveillance Epidemiology, and End Results 
(SEER) Program [2]. Genetic susceptibility, malignancy 
resulting from previous anticancer treatments, lifestyle 
factors such as smoking and alcohol consumption and 
environmental influences are some factors that increase 
the risk for MPCs [1]. For example, breast cancer patients 
who have undergone radiotherapy are at an increased 
risk of having a second malignancy of lung cancer [3, 4].

MPCs occur in various combinations, such as breast 
and ovarian cancer in hereditary breast and ovarian can-
cer [5] or colon and endometrial cancer in Lynch syn-
drome [6]. However, for other MPCs, such as for breast 
and lung cancer, there is a paucity of information on can-
didate cancer predisposition genes. To date, there has 
been a study that has identified GSN as a candidate gene 
significantly associated with the development of lung 
cancer in patients with a history of breast cancer, based 
on germline whole-exome sequencing (WES) of 28 cases 
[7].

In a landmark study on MPCs, whole genome sequenc-
ing (WGS) was performed on 460 individuals from 440 
families to identify variants in 83 known cancer-predis-
position genes. Tumor combinations included breast 
and colorectal cancer (51/883; 5.8%); breast and ovarian 
(34/883; 3.9%); breast and thyroid (23/883; 2.6%); and 
breast and lung cancer (12/883; 1.4%) [8]. Pathogenic 
variants were identified in moderate- and high-risk can-
cer predisposition genes in 15.2% of probands (67/440), 
but none of these patients had been diagnosed with pri-
mary breast and lung cancer [8]. More recently, a study 
has assessed genetic susceptibility to MPCs (n = 6429) 
across 36 organ sites, through WES of two multi-ancestry 
study populations [9]. A total of 22 variant-phenotype 
associations were identified, which included rare and 
common variants. Gene-based burden test showed that 
9.52% and 6.78% of individuals with breast and lung can-
cer had predicted loss of function variants in BRCA1 and 
BRCA2, respectively. Hence, there are few in-depth WGS 
or WES studies focusing on the combination of primary 
malignancies of the breast and lung. The rationale for 
this study was to elucidate the underlying genetic pre-
disposition to account for the occurrence of these dual 
malignancies.

Given that lung cancer is one of the most common 
second primary in breast cancer patients [10], we have 

performed WES on germline DNA from a cohort of 55 
patients with both primary breast and primary lung can-
cer to identify candidate predisposition variants. Vari-
ants were classified as pathogenic or likely pathogenic for 
cancer predisposition in accordance with ACMG/AMP 
guidelines, using annotations from the ClinVar database 
or by evaluating the guidelines. The overall study design 
is illustrated in Fig. 1. We have identified 19 pathogenic 
or likely pathogenic variants in 16 genes, detected in 
17 of our 55 (31%) patients. Most of these 16 genes are 
well-known and involved in DNA damage repair, such as 
BRCA2, TP53, and RAD51D.

Results
Clinicopathological characteristics of our study cohort
Information on the demographics, age of onset, ethnic-
ity, family history, and clinicopathological characteristics 
of the 55 patients with primary breast and lung cancers 
is provided in Table 1. A large proportion of patients in 
our study (94.5%) never smoked. Slightly more than half 
(54.5%) of the patients’ breast and lung cancers occurred 
at the same right or left side. Thirty-eight (69.1%) sub-
jects developed breast cancer before lung cancer; radio-
therapy to the breast or chest wall had been administered 
to 11 of them, with 6 of these patients having ipsilateral 
breast and lung cancers. Six (10.9%) patients had bilateral 
breast cancers and four (7.3%) patients had synchronous 
dual lung primaries, including one with bilateral breast 
cancer. Of the 45 lung adenocarcinoma never-smoker 
patients with known EGFR status, 33 (73.3%) had EGFR-
mutated tumors (Table 1). We did not observe an asso-
ciation between hormone receptor status with BRCA1, 
BRCA2 or EGFR mutation status in lung adenocarci-
noma patients (Additional file 1: Table S1).

ClinVar‑recorded pathogenic or likely pathogenic variants
We identified six variants in five patients which were 
recorded as pathogenic or likely pathogenic variants by 
multiple submitters on ClinVar in the context of cancer 
predisposition syndromes (Fig.  2). Expectedly, these six 
variants were all in known cancer genes related to DNA 
damage repair (gene set "DNA repair" in the Gene Ontol-
ogy database): FANCA, PALB2, BRCA2, BRIP1, RAD51D, 
and TP53.

