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Abstract 

To investigate the polygenicity of complex traits in populations of East Asian (EAS) and European (EUR) descents, 
we leveraged genome-wide data from Biobank Japan, UK Biobank, and FinnGen cohorts. Specifically, we analyzed 
up to 215 outcomes related to 18 health domains, assessing their polygenic architecture via descriptive statistics, such 
as the proportion of susceptibility SNPs per trait (πc). While we did not observe EAS–EUR differences in the overall 
distribution of polygenicity parameters across the phenotypes investigated, there were ancestry-specific patterns 
in the polygenicity differences between health domains. In EAS, pairwise comparisons across health domains showed 
enrichment for πc differences related to hematological and metabolic traits (hematological fold-enrichment = 4.45, 
p = 2.15 ×  10–7; metabolic fold-enrichment = 4.05, p = 4.01 ×  10–6). For both categories, the proportion of susceptibility 
SNPs was lower than that observed for several other health domains (EAS-hematological median πc = 0.15%, EAS-met-
abolic median πc = 0.18%) with the strongest πc difference with respect to respiratory traits (EAS-respiratory median 
πc = 0.50%; hematological-p = 2.26 ×  10–3; metabolic-p = 3.48 ×  10–3). In EUR, pairwise comparisons showed multiple 
πc differences related to the endocrine category (fold-enrichment = 5.83, p = 4.76 ×  10–6), where these traits showed 
a low proportion of susceptibility SNPs (EUR-endocrine median πc = 0.01%) with the strongest difference with respect 
to psychiatric phenotypes (EUR-psychiatric median πc = 0.50%; p = 1.19 ×  10–4). Simulating sample sizes of 1,000,000 
and 5,000,000 individuals, we also showed that ancestry-specific polygenicity patterns translate into differences 
across health domains in the genetic variance explained by susceptibility SNPs projected to be genome-wide signifi-
cant (e.g., EAS hematological-neoplasm p = 2.18 ×  10–4; EUR endocrine-gastrointestinal p = 6.80 ×  10–4). These findings 
highlight that traits related to the same health domains may present ancestry-specific variability in their polygenicity.

Introduction
Genome-wide association studies (GWAS) are improv-
ing our understanding of the predisposition to human 
traits and diseases, providing insights into their underly-
ing biological mechanisms [1]. However, their ability to 
disentangle complex phenotypes is mainly proportional 
to the sample size of the cohorts investigated, because 
most human traits and diseases are characterized by a 
polygenic architecture (i.e., their heritability is due to the 
contribution of thousands of risk loci with small indi-
vidual effects) [2–4]. There are differences in the degree 
of polygenicity among complex traits where extremely 
high polygenicity is observed for psychiatric disorders 
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such as depression and relatively low polygenicity is pre-
sent for physical conditions such as ulcerative colitis [5]. 
Multiple mechanisms are likely to contribute to this vari-
ation. Purifying selection (i.e., the selective removal of 
deleterious alleles across the genome) plays a major role 
in shaping the polygenic architecture of human traits and 
diseases [6, 7]. However, phenotypic heterogeneity could 
also contribute to the degree of polygenicity observed. 
Among psychiatric disorders, the number of diagnostic 
combinations was associated with effect size variance 
for trait-associated loci [8]. Understanding the dynam-
ics shaping the polygenicity variation across the human 
phenotypic spectrum can generate important insights 
into the evolutionary basis of human traits. Additionally, 
defining polygenicity patterns can help to estimate more 
accurately the statistical power of phenotype-specific 
gene discovery analyses and to model more precisely 
polygenic scores (PGS) to stratify disease risk. Unfortu-
nately, the majority of studies investigating polygenic-
ity patterns across human traits and diseases are based 
on data generated from individuals of European descent 
[5–8]. Although we expect consistency in the biology 
of complex phenotypes among worldwide populations, 
there may be differences due to the evolutionary history 
of certain ancestry groups.

