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Abstract 

Background Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide association 
studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) appearing in non-coding genomic 
regions in CVDs. The SNPs may alter gene expression by modifying transcription factor (TF) binding sites and lead 
to functional consequences in cardiovascular traits or diseases. To understand the underlying molecular mechanisms, 
it is crucial to identify which variations are involved and how they affect TF binding.

Methods The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to identify regulatory 
SNPs, which alter the binding behavior of TFs and link GWAS SNPs to their potential target genes for six CVDs. The 
human-induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) 
and self-organized cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and cardiac 
contractility were assessed.

Results By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD GWAS data. 
These were associated with hundreds of genes, half of them non-coding RNAs (ncRNAs), suggesting novel CVD 
genes. We experimentally tested 40 CVD-associated non-coding RNAs, among them RP11-98F14.11, RPL23AP92, 
IGBP1P1, and CTD-2383I20.1, which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. 
Further experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker genes, reduced 
hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac contractility in hiPSC-CMs and MCOs.

Conclusions IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size and cardiac 
function in our disease models. Our data suggest ncRNA IGBP1P1 as a potential therapeutic target to improve cardiac 
function in CVDs.
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Introduction
Cardiovascular diseases (CVDs) are among the most 
common causes of death in the world. Finding novel 
molecular biomarkers is an important research goal, to 
enable development of novel early detection, treatment 
and intervention strategies.

Recently, non-coding RNAs (ncRNAs) have been found 
to play important roles in cellular processes related to 
many CVDs [1–3]. The ncRNA HERNA1 (hypoxia-
inducible enhancer RNA 1), which is produced by direct 
hypoxia-inducible factor 1α binding to an hypoxia 
response element, modulates the cardiac growth, meta-
bolic, and contractile gene program in pressure-overload 
heart disease [4]. Similarly, the ncRNA CARMEN is 
derived from a human super-enhancer (SE) and regulates 
cardiomyocyte differentiation and homeostasis in human 
cardiac precursor cells [5]. Moreover, inhibition of the 
ncRNA MEG3 (maternally expressed gene 3) decreased 
cardiac fibrosis and improved diastolic performance by 
targeting cardiac matrix metalloproteinase-2 (MMP-2) 
[6].

Different approaches can be used to associate a ncRNA 
with the pathology of a CVD. Genome-wide methods 
have been especially successful using different types of 
assays measuring RNA [7, 8], genome [9], epigenome [10] 
variation or image-measured physiological differences 
[11] in disease models or from patient data directly.

Genome data in the form of mutations, such as single 
nucleotide polymorphisms (SNPs), that are associated 
with CVDs through genome-wide association studies 
(GWAS), provide an interesting source of information 
for detection of relevant ncRNAs. In particular, because 
many mutations found associated with CVDs reside out-
side of protein-coding genes and their functional role 
is often unknown [9], However, it is difficult to connect 
SNPs that reside in the non-coding regions of the genome 
with potential biological functionality.

One promising direction for deciphering the func-
tional role of such non-coding SNPs is variant annotation 
methods that use transcription factor (TF) binding or 
epigenetic information such as DNase1-seq, ATAC-seq 
or histone ChIP-seq data [12, 13]. To predict TF binding, 
different approaches exist using position weight matri-
ces (PWMs) [14, 15], that are available for the majority 
of human TFs, or more complex methods such as deep 
learning-based models [16, 17], which are currently more 
limited due to lack of TF-specific data. Specific statistical 
methods have been developed to assess whether a SNP 
has a regulatory effect on TF binding [18–20].

Alternatively, SNPs can be categorized as function-
ally important by a computational model that assesses 
whether changes in the DNA sequence will affect gene 
or epigenome activity more generally [21–23]. In other 

words, all these methods assess whether a SNP is likely 
to have a regulatory effect and may allow to predict the 
tissue and cell-type relevance of such an effect [24–26].

While prioritization of regulatory SNPs (rSNPs) with 
approaches mentioned above is important and an area 
of active research, another problem is to associate rSNPs 
with their potential target genes. Several approaches for 
linking regions to target genes exist using diverse data 
types [27, 28], such as the Activity-by-Contact model [29] 
or STITCHIT [30]. For example, the EpiRegio database 
[31] contains 2.4 million regulatory elements (REMs) that 
were linked to human target genes using STITCHIT uti-
lizing paired DNase1-seq and RNA-seq data of several 
cell types.

Here, we present a characterization of ncRNAs that can 
be linked to genetic mutations associated with the CVDs, 
including Aortic stenosis, Coronary artery disease, Car-
diomyopathy, Cardiac arrhythmia, Myocardial infarction 
or Myocardial ischemia. By using an algorithm to detect 
rSNPs as part of the SNEEP pipeline, hundreds of car-
diovascular associated ncRNAs have been identified that 
harbor rSNPs in their gene-regulatory elements. To study 
the functions of some interesting ncRNAs, we used two 
models: the 2D human-induced pluripotent stem cells 
(hiPSCs) derived cardiomyocytes (hiPSC-CMs) model 
and 3D human cardiac organoids, which display a simi-
lar microenvironment and contractile function to the 
human heart. Through assessing the cardiomyocyte size 
and contractile function response to pathophysiologic 
stress, our data demonstrated that ncRNA immunoglob-
ulin (CD79A) binding protein 1 pseudogene 1 (IGBP1P1) 
drives cardiac hypertrophy and contractile dysfunction.

Methods
Collection of GWAS SNPs of cardiovascular diseases
We have collected the significant SNPs (P-value <  10–5) 
from the NHGRI-EBI GWAS catalog [32] for the follow-
ing search terms including all the available child traits: 
Coronary artery disease (EFO_0000378), Aortic steno-
sis (EFO_0000266), Cardiac arrhythmia (EFO_0004269), 
Cardiomyopathy (EFO_0000407), Myocardial infarction 
(EFO0000612) and Myocardial ischemia (EFO0005672). 
All GWAS were downloaded on 10/26/2020 (see also 
Additional file 6: Table S5).

For each set of GWAS SNPs, we have obtained corre-
lated SNPs that are in linkage disequilibrium (LD) with 
any of the original SNPs. We used the LDProxy Tool 
[33] and extracted the proxy SNPs via their API func-
tionality. Proxy SNPs from the European cohort with an 
 R2 >  = 0.75 and within a window of ± 500 000 bp centered 
around the original SNP were added to the GWAS SNPs. 
The combined set of proxy and lead SNPs was used as 
input set to SNEEP. There was no filtering of SNPs, which 
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have known roles, such as stop codon variants, as these 
SNPs are not expected to affect TF binding and to reside 
in regulatory elements.

Detection of regulatory SNPs
To detect regulatory SNPs, we applied the SNEEP pipe-
line (https:// github. com/ Schul zLab/ SNEEP) separately 
for each of the 6 cardiac GWAS. SNEEP (SNP explora-
tion and analysis using epigenomics data) is a compu-
tational pipeline, which identifies rSNPs along with the 
affected TFs and further links the rSNPs to putative tar-
get genes. It can be used with any set of SNPs, TF motif 
and enhancer-gene resource.