Newly classified pathogenic or likely pathogenic variants
Applying the ACMG/AMP guidelines [11] on all vari-
ants except for the six ClinVar-recorded pathogenic or 
likely variants, we newly classified seven pathogenic 
variants and six likely pathogenic variants in 13 genes, 
in 12 patients (Table  2). These guidelines include evi-
dence of pathogenicity from computational and pre-
dictive data (Additional file  1: Tables  S2–S5), as well as 
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from population data (Additional file  1: Table  S6). The 
12 patients with newly classified pathogenic or likely 
pathogenic variants do not overlap with the five patients 
with ClinVar-recorded pathogenic or likely pathogenic 
variants.

As with the ClinVar-recorded variants, most of these 
genes are well-known cancer genes or DNA damage 
repair genes: TP53, MSH2, FANCA, ERCC6, BRIP1, 
WRN, FANCI, KMT2A, and PTEN (Additional file  1: 
Table S7); though some are lesser known: EXT2, WWOX, 
GATA2, and GPC3. The EXT2, WWOX, and GATA2 vari-
ants were backed by very strong (“PVS1”) computational 
and predictive data, as there are pathogenic stop-gain 
variants for each gene in ClinVar associated with heredi-
tary cancer-predisposing syndrome, malignant tumor 

of the esophagus, and susceptibility to acute myeloid 
leukemia, respectively (Additional file  1: Table  S2). The 
GPC3 variant was backed by moderate (“PM5”) compu-
tational and predictive data as it modifies the same amino 
acid residue as another pathogenic missense variant in 
ClinVar associated with Wilms tumor (Additional file 1: 
Table S4).

Despite each variant being present in only one het-
erozygous patient in the dual primary breast and lung 
cohort of 55 patients, they were all enriched in that case 
cohort when compared to gnomAD non-cancer East 
Asians (n = 9626) or SG10K_Health, a local cohort of 
healthy volunteers (n = 9770) as per the ACMG/AMP 
guidelines. As expected of rare variants, only five of 
these 13 variants were also detected in a local cohort of 

Fig. 1 Overview of the study design
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Table 1 Demographic and clinicopathological characteristics of patient cohort

Characteristics (n = 55) n (%)

Ethnicity

Chinese 50 (90.9)

Others 5 (9.1)

Smoking status

Never‑smoker 52 (94.5)

Smoker 3 (5.5)

Temporal occurrence of lung and breast cancer diagnosis

Lung cancer occurred first 5 (9.1)

Breast cancer occurred first 38 (69.1)

Synchronous (within 6 months) 12 (21.8)

Family cancer history (any primary)

First degree 27 (49.1)

Second degree 4 (7.3)

No known history 24 (43.6)

Family history of breast and/or lung cancer

First degree 8 (14.5)

Second degree 2 (3.6)

Breast cancer Lung cancer

Diagnosis year 1976–2018 Diagnosis year 2005–2018

Median age, years (range) 55 (34–81) Median age, years (range) 65 (48–78)

Histology n (%) Histology n (%)

Ductal carcinoma in situ (DCIS) 5 (9.1) Adenocarcinoma (ADC) 44 (80)

Infiltrating ductal carcinoma (IDC) 33 (60) Neuroendocrine carcinoma

Infiltrating lobular carcinoma (ILC) 4 (7.3) Carcinoid 2 (3.6)

DCIS + DCIS (bilateral) 1 (1.8) SCLC 3 (5.5)

IDC + DCIS (bilateral) 2 (3.6) Undifferentiated 1 (1.8)

IDC + ILC (bilateral) 2 (3.6) Lymphoepithelioma‑like carcinoma (LELC) 1 (1.8)

IDC + unknown subtype (bilateral) 1 (1.8) ADC + Carcinoid (bilateral, synchronous) 1 (1.8)

Mucinous adenocarcinoma 3 (5.5) ADC + ADC (bilateral, synchronous) 1 (1.8)

Subtype not specified (NOS) 4 (7.3) ADC + ADC (same side, synchronous) 2 (3.6)

Staginga Stagingb

0 6 (10.9) 0 0 (0.0)

I/II 44 (80.0) I/II 26 (47.3)

III 4 (7.3) III 7 (12.7)

IV 1 (1.8) IV 22 (40.0)