In the present study, we leveraged genome-wide asso-
ciation statistics previously generated [9] from Biobank 
Japan (BBJ) [10], UK Biobank (UKB) [11], and FinnGen 
[12] to estimate the effect size distribution of 215 traits 
comparing differences among 18 health domains in up 
to 178,726 and 492,803 individuals of East Asian (EAS) 
and European (EUR) descent, respectively (Additional 
file 1: Table S1). In addition to estimating the number of 
susceptibility single nucleotide polymorphisms (SNPs) 
and their effect size distribution, we also calculated the 
genetic variance explained by the genome-wide sig-
nificant variants projected considering sample sizes of 
1,000,0000 and 5,000,000 individuals. Our findings pro-
vide novel information regarding polygenicity patterns 
across the human phenotypic spectrum, highlighting 
possible similarities and differences between EAS and 
EUR ancestries.

Results
Effect‑size distribution analysis
We analyzed genome-wide association statistics previ-
ously generated from BBJ, and a UKB-FinnGen meta-
analysis [9]. These included up to 215 traits related to 
18 health domains (Table 1; Additional file 1: Table S1). 
Using GENESIS (GENetic Effect-Size distribution Infer-
ence from Summary-level data) approach [5], we esti-
mated the proportion of susceptibility SNPs per trait 
(πc), the variance parameter for non-null SNPs (σ2), and 

residual effects not captured by the variance of effect 
sizes (a) (Table 1; Additional file 1: Table S1). The anal-
yses were conducted separately for EAS and EUR. To 
determine within- and between-population differences of 
πc, σ2, and a parameters, we applied the non-parametric 
Kruskal–Wallis (KW) test and conducted post-hoc anal-
yses using Dunn non-parametric test for the pairwise 
comparisons. The application of non-parametric tests 
permitted us to avoid issues related to the distribution of 
the variables investigated and to the presence of possible 
outliers.

For the majority of the domains investigated, the 
median πc estimate was 0.50% in both EAS and EUR 
(Table 1). Conversely, more variability was observed with 
respect to the median estimates of σ2 and a parameters.

For the within-population analyses, we investigated 
whether there are differences among traits related to dif-
ferent phenotypic categories (Table  1; Additional file  1: 
Table S1). This analysis was limited to categories includ-
ing at least four traits. In EAS, the proportion of suscep-
tibility SNPs was statistically different among phenotypic 
categories (πc; KW statistic = 39.14, p = 6.41 ×  10–3), 
while no difference was observed with respect to σ2 and 
a parameters (Additional file 1: Table S2). Although they 
did not survive false discovery rate correction (FDR) for 
multiple testing (Additional file  1: Table  S3), the nomi-
nally significant pairwise comparisons showed enrich-
ment for πc differences related to hematological and 
metabolic traits (hematological fold-enrichment = 4.45, 
p = 2.15 ×  10–7; metabolic fold-enrichment = 4.05, 
p = 4.01 ×  10–6). For both categories, the proportion of 
susceptibility SNPs was lower than that observed for sev-
eral other health domains (EAS-hematological median 
πc = 0.15%, EAS-metabolic median πc = 0.18%; Fig.  1) 
with the strongest πc difference with respect to respira-
tory traits (EAS-respiratory median πc = 0.50%; hemato-
logical Dunn statistic = 3.05, p = 2.26 ×  10–3; metabolic 
Dunn statistic = 2.92, p = 3.48 ×  10–3).