To compute whether or not a SNP alters the binding 
behavior of a TF, a differential binding score is deter-
mined, which is the log-odds ratio between the binding 
affinity of the wildtype sequence (containing the wild 
type allele) and the mutated sequence (containing the 
alternative allele) [20]. For the log-odds ratio a differen-
tial binding P-value is computed. The approximation of 
the P-value depends on the characteristics like length, 
CG content etc. of the used TF PWM-motifs. Therefore, 
one needs to estimate a scale value per motif using the 
script estimateScalePerMotif.sh from the SNEEP pipe-
line. To estimate the scale parameter values, we used 200 
000 sampled SNPs from the dbSNP database [34], and 
removed flanking bases of the PWMs with an entropy 
higher than 1.9, resulting in the following command:bash 
estimateScalePerMotif.sh 200,000 < pathToMotifs >  < out-
putDir >  < motifNames > 1.9

To run SNEEP, 632 human TF PWM-motifs in transfac 
format were gathered from the JASPAR database (ver-
sion 2020) [35] and over 2.4 million regulatory elements 
linked to their putative target genes were downloaded 
from the EpiRegio database [31] (https:// doi. org/ 10. 5281/ 
zenodo. 37584 94,file: REMAnnotationModelScore_1.csv.
gz).

Next, we applied the main SNEEP pipeline per GWAS 
with a differential binding P-value cutoff of 0.001:

The SNEEP result is provided in Additional file  7: 
Table S6.

Identification of disease associated genes using rSNPs
As part of the analysis of SNEEP, all rSNPs that overlap 
regulatory elements from Epiregio constitute a candidate 

./differentialBindingAffinity_multipleSNPs − o < SneepOutputDirectory >

− n 10 − p 0.5 − c 0.001 − r < EpiRegio_REMs > −g

< mappingEnsemblIdToGeneNameForREMs > −j 100− l 123− i

< pathToSneepDirectory > −s < estimatedScalesFromPreviousStep >

< pathToJasparMotifs >< InputSnpsPerCardiacGWAS >< pathTohg38.fa >

disease gene. From the SNEEP output file protein-coding 
and non-coding genes were extracted that have overlap-
ping rSNPs in their regulatory elements. Non-coding 
genes were understood to be all genes not labeled with 
the biotype ‘protein coding’ or ‘TEC’ (primary assembly 
annotation, version 39, downloaded from GENCODE) 
[36].

To label which protein-coding genes are already asso-
ciated with the studied diseases (Fig. 2B, black dots), we 
used the disease2gene functionality of the R package of 
DisGeNET:

The studiedDisease parameter needs to be provided 
as UMLS CUI identifiers. We used C1956346 (Coro-
nary artery disease, CAD), C0003811 (Cardiac arrhyth-
mia), C1449563 (Cardiomyopathy, Familial Idiopathic), 
C0151744 (Myocardial ischemia), C0027051 (Myocardial 
infarction) and C0340375 (Subaortic stenosis) as studied-
Disease (see also Additional file 3: Table S2).

Identification of co‑expressed genes for non‑coding genes 
and disease enrichment
We conducted a co-expression analysis using the gene 
expression profiles of 9,662 GTEx RNA-seq samples 
[37], which is also visualized in Fig.  3A. We compared 
the expression of protein-coding genes with the non-
coding genes using the Spearman correlation coefficient 
as the similarity metric (Additional file 8: Table S7). This 
allowed us to obtain a ranked list of protein-coding genes 
most similar to the expression of a selected non-coding 
gene in the GTEx data.

For each non-coding gene the top 10 co-expressed 
protein coding genes were extracted, varying this num-
ber did not change the further results. The joint set of 
all protein-coding genes that are co-expressed to any of 
the non-coding genes found for the same disease via the 

disease2gene(disease =< studiedDisease >,

database = ALL, score = c( 0, 1))

GWAS analysis, were used to perform a disease enrich-
ment analysis. The analysis was done separately for the 
resulting co-expressed protein-coding gene sets derived 
from Cardiac arrhythmia, CAD and Cardiomyopathy 
using the function disease_enrichment from the R pack-
age of DisGeNET [38].

https://github.com/SchulzLab/SNEEP
https://doi.org/10.5281/zenodo.3758494,file
https://doi.org/10.5281/zenodo.3758494,file
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From the resulting list of enriched diseases (Addi-
tional file  4: Table  S3), as part of the enrichment 
computation, cardiac phenotypes were selected and 
visualized as a dot plot using ggplot2 (Fig. 3C). For the 
GWAS Aortic stenosis, Myocardial infarction and Myo-
cardial ischemia we did not apply the disease enrich-
ment analysis because of the low number of associated 
non-coding genes (less than 30).

Preparation and maintenance of human iPSC‑CMs
Human-induced pluripotent stem cells (hiPSCs) were 
purchased from Cellular Dynamics International 
(CMC-100–010-001) and cultured according to the 
manufacture’s protocol. The human iPSC-derived car-
diomyocytes (hiPSC-CMs) were reprogrammed using 
the STEMdiff™ Cardiomyocyte Differentiation Kit 
(STEMCELL Technologies) as recommended by the 
manufacturer. Briefly, human iPSCs were plated at 
cell density of 3.5 ×  105 cells/well on Matrigel coated 
12-well-plates using mTeSR™ medium supplemented 
with 5  µM ROCK inhibitor (Y-27632, STEMCELL 
Technologies) for 24  h. After 1  day (-1), the medium 
was replaced with fresh TeSR™ medium. To induce car-
diac differentiation, the TeSR™ medium was replaced 
with Medium A (STEMdiff™ Cardiomyocyte Differen-
tiation Basal Medium containing Supplement A) at day 
0, Medium B (STEMdiff™ Cardiomyocyte Differentia-
tion Basal Medium containing Supplement B) at day 2, 
Medium C (STEMdiff™ Cardiomyocyte Differentia-
tion Basal Medium containing Supplement C) at day 4 
and day 6. On day 8, medium was switched to STEM-
diff™ Cardiomyocyte Maintenance Medium with full 
medium changes every 2 days, to promote further dif-
ferentiation into mature cardiomyocyte cells. All exper-
iments were performed in the hiPSC-CMs at day 40. 
Hypoxic condition was achieved by using the Hypoxia 
chamber and the hiPSC-CMs were cultured at either 
3% or 1%  O2 for 2 days.

Monoculture cardiac organoid formation technique
Monoculture cardiac organoids (MCOs) were created 
by hiPSC-CMs. Aggrewell™ 800 microwell culture plates 
were used to create the MCOs in STEMdiff™ Cardiomy-
ocyte Support Medium (STEMCELL Technologies). At 
day 18, hiPSC-CMs were distributed into Aggrewell™ 800 
microwell culture plates at a density of 900,000 hiPSC-
CMs/well. After 2 days of culture, medium was switched 

disease_enrichment( entities =

< coExpressedProteinCodingGenesPerGWAS >,

vocabulary = HGNC , database = ALL

to STEMdiff™ Cardiomyocyte Maintenance Medium for 
long term culture. Hypoxic condition was achieved by 
using the Hypoxia chamber and the MCOs were cultured 
at either 3% or 1%  O2 for 3 days.

Self‑organized cardiac organoids formation technique
Human iPSCs were plated at cell density of 1.5 ×  105 
cells/well on Aggrewell™ 800 microwell culture plates 
to form embryoid bodies (EBs). At day 18 and day 
20, 50  nM VEGF and 25  nM FGF were added into 
the Maintenance Medium. On day 22, medium was 
switched to Maintenance Medium with EGM-2 with 
full medium changes every 2  days. All experiments 
were performed in the self-organized cardiac organoids 
(SCOs) at day 40. Hypoxic condition was achieved by 
using the Hypoxia chamber and the SCOs were cul-
tured at either 3% or 1%  O2 for 3 days.

Human heart biopsies
Human heart biopsies were provided by Prof. Dr. Silke 
Kauferstein (Goethe University Hospital, Frankfurt am 
Main, Germany). The human heart biopsies were con-
ducted in compliance with the local ethics committee. 
Samples from healthy hearts as control and from hearts 
macroscopically visible signs of acute cardiac infarction 
as MI hearts, and RNA was extracted.