Hormone and HER2 statusc EGFR status (Adenocarcinoma only, n = 49)

ER Not tested 4 (8.2)

Positive 36 (65.4) Tested 45 (91.8)

Negative 10 (18.2) Mutant 33 (73.3*)

Not tested/unknown 9 (16.4) Exon19 del 19 (57.6^)

PR L858R 11 (33.3^)

Positive 30 (54.5) Others 3 (9.1^)

Negative 15 (27.3) Wild type 12 (26.7*)

Not tested/unknown 10 (18.2)

HER2

Positive 4 (7.3)

Negative 28 (50.9)

Not tested/unknown/equivocal 23 (41.8)
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lung cancer patients (n = 209) of which only three were 
enriched in that lung cancer cohort versus the two con-
trol cohorts. However, none of these 13 variants could be 
found in a local cohort of early-onset or familial breast 
cancer patients (n = 290).

Some variants satisfied at least one pathogenicity crite-
ria, but not enough to be classified as pathogenic or likely 
pathogenic. In total, there are 33 such variants of uncer-
tain significance (VUS) (Additional file 1: Table S8).

Clinical features of patients with pathogenic or likely 
pathogenic variants
Altogether, 17 of 55 (31%) patients had pathogenic or 
likely pathogenic variants (Table 3). Of these, 6 variants, 
which are clinically annotated as pathogenic/likely patho-
genic in ClinVar, were detected in 9% (5/55) of patients, 
and 13 newly classified variants were found in 22% 
(12/55) of patients (Additional file 1: Table S9). Notably, 
each of these variants is unique to a single patient, and 

Table 1 (continued)
*Over Tested cases (total n = 45)
^ Over Mutant cases (total n = 33)
a For bilateral cancers, higher stage was taken
b All 4 multi-lesion cases are stage I
c For bilateral cancers, higher stage’s status was presented

Fig. 2 ClinVar‑recorded pathogenic or likely pathogenic variants found in 55 patients with dual breast and lung cancer
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2 patients were carriers for two variants each: Patient 
H3168 had stop gain variants in FANCA and PALB2, 
and had a sister with lung cancer, and another sister with 
breast cancer. Patient H4326 had a nonsynonymous vari-
ant in MSH2 and a non-frameshift deletion in PTEN, and 
had a family history of two sisters having lung cancer. 
There was no observed association between the presence 
of pathogenic or likely pathogenic variants and EGFR 
mutation status (Additional file 1: Table S10).

Stop gain and nonsynonymous variants were the most 
prevalent among our patient cohort, followed by splice 
site variants. Among patients with pathogenic/likely 
pathogenic variants, 59% (10/17) of patients had a family 
history of cancer. Specifically, only 4 patients had a fam-
ily history of breast and/or lung cancer. Sixteen of our 17 
patients identified as ethnic Chinese, with one patient, 
H2552, who is of Indian ethnicity. Detailed clinical fea-
tures of the 17 patients with pathogenic/likely pathogenic 
variants are presented in Table 3.

Discussion
There are limited WGS or WES studies on patients with 
multiple primary cancers. To the best of our knowledge, 
we report here the largest WES on patients with dual pri-
mary cancers of the breast and lung. Overall, our study 
uncovered that 31% (17/55) of our patients with dual pri-
mary breast and lung cancer harbor pathogenic or likely 
pathogenic variants in cancer associated genes.

The majority of the patients in our cohort had devel-
oped breast cancer before lung cancer. This is in concord-
ance with the findings of other studies that have observed 
that primary lung cancer occurred after a previous pri-
mary breast cancer [10], which may be related to the 
higher survival probability after diagnosis of breast can-
cer compared to lung cancer. The interval between the 
development of a second primary lung cancer after breast 
cancer was less than 10  years in 25.5% of our cohort, 
while 34.5% of our patients developed lung cancer 10 to 
20 years later. This was in contrast to a WES study com-
prising 60 breast cancer survivors from Italy, where a sec-
ond primary lung cancer developed after approximately 
7  years [7]. That cohort had 46.7% smokers whereas 
94.5% of our cohort were never-smokers.