In EUR, significant differences among phenotypic 
categories were observed with respect to πc (KW 
statistic = 35.27, p = 0.013) and a parameters (KW 
statistic = 31.17, p = 0.039), but not for σ2 (KW sta-
tistic = 25.05, p = 0.477). For πc, nine pairwise com-
parisons showed differences surviving multiple testing 
correction (FDR q < 0.05; Additional file  1: Table  S4). 
Seven of them were related to the endocrine category 
(fold-enrichment = 5.83, p = 4.76 ×  10–6), where these 
traits showed a low proportion of susceptibility SNPs 
(EUR-endocrine median πc = 0.01%; Fig.  1) with the 
strongest difference with respect to psychiatric phe-
notypes (EUR-psychiatric median πc = 0.50%; Dunn 
statistic = 3.83, p = 1.19 ×  10–4). For parameter a, we 
observed four pairwise comparisons surviving FDR 
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correction (FDR q < 0.05; Additional file  1: Table  S5). 
Three of them were related to the endocrine category 
(EUR-endocrine median a = 0.001%) that showed 
higher residual effects than dermatological traits (EUR-
dermatological median a =  − 0.002%; Dunn statis-
tic =  − 3.91, p = 9.32 ×  10–5), respiratory phenotypes 
(EUR-respiratory median a =  − 0.0003%; Dunn statis-
tic =  − 3.38, p = 7.17 ×  10–4), and neurological outcomes 
(EUR-neurological median a =  − 0.0004%; Dunn sta-
tistic =  − 3.30, p = 9.54 ×  10–4). The dermatological cat-
egory also showed lower residual effects than metabolic 
traits (Dunn statistic = 3.20, p = 1.39 ×  10–3).

Comparing EAS and EUR, we observed a statistically 
significant difference with respect to residual effects 
not captured by the variance of effect sizes (parameter 
a: KW statistic = 8.79, p = 3.03 ×  10–3), but not for πc 
and σ2 (Additional file 1: Table S6). A category-specific 
EAS-EUR comparison of parameter a (Additional file 1: 
Table  S7) highlighted nominally significant differences 
for metabolic traits (EAS median a = 0.0001%; EUR 
median a = 0.0004%; KW statistic = 5.22, p = 0.022) and 
urogenital phenotypes (EAS median a =  − 0.0002; EUR 
median a = 0.0003%; KW statistic = 4.08, p = 0.043). To 
follow up the results of the within-population analyses, 

Table 1 Distribution (median, maximum, and minimum) of polygenicity parameters across phenotypic categories in populations of 
East Asian and European descent (EAS and EUR, respectively)

Estimates are reported using a scientific notation. Maximum and minimum estimates are not included for categories including a single trait

πc The proportion of susceptibility SNPs per trait, σ2 The variance parameter for non-null SNPs, a Residual effects not captured by the variance of effect sizes, NA not 
available

Category EAS, median (max–min) EUR, median (max–min)

N πc σ2 a N πc σ2 a

Body structures 4 7.1e−3
(1e−2–4.7e−3)

2e−5
(1e−4–1e−5)

2e−6
(3e−6–1e−6)

1 5e−3  < 1e−6 2e−6

Cardiovascular 22 5e−3
(6.7e−3–6e−4)

7.4e−5 
(8e−4– < 1e−6)

1e−6
(2e−5– − 2e−4)

18 5e−3
(5e−3–1.7e−3)

1e−4
(3e−4– < 1e−6)

2e−6
(1e−5– − 2e−5)

Dermatological 4 5e−3
(5.1e−3–5e−5)

 < 1e−6
(1.3e−2– < 1e−6)

5e−6 
(1.1e−1– − 1e−4)

4 5e−3
(5e−3–4.4e−3)

3e−4
(4e−4– < 1e−6)

 − 2e−5
(− 2e−6– − 2e−4)

Ear, nose, throat 5 5e−3
(6.5e−3–5e−3)

2e−4
(6e−4– < 1e−6)

 − 1e−5
(1e−5– − 1e−4)

5 5e−3
(5e−3–4e−4)

1e−4
(2.1e−3–1e−4)

1e−6
(1e−5– − 1e−5)

Endocrine 5 5e−3
(5e−3–1e−4)

4e−5
(8.9e−3– < 1e−6)

1e−5
(2e−5– − 3e−6)