RNA isolation, reverse transcription and qRT‑PCR
Samples were harvested in QIAzol Lysis Reagent (QIA-
GEN), and total mRNAs were isolated with RNeasy Kit 
(QIAGEN) according to the manufacturer’s protocol. 
200  ng total RNAs were reverse transcript into cDNA 
using QuantiTect Reverse Transcription Kit (QIA-
GEN) according to the manufacturer’s protocol. The 
Applied Biosystems StepOnePlus Real-Time PCR sys-
tem (Applied Biosystems, CA, USA) with Fast SYBR 
Green Master Mix (Thermo Fisher Scientific) were used 
for analysis. Gene expression levels were normalized 
against the housekeeping gene HPRT1. The qRT-PCR 
primers are listed in Table 1.

Antisense LNA gapmeRs
Antisense LNA GapmeRs were purchased from Qiagen. 
Four different antisense LNA GapmeRs were designed 
for each target (Table 2). The GapmeR negative control 
was used as the control.

Contractility measurement
Every single MCO was transferred into 96-well-plate 
and treated with either GapmeR control, GapmeR 
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Table 1 List of qRT-PCR primers used in the study

Target gene name Forward primer Reverse primer

RP11-146N23.4 TGT TTT GTC TCC GGT GTT CCA ATA AGG CCA GGT GCG GTG 

RP11-513M16.8 TAT CTG CGC CTT AAC CAG ACC AAT GCA AGC TCT TTG TTG GCA 

RP11-77K12.9 CCA TGA AAG TCG GCC CAA GA GCG TAG GGT CAC ACT CTT CC

KRT18P62 GCC TTC ATC GTT CTG CAC AC CAT GGA TGT CGC TCC TCA CA

AP000487.5 GAG CCT CTT CAT CTC TCC ATCC CAC GCA TGT GGC CCT TTC T

RP11-252K23.1 GAC CAA CGT TTC TTG GCT TGA GCT GGG ACT CAG AAG TTG CTT 

RP11-77K12.5 / TMEM231P1 AGG CAG AGC CAT GAA ACT CC CAC CCA GGC GAA CTT TAC CA

WBP1LP2 TAC AGT GAC TTC CAG CTA CGC CTT GGG GGT CTT GTG ATG CT

ADORA2A-AS1 GCA CCA CAT GCT TGT CTA CGA ATA GAG TCA GGG TTC CAG GCA 

SNORD56 ATG TCA ATA GTT TTC ATC AAC AGC A CCA CTC AGA CCC AAA GTA TCGAC 

RPL10AP1 CCC ACG AAT CCT CGG CAT AG TGC ACA AGC TCA TCG TCT GT

SUMO2P17 TGA GGT AGA TCA GAT TCC CATTC TAT CTT CAT CCT CCA TTT CCA ACT 

HIF1AP1 TGG AAC ATT ATT AAC AGC AGC CAG TTG CAT TCT TTT ACA CGT TTC TAG G

POM121L9P CCA GCA TCT TAT TAG AGG ACG GAA TCC CTG AGG ACT CTA GCA CG

RP11-98F14.12 CCT GGA TGC AGG CAT GCT AA GAC CTG ACC TGG CAC AGT TG

OR7E7P ATG GTG TAG TGG CGT CAG TG CTC CGC AGG GCA CTT TGT AT

RP11-253E3.3 CAC CTA GTG GCT CTT TGG GG GAG TGC CAG ACA CAC GGT AA

RP11-479F13.1 TGG ACA TGG GAT TGG TTG AGT GTT TCT CAT GCT GAG AGT GGC 

RNA5SP320 TGA ACA CAA ATG CGC AGA GT AGT TCT CAG TTC ATC TCC CATCC 

RP11-98F14.11 GGA GGT CCT GTA GAT CCG GT GCT GAG AAG GCG CTG ATT TT

RPL23AP92 GCG ACC AAC AAG TTC TCC CA GCC CTG ATC ACG GTG TTG AT

RP11-433J22.2-transcript201 AAC TGT AAA GGA GCT GCA GGG GCC CTG GGG GAA AAT TCT TGG 

RP11-433J22.2-transcript202 GGC CAT CTC ACC ACT ACT CC CAC AGA CAA CCT GAT CAC CCT 

KB-1440D3.13 ATC TCT TGT GCC CAC CTT GAG ACC TCC TTA GTT CCC AGC GT

IGBP1P1 GAT CAG GGA ATA GCC AAG GCA CTC TGT TGG CTG CCA TAG TC

RP11-326N17.2 AGT GCT GGT TAC CAA CTT TCCT GGA GTG CCA AGA TCG CAT GA

HLA-DQB1-AS1 CAG CTT GAT GCA GAT GTG TGG CAT GAT GGT GGC TAC TGC CT

ZMYM4-AS1 GAC ATG CTG TCA AGG GTA GGA CCA GAC TGA CCT TAT CAT TGT GGT 

HLA-DRB6 TTG GAG CAG GCT AAG TGT GAG TCC GTA ACT GCC TGG AAC TC

Y RNA GCT GGT AGT GAG TTA TCT TG ACA GAC TAG CCA AGT GCA GTA 

RP11-624L4.1-transcript 1–4 ACC AGA AGC ACT CCA AGA ACAA GAC TTT GAA GTG ACA GGC TGG 

RP11-624L4.1-transcript 5 ATG CAG CCA TCA GCC TCA AT GCT TTT GGG TTG GTT GCC TT

RP11-624L4.1-transcript 6,9 CCT GCT GTG GGA GTA ACC AT AAG CCC TAG AGG GAC AAG GT

RP11-624L4.1-transcript 7–8 TGG CCT GCA TCC ACT GTC T AGA CCC AAG ATG GCC GAA TAGG 

RP11-649A18.4 TCA AGC TCA GCT CAC AGC AT TCA CCA AGC AGG TAA CCA ATGT 

Metazoa SRP ATA CTG ATG GGG TGT CTG CA GTC CCG AAC TCC TGA CCT C

CTD-2383I20.1 GAC TCT GGC CTG AAG AAA GCA TTG GCT CTC GGT GAT CCT ACT 

RPL23AP36 GCT AAA AGG CAT CCA CCC CA GGC TGC GTT TGG AAC CAT AG

RP11-378J18.8 AAT GAC CGC TCT GTC TTC TGT AGG GTA CAG TTG TTA GGG TAACG 

RP11-20J15.3 CCT GTG ACC CGG ATC CAA C CAA ATG AAC AGA AGC TGG GGG 

MIR4269 CCT GCA GGC ACA GAC AGC CCA TCC CAG GCC TGA CAG A

CTC-215O4.4 AGG CCG CAT TAA GAG CAT GA GTA GCA GGT CCT GTG TGA GG

KRT8P15 TTC GGC AAC TGC TCC TAT GC CAC TGG CCC CAC CAT AAC TT

RP11-218C14.8 GGG CCT GTA AAT GCC TCC C AGA TGA AAG GTG CAA GGG CG

COL3A1 TTG AAG GAG GAT GTT CCC ATCT ACA GAC ACA TAT TTG GCA TGGTT 

MMP2 TAC AGG ATC ATT GGC TAC ACACC GGT CAC ATC GCT CCA GAC T

TGFb1 CAA TTC CTG GCG ATA CCT CAG GCA CAA CTC CGG TGA CAT CAA 

NPPA CAA CGC AGA CCT GAT GGA TTT AGC CCC CGC TTC TTC ATT C

NPPB TGG AAA CGT CCG GGT TAC AG CTG ATC CGG TCC ATC TTC CT
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RP11-98F14.11, GapmeR RPL23AP92 or GapmeR 
IGBP1P1. Hypoxic condition was achieved by using 
the Hypoxia chamber and cardiac organoids were cul-
tured at 3%  O2 for 3 days, then the contractility will be 
analyzed by IonOptix system. Units/pixels were deter-
mined by calibrating the system with a micrometer.