Radiotherapy may result in increased risk of subse-
quent lung cancer on the same side as the breast cancer 
where the radiation was administered [3, 4], though the 
risk may be lower with modern radiotherapy techniques. 
Of 194,981 women with nonmetastatic invasive breast 
cancer who had been treated with mastectomy, women 
who had also been treated with radiotherapy had a mod-
erate increased risk for developing ipsilateral lung car-
cinoma after 10  years, but there was no increased risk 
for the contralateral lung [12]. Of the 11 patients in our 

study who had received radiotherapy for the treatment of 
breast cancer, only 6 had ipsilateral breast and lung can-
cer. Thus, the lack of predominance of patients having 
received radiotherapy later developing lung cancer on the 
same side supports the fact that these cancers arose inde-
pendently without this "iatrogenic cause". Hence other 
factors such as intrinsic genetic predisposition may play a 
role in the development of these lung cancers.

There is an ongoing unmet need in identifying risk 
alleles for lung and breast cancers to optimize genetic 
screening strategies. This is especially important in lung 
cancer screening in Asia where ongoing efforts to deter-
mine the optimal strategy especially in “at risk” never 
smokers.  A recent study has identified germline patho-
genic variants in 4.3% (222/5,118) of patients who had 
undergone genomic profiling. Of these 222 patients, 
pathogenic variants in DNA damage repair pathway 
genes were detected in 193 patients, including in BRCA2 
(n = 54) [13]. Germline susceptibility genes warrant 
further investigation as to their role in risk prediction 
models.

Among the 55 patients in our cohort who had dual can-
cers in the breast and lung, we identified variants in 10 
DNA damage repair genes in 12 patients, which included 
FANCA, PALB2, BRCA2, BRIP1, RAD51D, TP53, 
ERCC6, MSH2, WRN, and FANCI, with PALB2, BRCA2, 
RAD51D, TP53 and PTEN being known breast cancer 
susceptibility genes [14–17]. Germline variants in many 
of these genes are frequently observed in cancer patients 
referred for genetic testing, including those with multiple 
primary malignancies. For example, Lynch syndrome is 
often associated with pathogenic variants in MSH2, while 
pathogenic variants in BRCA1 and BRCA2 are commonly 
associated with hereditary breast and ovarian cancer [15, 
18, 19].

Our study extends the findings of previous research 
proposing that DNA damage repair pathways contrib-
ute to cancer development, including in breast and lung 
cancers [20]. Specifically, our results suggest that DNA 
damage repair pathways may play a critical role in the 
development of dual primary breast and lung cancer, 
as a significant proportion of the variants we found are 
implicated in DNA repair. For example, the FANCA and 
FANCI genes which have been implicated in breast can-
cer, had pathogenic variants detected in both breast can-
cer patients and individuals with hereditary breast and 
ovarian cancer (HBOC) [21–24]. We also identified path-
ogenic variants in other DNA repair genes such as WRN 
and ERCC6. WRN is linked to Werner syndrome, a rare 
disease characterized by premature aging and increased 
predisposition to cancer. Multiple studies have reported 
an association between WRN variants and hereditary 
breast cancer as well as HBOC [23, 25, 26]. Additionally, 
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germline variants and genetic polymorphisms in the 
ERCC6 gene have been associated with early onset breast 
cancer and an elevated risk of lung cancer, respectively 
[27, 28].

The exact mechanism by how germline variants in 
DNA damage repair genes lead to MPCs remains unclear. 
However, exposure to carcinogens and treatments like 
chemotherapy and radiation used to treat the first cancer 
can exacerbate the effects of these variants, increasing 
the risk of developing a second primary cancer [29]. A 
recent study has also established associations between air 
pollution and lung cancer in non-smokers or light smok-
ers [30].

In addition, our study identified variants in several 
lesser-known cancer genes, including EXT2, WWOX, 
GATA2, and GPC3. To the best of our knowledge, the 
specific germline variants found in our study have not 
been previously reported in any cancer-related studies. 
However, other germline alterations have been detected 
in these genes. For example, in EXT2, germline variants 
(NP_000392.3:p.Trp79* and NP_997005.1:p.Trp46*) are 
associated with hereditary multiple osteochondromas, a 
non-cancerous condition that can develop into chondro-
sarcoma [31]. Another study reported that germline vari-
ants (p.W606X, IVS1762-1G > A, p.T507fs, and p.T642fs) 
in EXT2 were found in 4 out of 1026 patients with non-
small cell lung cancer [32]. Interestingly, a female patient 
with early-onset multiple primary tumors was reported 
to have a germline homozygous WWOX variant (NC_0
00016.9:g.79245877_79245881dup) [33]. Multiple ger-
mline variants in GATA2 predispose individuals to famil-
ial myelodysplastic/acute leukemia syndrome [34, 35], 
while germline GPC3 variants are observed in Simpson-
Golabi-Behmel syndrome, an overgrowth syndrome that 
increases the risk of developing Wilms tumor, hepato-
blastoma, and neuroblastoma [36, 37].