5 1e−4
(1.4e−3–5e−5)

8.1e−3
(1.8e−2–4e−4)

1e−5
(2e−5–4e−6)

Environment 1 5e−3 1e−4  − 2e−6 1 5e−3 5e−5 1e−6

Gastrointestinal 8 5e−3
(5e−3–1.1e−3)

4e−5
(6e−4– < 1e−6)

1e−6
(3e−5– − 2e−5)

7 5e−3
(1.1e−2–1e−3)

3e−5
(8e−4– < 1e−6)

4e−6
(1e−5– − 3e−6)

Hematological 18 1.5e−3
(5e−3–2e−4)

1e−4
(3e−4– < 1e−6)

1e−6
(1e−5– − 1.3e−3)

4 5e−3
(5e−3–5e−3)

4e−5
(1e−4– < 1e−6)

1e−6
(3e−6– − 1e−4)

Immunological 28 5e−3
(7.1e−3–2e−5)

2e−4
(1e−2– < 1e−6)

 < 1e−6
(8e−5– − 2e−4)

27 5e−3
(6.7e−3–3e−5)

1e−4
(3.6e−2– < 1e−6)

2e−6
(2e−5– − 6e−4)

Medication 22 5e−3
(6.2e−3–1e−4)

1e−4
(3.2e−3–1e−5)

1e−6
(1e−5– − 3e−5)

0 NA NA NA

Metabolic 31 1.8e−3
(5.2e−3–2e−5)

1e−4
(7.9e−3– < 1e−6)

1e−6
(1e−5– − 4e−5)

15 5e−3
(0.78–3e−5)

1e−4
(4.3e−2– < 1e−6)

4e−6
(1e−4– − 2e−5)

Musculoskeletal 9 5e−3
(5e−3–1e−4)

 < 1e−6
(5e−3– < 1e−6)

1e−6
(5e−5– − 4e−4)

9 5e−3
(1.1e−2–1.7e−3)

5e−5
(4e−4– < 1e−6)

2e−6
(1e−5– − 4e−4)

Neoplasms 17 5e−3 
(6e−3–3e−5)

3e−4 
(3.2e−2– < 1e−6)

2e−6 
(1e−4– − 1e−4)

17 5e−3 
(5e−3–2e−5)

2e−4 
(3e−2– < 1e−6)

4e−6 
(3e−5– − 3e−5)

Neurological 7 5e−3 
(5.2e−3–3.2e−3)

1e−4 
(1.8e−3– < 1e−6)

 − 1e−5 
(4e−6– − 2e−4)

6 5e−3 
(5e−3–3.6e−3)

1e−4 
(2e−4– < 1e−6)

 − 4e−6 
(1e−5– − 4e−5)

Ophthalmological 8 5e−3 
(5e−3–8e−4)

5e−5 
(4e−4– < 1e−6)

 < 1e−6
(2e−5– − 2e−5)

7 2e−3 
(5e−3–3e−5)

3e−4 
(2e−2– < 1e−6)

5e−6 
(1e−5– − 2e−6)

Psychiatric 5 5e−3 
(6.7e−3–5e−3)

2e−4 
(1.8e−3– < 1e−6)

 − 2e−5 
(1e−5– − 2e−4)

5 5e−3
(9e−3–5e−3)

1e−4 
(3e−4–1e−4)

2e−6 
(3e−6– − 1e−5)

Respiratory 9 5e−3 
(5e−3–5e−3)

 < 1e−6 
(2e−4– < 1e−6)

 − 1e−5 
(1e−5– − 1e−4)

9 5e−3 
(8.4e−3–2e−4)

1e−4 
(2.1e−3–2e−5)

 − 3e−6 
(1e−5– − 1e−5)

Urogenital 12 5e−3 
(5.5e−3–3e−4)

4e−6 
(1.5e−3– < 1e−6)

 − 2e−6 
(3e−5– − 1e−4)