Calcium transient measurements
The MCOs were cultured in the 96-well-plate. 2 µM Cal-
520 AM (AAT bioquest) with 0.04% Pluronic® F-127 
(AAT bioquest) working solution was added into the 
plate, and then the plate was incubated in the incubator 
at 37  °C for 90 min. After washing the MCOs with PBS 
for 3 times, and with medium for 2 times, the MCOs will 
be transferred to the 384 well U-bottom plate and incu-
bated at 37 °C for 1 h. The fluorescence will be measured 
by the fluorescence plate reader.

Immunofluorescence staining
Immunofluorescence staining was performed as described 
previously. After fixation with 4% paraformaldehyde 
(PFA)/PBS, the hiPSC-CMs or MCOs were permeabilized 
and incubated overnight at 4ºC with primary antibodies 
against sarcomeric α-actinin (Sigma-Aldrich), diluted in 
2% (v/v) HS/PBS. After 3 washes with PBS for 5 min, cells 
were incubated with 4’,6-diamidino-2-phenylindole (DAPI 
Thermo Fisher Scientific) and AlexaFluor 555 anti-mouse 
(Thermo Fisher Scientific) secondary antibody for 1 h at 
room temperature. Dishes were mounted onto glass slides 
(Fisher Scientific) with a drop of ProLong™ Gold Anti-
fade (Thermo Fisher Scientific). Fluorescent images were 
acquired with the SP5 confocal microscopy (Leica) using 
a 40 × magnification. Cell size was quantified blindly using 
the software Image J.

Statistical analysis
Data are represented as mean and error bars indicate the 
standard error of the mean (SEM). Two-tailed unpaired 
Student’s t-tests or one-way ANOVA analyses followed 
by either a Dunnett’s multiple comparison post-test (mul-
tiple comparisons to a single control) or Bonferroni cor-
rection (multiple comparisons between different groups) 
were used as indicated in the respective figure legends. P 
values were determined with Prism 9.0 (GraphPad) and 
P < 0.05 was considered statistically significant.

Results
Identification of cardiovascular disease associated genes 
using regulatory SNPs and enhancer‑gene linkage
Based on the previously postulated idea to identify rSNPs 
that have a regulatory effect, our pipeline SNEEP com-
bines three sources of information for finding genes 
related to a CVD: (1) SNPs found significantly associ-
ated in GWAS with a particular CVD [32], (2) predic-
tion which of these SNPs are potentially regulatory using 
human TF PWM-motifs [20, 35], and (3) enhancer-gene 

Table 1 (continued)

Target gene name Forward primer Reverse primer

MYH7 GAC CAG ATG AAT GAG CAC CG GGT GAG GTC GTT GAC AGA AC

MYH6 CTC CTC CTA CGC AAC TGC CG CGA CAC CGT CTG GAA GGA TGA 

RP11-98F14.11 TAA ATT GAA GCA CGC GGA GAG GCT GAC CTC TGA GAA GCG TG

RPL23AP92 GCG ACC AAC AAG TTC TCC CA GCC CTG ATC ACG GTG TTG AT

IGBP1P1 GAT CAG GGA ATA GCC AAG GCA CTC TGT TGG CTG CCA TAG TC

CTD-2383I20.1 TGG CCT CAT CAG AAC CAA GAC CAA GCT GGC CAT TTT GTT TGT 

HPRT CCT GGC GTC GTG ATT AGT GAT AGA CGT TCA GTC CTG TCC ATAA 

Table 2 Characteristics of the LNA GapmeRs used in the study

ID Sequence (5′–3′)

GapmeR negative Control AAC ACG TCT ATA CGC 

GapmeR RP11-98F14.11 #1 CGC GTG CTT CAA TTTA 

GapmeR RP11-98F14.11 #2 CTC CGC GTG CTT CAAT 

GapmeR RP11-98F14.11 #3 CTG AGA AGG CGC TGAT 

GapmeR RP11-98F14.11 #4 TCG CTG AGA AGG CGCT 

GapmeR RPL23AP92 #1 TTG GTC GCA TAG TGGT 

GapmeR RPL23AP92 #2 TTT TGA CCT CGA CATC 

GapmeR RPL23AP92 #3 CGA CAT CCA CAA TGAA 

GapmeR RPL23AP92 #4 GCT TTT TGA CCT CGAC 

GapmeR IGBP1P1 #1 TGG CGA GAT GAA TTAG 

GapmeR IGBP1P1 #2 GGA TAA GCC ATG GAGA 

GapmeR IGBP1P1 #3 GAA ATT AGC AGT GTGA 

GapmeR IGBP1P1 #4 GCA ATG AGG CTA GGAT 

GapmeR CTD-2383I20.1 #1 GAA GGT TGG TCG TCTT 

GapmeR CTD-2383I20.1 #2 GTT GGT CGT CTT GGTT 

GapmeR CTD-2383I20.1 #3 CTT GCC AGC ATC TGAT 

GapmeR CTD-2383I20.1 #4 AAC AAG CTG GCC ATTT 
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catalogue to map SNPs to putative target genes (Fig.  1) 
[31]. In short, SNEEP uses PWM descriptions of TF 
binding sites to assess whether a SNP would affect the 
binding of a known TF. Such an rSNP may lead to the 
loss of a TF binding site or the creation of a new binding 
site affecting the expression of one or several target genes 
related to the phenotype.

In the first step, we have retrieved significant lead 
SNPs and correlated SNPs in LD (R2 ≥ 0.75) from GWAS 
for known cardiovascular diseases: 10,820 for Coronary 
artery disease (CAD), 440 for Aortic stenosis, 2637 for 
Cardiomyopathy, 6709 for Cardiac arrhythmia, 1204 for 
Myocardial infarction and 277 for Myocardial ischemia, 
which were then subjected to SNEEP analysis (Fig.  1). 
First, we filtered for those SNPs that may have a regula-
tory function (rSNPs) and affect TF binding. Then, we 
utilized the EpiRegio database, containing 2.4 million 
human regulatory elements, to link rSNPs to possible tar-
get genes for the respective indications.

These analyses led to the identification of protein-cod-
ing and non-coding genes that could be directly linked to 
a specific indication (Fig. 2A). Notably, there were often 
similarly many non-coding and protein-coding genes 
associated. We used the DisGeNET database [38], a large 
collection of known disease associated genes, for a posi-
tive control experiment. We conducted a disease enrich-
ment analysis that assessed whether the newly identified 
protein-coding genes using our approach are enriched 
among previously associated disease genes. We found 
that for all tested indications we were able to get the cor-
responding disease phenotype as significantly enriched 

(Fisher’s exact test, FDR ≤ 0.05, Additional file 1: Fig. S1, 
Additional file 2: Table S1). For Myocardial ischemia and 
Aortic stenosis, we had less than 30 genes available and 
therefore enrichment analysis was omitted as it is statis-
tically underpowered. We also computed enrichment of 
Gene Ontology and Human Phenotype Ontology terms 
and pathways using the g:Profiler webserver [39]. These 
analyses have revealed genes and biological processes 
that were previously associated with the diseases (Addi-
tional file  5: Table  S4). For example, the terms cardiac 
muscle contraction or regulation of ventricular cardiac 
muscle cell depolarization were enriched for Cardiac 
Arrhythmia, including genes such as Gap Junction Pro-
tein Alpha 1 (GJA) and T-Box Transcription Factor 5 
(TBX5) with known roles in the disease [40, 41]. Other 
examples are PD-1 and IL6 signaling (Cardiomyopa-
thy) and TGF-beta signaling (Myocardial Infarction). 
For CAD a process enriched was response to lipids with 
many genes detected for that term, such as the Calcitonin 
receptor like receptor (CALCRL) gene involved in cal-
citonin regulation, connected with increased severity of 
CAD [42]. Together, the enrichment analysis results sup-
port that our approach, although limited to using rSNPs, 
is able to find many of the previously associated disease 
genes and recapitulates knowledge about involved bio-
logical functions and pathways.