None of the 19 pathogenic or likely pathogenic vari-
ants identified in the dual primary breast and lung 
cohort were found in the local cohort of 290 early-onset 
or familial breast cancer patients (Additional file  1: 
Table S6). This latter cohort comprised of BRCA -negative 
cases. The absence of these dual primary breast and lung 
variants in the breast cancer cohort might be explained 
by the high genetic heterogeneity of these variants, with 
each of these 19 variants detected in only one dual breast 
and lung cancer patient. Such high genetic heterogene-
ity has been observed in BRCA -negative familial high-
grade serous ovarian carcinoma patients, where WES 
had detected rare loss-of-function variants that occurred 
in less than 0.5% of individuals [38]. Our findings suggest 
that patients with dual breast and lung cancer could have 
additional genes involved in cancer predisposition, other 

than genes known to be associated with breast cancer 
predisposition.

We have compared our variants against those 
detected by other studies on MPCs. One study had per-
formed WES on 28 of 60 patients from Italy with breast 
and lung cancer, and had identified one gene, GSN, 
to be significantly enriched [7]. However, GSN vari-
ants were not observed in our study. This discrepancy 
could be attributed to differences in the ethnic distri-
bution between our study and the previous study, or to 
the small sample sizes of both studies highlighting the 
impact of genetic heterogeneity on variant detection. 
A second study on patients with MPCs had focused 
only on 83 known cancer predisposition genes. How-
ever, pathogenic variants in these 83 genes were not 
observed in our patients with primary breast and lung 
cancer [8]. In a third study, gene-based burden test-
ing showed that there was an increase in carriers with 
BRCA1 and BRCA2 loss of function variants for breast 
cancer patients with an additional lung cancer [9]. A 
pathogenic BRCA2 variant was also found in one of our 
55 patients.

Our study has also identified a high rate of VUS, with 
63% (33/52) of variants detected in 31 out of 55 patients 
(56%) patients (Additional file 1: Table S9). This is com-
parable to the overall VUS rate of 49.9% reported in 
another cohort of Singaporean patients who underwent 
genetic testing [39]. These findings align with our previ-
ous studies on Asian populations, which have consist-
ently shown higher VUS rates compared to populations 
of European descent, possibly due to the underrepresen-
tation of Asians in reference databases [40–42]. However, 
as more data becomes available, VUS can be reclassified 
[43, 44]. Previous studies have reported VUS reclassifica-
tion rates of 6–15%, with a Singaporean study reporting 
a reclassification rate of 6.7% over a 6-year period [39]. 
Of these reclassifications, 94.1% of VUS were down-
graded to benign or likely benign variants, while 5.9% 
were upgraded to pathogenic or likely pathogenic vari-
ants. Such reclassifications have a significant impact on 
the risk assessment and management of patients with 
suspected or confirmed hereditary cancer, particularly in 
understudied populations.

A limitation of this study is the small sample size 
(n = 55) utilized in this cohort, which limits the statistical 
power of the study, and this may have led to no associa-
tions observed between the occurrence of our pathogenic 
variants and clinicopathological features. However, this 
is inevitable since the occurrence of dual primary breast 
and lung cancer is relatively uncommon. Another limi-
tation was that we were unable to perform segregation 
analysis and validation analysis on additional patients 
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with primary cancers of both the breast and lung, due 
to the unavailability of DNA samples. Therefore, confir-
mation of the variants identified in this study in larger 
cohorts of patients with dual cancers of the breast and 
lung is warranted.

Conclusions
In summary, through employing WES, we have identi-
fied variants that are significantly enriched in patients 
with primary malignancies in both the breast and lung. 
This study represents the largest cohort of patients with 
multiple primaries in the breast and lung, that have been 
sequenced. Altogether, we have identified 19 pathogenic 
or likely pathogenic variants in 16 genes, detected in 17 
patients. Ten of these 16 genes are DNA damage repair 
genes, underscoring the importance of these genes in 
patients with dual malignancies of the breast and lung.

Materials and methods
Patient samples
An overview of our study design is shown in Fig.  1. 
Peripheral blood or saliva samples were obtained from 
55 patients with primary breast and primary lung cancer 
from the National Cancer Centre Singapore. The later-
occurring cancer was verified as a primary cancer by 
histopathology. Written informed consent was obtained 
from all patients and the study was approved by the Sin-
gHealth Centralised Institutional Review Board (CIRB 
Ref: 2018/2147 and 2018/2963). The samples were retro-
spectively selected.

Whole‑exome sequencing (WES), quality control, 
and variant annotation
Genomic DNA was extracted from blood or saliva sam-
ples. Saliva samples were used when blood samples were 
not available. Altogether, 15 of our 55 cases used DNA 
extracted from saliva samples. The Agilent SureSelect 
Human All Exon V6 kit (Agilent Technologies, CA, USA) 
was used to prepare sequencing libraries from DNA sam-
ples and the Illumina Novaseq 6000 platform was used 
for 150 bp paired-end sequencing of up to 100X by a ser-
vice provider, Novogene AIT Singapore.

For germline variant calling, Genome Analysis Toolkit 
(GATK) v4.2.6.0 with the hg38 reference genome was 
used [45]. Each sample was individually aligned, recali-
brated for improved quality scores using GATK’s 
Base Quality Score Recalibration (BQSR), individu-
ally re-assembled to form haplotypes (GVCF files), then 
jointly-called to obtain genotypes (VCF file). Thereafter, 
technical artifacts were removed using GATK’s Variant 
Quality Score Recalibration (VQSR). In addition, all case 
variants reported in this study were visually checked with 

Integrative Genomics Viewer (IGV), and variants with 
low read depths or imbalanced variant allele frequencies 
were omitted. Case variants were annotated for func-
tional consequence using ANNOVAR [46], REVEL v1.3 
using pre-computed scores, [47] CADD v1.6 scores using 
the CADD offline scoring program [48], SIFT 4G using 
the pre-computed SIFT 4G annotator [49], PolyPhen-2 
using the pre-computed variant call format (VCF) data-
base file [50], and MutationTaster using the Mutation-
Taster2021 webserver [51]. Case variants were lifted-over 
from hg38 to hg19 using GATK LiftoverVcf (Picard) with 
UCSC chain files for PolyPhen-2 and MutationTaster 
annotation as these services only supported hg19.

Identification of ClinVar pathogenic or likely pathogenic 
variants
The weekly release of the ClinVar database dated 18 Feb-
ruary 2023 was used. Relevant cancer conditions or can-
cer predisposition syndromes were manually selected 
from the list of all conditions in ClinVar (Additional file 1: 
Table  S11). Variants were defined as pathogenic and 
likely pathogenic variants when the variants were inter-
preted as pathogenic or likely pathogenic by an expert 
panel, practice guidelines, or multiple submitters with 
named criteria and without conflicting interpretations. 
Hereafter, only pathogenic and likely pathogenic variants 
satisfying these levels of evidence in this list of relevant 
conditions are considered in our analysis as “ClinVar var-
iants”; while other variants such as those evidenced only 
by single submitters or with conflicting interpretations 
are ignored.

ACMG/AMP computational and predictive data criteria
Case variants were evaluated for five criteria within the 
ACMP/AMP group of Computational and Predictive 
data criteria as described previously [11].

For PVS1, defined as a predicted null variant in a gene 
where loss of function is a known mechanism of disease, 
we first selected genes with pathogenic ClinVar vari-
ants functionally annotated by ANNOVAR as splice site 
changes, frameshift indels, start-losses, or stop-gains. 
Then, we selected case variants with the same functional 
annotations, also in those selected genes.

For PS1, defined as the same amino acid change as an 
established pathogenic variant, we selected case variants 
sharing at least one amino acid change with a pathogenic 
ClinVar variant: the case variant and ClinVar variants 
must change the same residue to the same amino acid.

For PM5, defined as a novel missense change at an 
amino acid residue where a different pathogenic missense 
change has been seen before, we selected case variants 
sharing at least one modified residue with a pathogenic 
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ClinVar variant: the case variant and ClinVar variant must 
change the same residue, but to different amino acids.

For PM4, defined as a protein length changing vari-
ant, we selected case variants functionally annotated as 
non-frameshift indels in non-repeat regions (identified 
by the UCSC Genome Browser track “simpleRepeats,” 
last updated 18 October 2022) or as stop-losses, in genes 
with at least one pathogenic or likely pathogenic ClinVar 
variant.