We systematically compared the properties of the asso-
ciated genes, looking at the number of rSNPs that could 
be linked to each gene and the number of regulatory 
elements of each gene with at least one rSNP (Fig.  2B, 
Additional file  3: Table  S2). Protein- and non-coding 

Fig. 1 Overview of the bioinformatic pipeline to identify non-coding genes associated with cardiovascular diseases. Step 1: SNPs for 6 different 
cardiac diseases were collected from the NHGRI-EBI GWAS catalog. Step 2: We used existing transcription factor binding models to filter regulatory 
SNPs (rSNPs), that are predicted to have an impact on transcription factor binding sites (TFBS). Step 3: rSNPs are linked to putative target genes 
using enhancer-gene links. For each step the number of SNPs or genes separated for coding and non-coding for each disease is given per row
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genes had cases with many rSNPs and/or REMs associ-
ated per gene. Notably, identified genes had on average 
more rSNPs than disease genes listed in DisGeNET. This 
underlines a unique feature of our [40] approach, high-
lighting genes that have many non-coding rSNPs associ-
ated with the indication. Of particular note was the large 
number of non-coding genes we identified. We surveyed 
the literature and existing databases that list known RNA 
biomarkers to identify additional evidence for genes that 
we found in our analyses (Additional file  3: Table  S2). 
For example, we checked the Heart Failure database for 
known RNA biomarkers (HFBD) [43], but none of the 49 
ncRNAs listed there overlapped ours.

In speculating that it would be possible to find further 
evidence using existing OMICs data—we used a guilt-by 
association strategy and collected for each non-coding 
gene the top 10 most highly correlated protein-coding 
genes among all genes, according to a large RNA expres-
sion dataset from the GTEx resource [37] (Fig.  3A). 
Based on 9662 GTEx expression samples, protein-coding 
genes with the highest correlation for each of the non-
coding genes were identified. Our rational being, that 
co-expressed protein-coding genes may be involved in 
similar pathways or biological functions than the non-
coding gene. We then gathered all co-expressed pro-
tein-coding genes with respect to the non-coding genes 

Fig. 2 Analysis of protein and non-coding genes associated with rSNPs. A For each GWAS (row) a stacked bar plot shows the number 
of associated genes per category. B Dot plot visualizing per GWAS how many regulatory elements (REMs) and rSNPs are associated with a gene. 
Genes are separated into protein-coding, protein-coding associated with the disease according to DisGeNET, non-coding, and experimentally 
studied non-coding genes in this work (circle colour). The x-axis shows the number of REMs for a gene overlapping with at least one rSNP 
and the y-axis the number of rSNPs for all REMs associated with a gene. The size of the dot correlates with the number of genes having the same 
x- and y- coordinate values
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we had found for each disease (Fig.  3B). This collection 
thus signifies all protein-coding genes that are highly 
correlated to the non-coding genes we found. The guilt-
by-association principle relies on the idea that associ-
ated genes are likely to share the same function and may 
further be involved in the same disease. To test this idea, 
we conducted the DisGeNET enrichment analysis for all 
co-expressed protein-coding genes (Fig.  3C, Additional 
file 4: Table S3). We observed a strong enrichment for the 
expected diseases in each tested study in which we had 
more than 30 non-coding genes. Thus, we were positive 
that a majority of the non-coding genes could play an 
important role in the underlying disease.

Identification and characterization of ncRNAs in hiPSC‑CMs
Our previous analyses suggested that many of the ncR-
NAs that we associated with CVDs could have impor-
tant cardiovascular functions. Thus, we selected in 
total 40 ncRNA genes and prioritized ncRNA genes 
not listed in DisGeNET and with many rSNPs (Fig. 2B, 
Table  3 and Additional file  5: Table  S4). We selected 
genes for each indication focusing on genes with many 
rSNPs and REMs per gene, but also taking cases with 
fewer rSNPs or REMs to explore the complete range 
of observed values for these parameters (Fig.  2B). We 
selected 12 ncRNA genes for CAD, 2 for Aortic steno-
sis, 10 for Cardiomyopathy, 8 for Cardiac arrhythmia, 
7 for Myocardial infarction and one for Myocardial 

ischemia. The gene KRT8P15 was additionally selected 
as it appeared in Myocardial infarction and CAD. For 
each of 38 out of 40 ncRNAs available in the GTEx 
expression dataset, we investigated the top 10 corre-
lated protein-coding genes (as mentioned above). For 
all the 38 ncRNAs we were able to find at least one pro-
tein-coding gene among the top 10, which is connected 
with a CVD in the DisGeNET database (Additional 
file 5: Table S4). For example, the gene HLA-DQB1-AS1 
has many correlated protein-coding genes from other 
HLA genes, for which the frequency of certain haplo-
types was recently connected with heart failure [44]. 
Another example is the ncRNA RP11-433J22.2 which 
was found for Cardiac Arrhythmia and is co-expressed 
with two gap junction genes (GJA4 and GJA5) [40, 41].

To determine the roles of the 40 ncRNAs in human 
cardiomyocytes, the hiPSC derived CMs, monoculture 
cardiac organoids (MCOs) and self-organized cardiac 
organoids (SCOs) were used in the study (Fig. 4A). The 
hiPSC-CMs, MCOs and SCOs were incubated in nor-
moxia and hypoxia (1%  O2 or 3%  O2, respectively), and 
the expression levels of these 40 ncRNAs were quan-
tified by qRT-PCR (Fig.  4B). As shown in Fig.  4B, we 
have selected the ncRNAs RP11-98F14.11, RPL23AP92, 
IGBP1P1, and CTD-2383I20.1 for further experi-
ments, as they are consistently upregulated in hypoxia 
in hiPSC-CMs, MCOs and SCOs. Furthermore, the 
expression levels of the ncRNAs RP11-98F14.11, 

Fig. 3 Disease enrichment analysis based on the protein coding genes co-expressed with GWAS-associated non-coding genes. A We sought 
to identify co-expressed protein-coding genes (PCGs, triangles) for each non-coding gene (NCG, circle) using a large dataset of RNA-seq samples 
from GTEx top correlated protein-coding genes are tested for an enrichment of previous indications with a cardiovascular disease. B Bar plot 
visualizing the number of non-coding and co-expressed protein-coding genes per GWAS (row). C Dot plot showing enriched cardiovascular 
phenotypes from DisGeNET (x-axis) for the top 10 co-expressed protein-coding genes of the associated non-coding genes separated per GWAS 
(y-axis). The dot coloring represents whether a phenotype is significantly enriched (FDR ≤ 0.05) and the dot size is relative to the FDR
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RPL23AP92, IGBP1P1, and CTD-2383I20.1 in human 
MI hearts and healthy hearts were also quantified by 
qRT-PCR, and our data exhibited an increased expres-
sion of RP11-98F14.11, RPL23AP92, IGBP1P1, and 
CTD-2383I20.1 in human MI heart compared to the 
healthy hearts (Ctrl) (Additional file 1: Fig. S2).