For PP3, defined as a variant having multiple lines 
of computational evidence supporting a deleterious 
effect on the gene/gene product, we selected case vari-
ants with no benign predictions and at least two path-
ogenic/deleterious predictions from REVEL, CADD, 
SIFT, PolyPhen-2 (HumDiv-trained Polyphen-2 model 
or HumVar-trained Polyphen-2 model), and Mutation-
Taster. For REVEL, a genomic variant was considered 
pathogenic if all its protein changes had REVEL scores 
greater than 0.68, corresponding to a specificity of 
95%); or benign if any of its protein changes had REVEL 
scores less than or equal to 0.32, for symmetry with the 
0.68 pathogenicity threshold. For CADD, a genomic 
variant was considered pathogenic if it had PHRED-
scaled score greater than 20, corresponding to the top 
0.1% of variants by pathogenicity.

ACMG/AMP population data criteria
Case variants satisfying any of the five pathogenicity 
criteria above were further evaluated for three crite-
ria within the ACMP/AMP group of Population Data 
criteria.

For BS1, defined as a variant having a minor allele 
frequency (MAF) that is too high for a disorder, we 
excluded variants with a minor allele frequency greater 
than 1% in either gnomAD (EAS) or SG10K_Health con-
trol cohorts. The gnomAD (EAS) control cohort refers 
to the 9,626 non-cancer exomes and whole-genomes of 
the gnomAD v2.1.1 East Asian (EAS) subpopulation [52]. 
The SG10K_Health control cohort comprises the whole 
genome sequences of 9,770 healthy Chinese, Indian, and 
Malay Singaporeans [53].

For PM2, defined as a variant that is absent in popula-
tion databases, we selected variants not recorded in both 
gnomAD (EAS) and SG10K_Health control cohorts. This 
is different and more conservative than selecting variants 
with zero allele count, as a variant can be recorded with 
zero allele count in the EAS subpopulation if it is present 
in any other gnomAD subpopulation. Instead, an unre-
corded variant in gnomAD (EAS) represents a variant 
not found in any gnomAD subpopulation.

For PS4, defined as a variant having a prevalence in 
affected individuals that is statistically increased over 

controls, we select variants statistically enriched in cases 
at p < 0.05, in at least one of six pairwise case–control 
association analyses between three case cohorts and the 
two control cohorts gnomAD (EAS) and SG10K_Health; 
but exclude any variant statistically enriched in controls 
in any of the six comparisons.

The three case cohorts used are: (1) the 55 patients with 
dual primary breast and lung cancers, subjected to WES 
in this study; (2) a cohort of 290 patients with early-onset 
(≤ 40 years old) or familial breast cancer from Singapore 
[40]; and (3) a lung cancer case cohort of 209 lung adeno-
carcinoma patients from Singapore [54].

Case–control association analyses were performed 
using a two-tailed Fisher’s Exact Test. To enable the sta-
tistical test of unrecorded variants in the two control 
cohorts, allele numbers (the number of alleles that were 
successfully genotyped at that position) were linearly 
interpolated from the two closest variants within 150 bp 
upstream and downstream of the unrecorded variant.

Identification of newly classified pathogenic or likely 
pathogenic variants
Following the ACMG/AMP guideines [11] case variants 
were classified as pathogenic if they satisfied patho-
genicity criteria PVS1 and PS4, or PS1 and PS4. Case 
variants were classified as likely pathogenic if they satis-
tified pathogenicity criteria PVS1 and PM2, PS1 and 
PM2, PS4 and PM4, or PS4 and PM5. Variants which 
satisfied some pathogenicty criteria but could not be 
classified as pathogenic or likely pathogenic were clas-
sified as variants of uncertain significance. Any vari-
ant satisfying benign criterion BS1 was excluded from 
consideration.

Statistical analysis, software, and additional databases
The Fisher’s Exact Test was performed using the R stats 
package [55]. The protein domains shown for illustra-
tion were obtained from the NCBI Conserved Domain 
Database, accessed 11 April 2023 [56]. Pathways were 
obtained using the online “Investigate Human Gene Sets” 
tool of the Gene Set Enrichment Analysis website, com-
puting overlaps with the Gene Ontology Biological Pro-
cess database without correction for the universe set of 
genes and pathways, accessed 12 April 2023 [57].
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