In order to investigate the function of RP11-98F14.11, 
RPL23AP92, IGBP1P1, and CTD-2383I20.1 in hiPSC-
CMs, we performed loss-of-function through GapmeR-
mediated knockdown of the respective target ncRNAs. 
GapmeRs are chimeric anti-sense oligonucleotides 
that contain a central block of deoxynucleotide mono-
mers to induce RNaseH cleavage [45]. Four GapmeRs 
were designed and synthesized for each ncRNA target 
(Table  2), and the knockdown efficiency was quanti-
fied by qRT-PCR in hiPSC-CMs (Additional file  1: Fig. 
S3A-S3D). We selected GapmeRs RP11-98F14.11 #2 
(GM RP11-98F14.11), GapmeR RPL23AP92 #1 (GM 
RPL23AP92), GapmeR IGBP1P1 #1 (GM IGBP1P1), and 
GapmeR CTD-2383I20.1 #1 (GM CTD-2383I20.1) for 
further experiments. As shown in Fig.  4C, the expres-
sion levels of pathologic hypertrophy markers, includ-
ing atrial natriuretic peptide A (NPPA), NPPB and 
beta-myosin heavy chain 7 (MYH7), were reduced after 
GapmeR RP11-98F14.11 (GM RP11-98F14.11) treat-
ment in hypoxia compared to the GapmeR Control 
(GM Ctrl) treatment. We also profiled expression of key 
fibrotic marker genes including Collagen type III alpha 
1 chain (COL3A1), matrix metalloproteinase-2 (MMP2) 
and Transforming growth factor β1 (TGFb1). However, 
GM RP11-98F14.11 treatment did not alter hypoxia-
induced fibrotic marker gene expression in hiPSC-CMs 
compared to the GM Ctrl. Similarly, Knockdown of 
RPL23AP92 and IGBP1P1 reduced hypoxia-induced 
pathologic hypertrophy marker expression, but not of 
hypoxia-induced fibrotic marker genes (Fig.  4D and E). 
CTD-2383I20.1 did not alter either hypoxia-induced 
pathologic hypertrophy markers or hypoxia-induced 
fibrotic marker gene expression compared to GM Ctrl 
(Additional file 1: Fig. S4).

To better define the function of RP11-98F14.11, 
RPL23AP92, IGBP1P1, and CTD-2383I20.1 in human 
cardiomyocytes, we analyzed cardiomyocyte cell size 
in a loss-of-function setting. In order to directly visual-
ize the cells, cardiomyocytes were stained for α-actinin 
and DAPI and imaged by confocal microscopy (Fig. 4F). 
As shown in Fig.  4G, hypoxia led to increased cell size, 
which was rescued upon RP11-98F14.11, RPL23AP92 
and IGBP1P1 inhibition, while CTD-2383I20.1 did not 
affect the cell size. Together, this suggests that RP11-
98F14.11, RPL23AP92, IGBP1P1 play key roles in regu-
lation of cell size to determine hypertrophic response in 
human cardiomyocytes, but not in pathology of fibrosis 
in 2D monolayer cultures.

IGBP1P1 drives pathologic hypertrophy and contractile 
dysfunction in human cardiac tissue mimetics
We determined the function of RP11-98F14.11, 
RPL23AP92, IGBP1P1 in human iPSC-derived cardiac 

Table 3 List of ncRNAs

Gene ID Gene name Related human disease

ENSG00000232978 RP11-146N23.4 Aortic Stenosis

ENSG00000273226 RP11-513M16.8 Aortic Stenosis

ENSG00000274220 RP11-77K12.9 CAD

ENSG00000233471 KRT18P62 CAD

ENSG00000246889 AP000487.5 CAD

ENSG00000259999 RP11-252K23.1 CAD

ENSG00000262583 RP11-77K12.5 / 
TMEM231P1

CAD

ENSG00000250474 WBP1LP2 CAD

ENSG00000178803 ADORA2A-AS1 CAD

ENSG00000201151 SNORD56 CAD

ENSG00000244691 RPL10AP1 CAD

ENSG00000248278 SUMO2P17 CAD

ENSG00000258978 HIF1AP1 CAD

ENSG00000128262 POM121L9P CAD

ENSG00000283828 RP11-98F14.12 Cardiac Arrhythmia

ENSG00000238228 OR7E7P Cardiac Arrhythmia

ENSG00000250899 RP11-253E3.3 Cardiac Arrhythmia

ENSG00000271146 RP11-479F13.1 Cardiac Arrhythmia

ENSG00000252072 RNA5SP320 Cardiac Arrhythmia

ENSG00000269125 RP11-98F14.11 Cardiac Arrhythmia

ENSG00000270723 RPL23AP92 Cardiac Arrhythmia

ENSG00000274415 RP11-433J22.2 Cardiac Arrhythmia

ENSG00000272954 KB-1440D3.13 Cardiomyopathy

ENSG00000226677 IGBP1P1 Cardiomyopathy

ENSG00000274281 RP11-326N17.2 Cardiomyopathy

ENSG00000223534 HLA-DQB1-AS1 Cardiomyopathy

ENSG00000227409 ZMYM4-AS1 Cardiomyopathy

ENSG00000229391 HLA-DRB6 Cardiomyopathy

ENSG00000252042 Y RNA Cardiomyopathy

ENSG00000259345 RP11-624L4.1 Cardiomyopathy

ENSG00000263786 RP11-649A18.4 Cardiomyopathy

ENSG00000275293 Metazoa SRP Cardiomyopathy

ENSG00000249994 CTD-2383I20.1 Myocardial Infarction

ENSG00000225124 RPL23AP36 Myocardial Infarction

ENSG00000272750 RP11-378J18.8 Myocardial Infarction

ENSG00000229116 RP11-20J15.3 Myocardial Infarction

ENSG00000265215 MIR4269 Myocardial Infarction

ENSG00000266936 CTC-215O4.4 Myocardial Infarction

ENSG00000233579 KRT8P15 Myocardial Infarction 
& CAD

ENSG00000270001 RP11-218C14.8 Myocardial Ischemia
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organoids, serving as a model for native heart tissue. 
On day 18 of differentiation, the monolayer was disso-
ciated into single cells and seeded on Aggrewell™ 800 
microwell culture plates in order to induce the forma-
tion of cardiac organoids (Fig.  4A). Cardiac mimetics 
were then cultured under control normoxic conditions, 
or in hypoxia (3%  O2) to mimic myocardial hypoxia 
in  vitro. As shown in Fig.  5A, hypoxia-induced patho-
logic hypertrophy markers and fibrotic marker genes 
were decreased by inhibition of RP11-98F14.11. While 
RPL23AP92 deletion could partially rescue the patho-
logic hypertrophy markers and fibrotic marker genes 
in hypoxia compared to GM Ctrl (Fig.  5B). Similarly, 
IGBP1P1 depletion also reduced the expression levels 
of pathologic hypertrophy markers and fibrotic marker 
genes in hypoxia. In addition, the cell size of cardiomyo-
cytes in MCOs was also measured in both normoxia and 
hypoxia (Fig. 5C). As shown in Fig. 5D and E, inhibition 
of IGBP1P1 reduced the cell size in hypoxia compared to 
the GM Ctrl.

Furthermore, cardiac contractility was also measured 
by IonOptix and through calcium flux analysis. Both 
assays revealed that the Hypoxia-induced beating fre-
quency was reduced by IGBP1P1 inhibition (Fig.  5F), 
while hypoxia-reduced contractile amplitude was rescued 
by IGBP1P1 inhibition compared to GM Ctrl (Fig.  5G 
and 5H, Additional file  1: Fig. S5A and S5B). However, 
there is no difference of beating frequency and contrac-
tile amplitude between GM RP11-98F14.11 and GM Ctrl 
(Additional file 1: Fig. S5C-S5E). Similarly, knockdown of 
RPL23AP92 did not rescue the hypoxia-induced beating 
frequency and hypoxia-reduced contractile amplitude 
in hypoxia compared to GM Ctrl (Additional file 1: Fig. 
S5F-S5H). Together, IGBP1P1 regulates both cell size and 
cardiomyocyte contractility in 3D human cardiac tissue 
mimetics.

Discussion
In this study we have used known position-weight matrix 
models of TF binding to predict whether SNPs have a 
regulatory effect. These models do not consider depend-
ency between positions. Although alternative models 
exist, such as SLIM [46], the absolute number of available 
TFs is lower than what we used here from the JASPAR 
database. Exploring more complex models may increase 
the number of rSNPs that can be detected and thus may 
reveal additional genes of interest. Compared to using all 
SNPs that are significant according to a GWAS, we limit 
relevant gene associations to rSNPs, to enrich for variants 
that are involved in transcriptional regulation and there-
fore should reside in regulatory elements of their target 
genes. Instead of predicting rSNPs after conducting the 
GWAS, Arloth et al. have first determined rSNPs to filter 
[26]. They then recomputed the association significance 
for a smaller subset of genome-wide rSNPs, which may 
further boost the ability to detect disease genes.

The conducted analysis workflow is not limited to 
applications to CVD GWAS and deviates from other 
studies that use GWAS SNPs for the identification of 
disease genes. Common approaches for linking SNPs to 
target genes include using expression quantitative trait 
loci, or high-throughput chromosome capture (Hi-C) 
data that measures DNA-DNA contacts [47]. Both types 
of data need to exist for the cell types that are involved 
in the disease, which is challenging given the large num-
ber of cell types affected by CVDs. We rely on enhancer-
gene associations learned from paired DNase1-seq and 
RNA-seq data [30]. A recent generalisation of the Activ-
ity-by-Contact model was shown to improve accuracy of 
predicted enhancer-gene interactions from epigenom-
ics data [48] and could be used to increase considered 
enhancer-gene interactions specific for CVD-relevant 
cell types.

(See figure on next page.)
Fig. 4 Identification and characterization of ncRNAs in hiPSC-CMs A Schematic protocol for differentiation of hiPS cells into cardiomyocytes, 
monoculture cardiac organoids (MCOs) and self-organized cardiac organoids (SCOs) in vitro. B Heat map shows the relative mRNA expression levels 
of the 40 ncRNAs in the 40-day-old hiPSC-CMs, or 40-day-old human cardiac organoids (including MCOs and SCOs) treated with either 1%  O2 or 3% 
 O2 for 2 or 3 days, respectively. Data are normalized to either normoxia hiPSC-CMs, or normoxia MCOs/SCOs. The red and green colors indicate 
high and low expression values, respectively. Means of n = 3 biological replicates per group. C Relative mRNA expression of RP11-98F14.11, COL3A1, 
MMP2, TGFb1, NPPA, NPPB and MYH7 in hiPSC-CMs transduced with either GapmeR RP11-98F14.11 (GM RP11-98F14.11) or GapmeR negative control 
(GM Ctrl) in both normoxia and hypoxia. Data are represented as Mean ± SEM; n = 3; *P < 0.05, **P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia 
GM Ctrl. D Relative mRNA expression of RPL23AP9, COL3A1, MMP2, TGFb1, NPPA, NPPB and MYH7 in hiPSC-CMs transduced with either GapmeR 
RPL23AP9 (GM RPL23AP9) or GM Ctrl in both normoxia and hypoxia. Data are represented as Mean ± SEM; n = 3; *P < 0.05, **P < 0.01 vs. Normoxia GM 
Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. E Relative mRNA expression of IGBP1P1, COL3A1, MMP2, TGFb1, NPPA, NPPB and MYH7 in hiPSC-CMs transduced 
with either GapmeR IGBP1P1 (GM IGBP1P1) or GM Ctrl in both normoxia and hypoxia. Data are represented as Mean ± SEM; n = 3; *P < 0.05, **P < 0.01 
vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. F Representative images of α-actinin (red) and DAPI (blue) in 40-day-old hiPSC-CMs after GM 
RP11-98F14.11, GM RPL23AP9, GM IGBP1P1, GM CTD-2383I20.1, or the GM Ctrl under normoxia or hypoxia for 2 days. Scale bar is 25 µm. G Cell size 
of the hiPSC-CMs was assessed by the Image J. 50 cells were analyzed for each condition. Data are represented as Mean ± SEM; n = 3; **P < 0.01 vs. 
Hypoxia GM Ctrl. Two-tailed unpaired t-test. hiPSC-CMs, human-induced pluripotent stem cell-derived cardiomyocytes; MCOs, monoculture cardiac 
organoids; SCOs: Self-organized cardiac orgnoids
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Fig. 4 (See legend on previous page.)
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Pseudogenes are defined as regions of the genome that 
contain defective copies of genes and are often consid-
ered as nonfunctional ncRNA. However, recent studies 
have shown that pseudogenes may play important roles 
in CVDs [49]. Elevated low-density lipoprotein cho-
lesterol (LDL-C) level is a main risk factor for CVDs, 
while knockdown of zinc finger protein 542 pseudogene 
(ZNF542P) increases the LDL-C level response to simv-
astatin in a human hepatoma cell line [50]. The mRNA 
levels of octamer-binding transcription factor 4 (Oct 4) 
pseudogene Oct-4-psG1 and Oct-4-psG5 are significantly 
down-regulated in pulmonary arterial smooth muscle 
cells (PASMC) in patients with idiopathic pulmonary 
arterial hypertension (IPAH), indicating that Oct-4-psG1 
and Oct-4-psG5 are involved in IPAH [51]. Moreover, 
expression level of NMRA-like protein NMRAL1 pseu-
dogene (NMRAL2P) is significantly decreased in the 
right ventricle in heart failure, suggesting that NMRAL2P 
is involved in heart failure [52]. Together, these studies 
indicate that pseudogenes are closely related to CVDs. 
IGBP1P1 is a pseudogene of IGBP1, a phosphoprotein 
associated with the B cell receptor complex and leads 
to multiple signal transduction pathways [53]. IGBP1 is 
a novel biomarker in lupus nephritis (LN) patients, its 
expression level is increased in the plasma and urine of 
patients with LN compared with systemic lupus erythe-
matosus (SLE) patients without nephritis and healthy 
controls [54, 55]. Recently it also showed that IGBP1 is 
upregulated in esophageal squamous cell carcinoma 
(ESCC), and its expression is significantly associated 
with ESCC patient survival [56]. IGBP1 is also expressed 
in the heart, but its function has not been studied in the 
heart yet. In our study, we have identified that IGBP1P1 
is upregulated in the human disease model in vitro, and 
its depletion could reduce hypoxia-induced cell size and 
improve cardiac contractility in human cardiac tissue 
mimetics. It may modulate cardiomyocyte size and car-
diac contractility through regulating the expression level 

of IGBP1 at both transcriptional and translational levels, 
but the mechanism is not known yet.

Many studies have demonstrated that ncRNAs play 
important roles in the development of CVDs [57]. How-
ever, the study of human-specific ncRNAs has been 
limiting and challenging. The majority of the human 
lncRNAs are poorly conserved in mouse, conventional 
mouse models are not a suitable tool to study their func-
tion in vivo regulation and function. Here, we utilized a 
human 3D cardiac organoid model, in order to best reca-
pitulate the biological and molecular properties of native 
heart tissue thus enabling us to study ncRNA function 
in a physiologically relevant context-lending greater cre-
dence to the validity of our study and its findings. The 3D 
human cardiac organoids are composed of different cell 
types including cardiomyocytes, endothelial cells, and 
fibroblasts, which are able to self-organize into complex 
organ-like structures and have a similar microenviron-
ment to the human heart. In addition, the human cardiac 
organoids can be cultured for longer term in  vitro, and 
also display molecular, metabolic and contractile char-
acteristics of adult native myocardium and respond to 
pathophysiologic stressors (Fig.  5G and H, Additional 
file 1: Fig. S5A and S5B). The organoid model is a useful 
biological tool to study the biological functions of ncR-
NAs in our study. In the future, human cardiac organoids 
will provide useful for research in disease modeling, 
developmental biology, and drug screening.

Conclusion
Taken together, we have identified 40 CVD-associated 
non-coding RNAs by using a computational pipeline that 
integrates GWAS, TF motif and enhancer-gene infor-
mation. Then, we have demonstrated that the ncRNA 
IGBP1P1, is a pathologic stress-induced modulator of 
cardiomyocyte hypertrophy and contractile function 
in 2D hiPSC-CMs and 3D human cardiac organoids. 

Fig. 5 IGBP1P1 is vital in cell size and contractility in human cardiac tissue mimetics. A Relative mRNA expression of RP11-98F14.11, COL3A1, 
MMP2, TGFb1, NPPA, NPPB, MYH7 and ratio MYH7/6 in MCOs transduced with either GM RP11-98F14.11 or GM Ctrl in both normoxia and hypoxia. 
Data are represented as Mean ± SEM; n = 3; *P < 0.05, **P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. B Relative mRNA expression 
of RPL23AP92, COL3A1, MMP2, TGFb1, NPPA, NPPB, MYH7 and ratio MYH7/6 were detected. Data are represented as Mean ± SEM; n = 3; *P < 0.05, 
**P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. C Relative mRNA expression of IGBP1P1, COL3A1, MMP2, TGFb1, NPPA, NPPB, MYH7 
and ratio MYH7/6 in MCOs transduced with either GM IGBP1P1 or GM Ctrl in both normoxia and hypoxia. Data are represented as Mean ± SEM; n = 3; 
*P < 0.05, **P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. D Representative images of α-actinin (red) and DAPI (blue) in 40-day-old 
human MCOs after GM IGBP1P1 or the GM Ctrl in normoxia or hypoxia for 3 days. Scale bar is 50 µm. E Cardiomyocyte cell size in the MCOs 
was assessed by the Image J. 50 cells were analyzed for each condition. Data are represented as Mean ± SEM; n = 3; **P < 0.01 vs. Normoxia GM 
Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. F Human MCOs were treated with GM IGBP1P1 or GM Ctrl in both normoxia and hypoxia for 3 days, and then 
the frequency of CMO contraction was determined by counting beats per minute. Data are represented as Mean ± SEM; 4–5 organoids per group; 
**P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. G Representative traces of contractile MCOs. H The contractility assays were 
performed by determining the amplitude peak of contracting MCOs. Data are represented as Mean ± SEM; 4–5 organoids per group; *P < 0.05 vs. 
Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. All by one-way ANOVA analyses followed by a Dunnett’s multiple comparison post-test. MCOs, 
monoculture cardiac organoids

(See figure on next page.)
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IGBP1P1 depletion rescued cardiomyocyte size and 
improved cardiac contractility. Thus, blocking the ncRNA 
IGBP1P1 could be a promising strategy to improve car-
diac function in cardiovascular disease.
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Additional file 1: Fig. S1. Disease enrichment analysis for protein-coding 
genes. Bar plots representing per GWAS selected phenotypes enriched for 
protein coding genes identified with SNEEP. The x-axis shows the -log10 
FDR corrected P-value of the disease enrichment analysis performed 
with the DisGeNET software (usage of DisGeNET similar to method 
section ‘Identification of disease associated genes using rSNPs’, as input 
the protein-coding genes from the SNEEP result per GWAS are taken) 
(see also Additional file 2: Table S1). For the GWAS Myocardial ischemia 
and Aortic stenosis the disease enrichment analysis was not possible, 
because only 5 and 12 protein coding genes were associated. Fig. S2. 
Expression of ncRNAs in human MI hearts. Relative RNA expression level 
of ncRNAs RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1 
in human MI hearts compared to healthy adult hearts (Ctrl). Data are 
represented as Mean ± SEM; Ctrl: n = 4; MI: n ≥ 9; *P < 0.05 vs. Ctrl. Two-
tailed unpaired t-test. MI: Myocardial infarction. Fig. S3. Identification 
of the best GapmeRs in hiPSC-CMs. A Relative RNA expression level of 
RP11-98F14.11 in hiPSC-CMs treated with GM RP11-98F14.11 #1, #2, #3, 
#4 or GM GapmeR Ctrl. Data are normalized to hiPSC-CMs expressing GM 
Ctrl. Data are represented as Mean ± SEM; n = 3; *P < 0.05 vs. GM Ctrl. B 
Relative RNA expression level of RPL23AP92 in hiPSC-CMs treated with GM 
RPL23AP92 #1, #2, #3, #4 or GM Ctrl. Data are represented as Mean ± SEM; 
n = 3; *P < 0.05, **P < 0.01 vs. GM Ctrl. C Relative RNA expression level of 
IGBP1P1 in hiPSC-CMs treated with GM IGBP1P1 #1, #2, #3, #4 or GM Ctrl. 
Data are represented as Mean ± SEM; n = 3; *P < 0.05, **P < 0.01 vs. GM Ctrl. 
D Relative RNA expression level of CTD-2383I20.1 in hiPSC-CMs treated 
with GM CTD-2383I20.1 #1, #2, #3, #4 or GM Ctrl. Data are represented 
as Mean ± SEM; n = 3; *P < 0.05 vs. GM Ctrl. Two-tailed unpaired t-test. 
Fig. S4. Characterization of CTD-2383I20.1 in hiPSC-CMs. Relative RNA 
expression of CTD-2383I20.1, COL3A1, MMP2, TGFb1, NPPA, NPPB and MYH7 
in hiPSC-CMs transduced with either GM CTD-2383I20.1 or GM Ctrl in 
both normoxia and hypoxia. Data are represented as Mean ± SEM; n = 3; 

*P < 0.05, **P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. 
Two-tailed unpaired t-test. Fig. S5. IGBP1P1 inactivation improved con-
tractility in human MCOs. Human MCOs were treated with GM IGBP1P1 or 
GM Ctrl in both normoxia and hypoxia for 3 days, and then the contractil-
ity assays were performed by calcium transient. A Representative traces of 
contractile MCOs. B Data are represented as Mean ± SEM; n > 5 organoids 
per group; **P < 0.01 vs. Normoxia GM Ctrl, %P < 0.05 vs. Hypoxia GM 
Ctrl. Two-tailed unpaired t-test. C Human MCOs were treated with GM 
RP11-98F14.11 or GM Ctrl in both normoxia and hypoxia for 3 days, and 
then the frequency of CMO contraction was determined by counting 
beats per minute. Data are expressed as means ± SEM. n > 5 organoids per 
group; **P < 0.01 vs. Normoxia GM Ctrl, ns vs. Hypoxia GM Ctrl. Two-tailed 
unpaired t-test. D Representative traces of contractile MCOs. E The con-
tractility assays were performed by calcium transient. Data are expressed 
as means ± SEM. n > 5 organoids per group; **P < 0.01 vs. Normoxia GM 
Ctrl, ns vs. Hypoxia GM Ctrl. Two-tailed unpaired t-test. F The frequency of 
CMO contraction was determined by counting beats per minute. Data are 
represented as Mean ± SEM; 4–5 organoids per group; **P < 0.01 vs. Nor-
moxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. Two-tailed unpaired t-test. G 
Representative traces of contractile MCOs. H The contractility assays were 
performed by determining the amplitude peak of contracting MCOs. Data 
are represented as Mean ± SEM; 4–5 organoids per group; *P < 0.05 vs. Nor-
moxia GM Ctrl, %P < 0.05 vs. Hypoxia GM Ctrl. Two-tailed unpaired t-test.
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