12 5e−3 
(5e−3–1e−4)

1e−4 
(1.4e−3– < 1e−6)

3e−6 
(4e−6– − 2e−6)
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we tested EAS-EUR πc differences within the three cat-
egories that showed statistically significant enrichments 
(i.e., hematological, metabolic, and endocrine catego-
ries; Fig. 1). In EAS, hematologic traits showed a lower 
proportion of susceptibility SNPs than that observed in 
EUR (EAS median πc = 0.15%, EUR median πc = 0.50%, 

KW statistic = 5.96, p = 0.015). A similar trend was also 
observed for metabolic traits (EAS median πc = 0.18%, 
EUR median πc = 0.50%, KW statistic = 3.33, p = 0.068). 
Conversely, the endocrine category had a higher pro-
portion of susceptibility SNPs in EAS (endocrine 
median πc = 0.50%) compared to EUR (endocrine 
median πc = 0.01%; KW statistic = 4.03, p = 0.045).

Fig. 1 Pairwise comparison (Dunn test) of the proportion of susceptibility SNPs (πc) in hematological and metabolic traits assessed in populations 
of East Asian descent (EAS-hematological and EAS-metabolic, respectively) and in endocrine traits assessed in population of European descent 
(EUR-Endocrine) with respect to other phenotypic categories. Details of each comparison are available in Additional file 1: Tables S3 and S4
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Projected genetic variance explained by susceptibility SNPs
To characterize further the implications of EAS and EUR 
polygenicity variation across phenotypic categories, we 
estimated the proportion of genetic variance explained 
by susceptibility SNPs reaching genome-wide signifi-
cance considering projected sample sizes of 1,000,000 
and 5,000,000 individuals  (GV%1M and  GV%5M, respec-
tively; Additional file 1: Table S8). For some traits,  GV% 
could not be calculated because of the low SNP-based 
heritability z-scores.

In EAS, both  GV%1M and  GV%5M showed significant 
differences across phenotypic categories  (GV%1M KW 
statistic = 21.95, p = 1.24 ×  10–3;  GV%5M KW statis-
tic = 20.91, p = 1.91 ×  10–3). Results of the pairwise com-
parisons were consistent between the two analyses (i.e., 
N = 1,000,000 and N = 5,000,000) with five FDR-signif-
icant differences shared between them (FDR q < 0.05; 

Fig.  2, Additional file  1: Table  S9) with the strongest 
one being between hematological and neoplasm cat-
egories  (GV%1M Dunn statistic = 3.70, p = 2.18 ×  10–4; 
 GV%5M Dunn statistic = 3.50, p = 4.70 ×  10–4).

In EUR, while KW test showed differences across 
phenotypic categories with respect to two analyses 
 (GV%1M KW statistic = 21.95, p = 1.24 ×  10–3;  GV%5M 
KW statistic = 20.91, p = 1.91 ×  10–3), the only FDR-sig-
nificant pairwise difference was between endocrine and 
gastrointestinal categories  (GV%1M and  GV%5M: Dunn 
statistic =  − 3.39, p = 6.80 ×  10–4; Additional file  1: 
Table S10).

In the between-population comparison, we did not 
find a significant EAS-EUR difference with respect to 
 GV%1M and  GV%5M estimates considering the overall 
distribution of the traits available and the major phe-
notypic categories (p > 0.2; Additional file 1: Tables S11 
and S12, respectively).

Fig. 2 Pairwise comparison (Dunn test) among phenotypic categories of the proportion of genetic variance explained by susceptibility SNPs 
reaching genome-wide significance considering projected sample sizes of 1,000,000 (bottom triangle) and 5,000,000 individuals (upper triangle) 
of East Asian descent. Cell color corresponds to the statistical significance of the pairwise comparison: bright green (false discovery rate q < 0.05), 
green (p < 0.05), light green (p < 0.1), and white (p > 0.1). Details of each comparison are available in Additional file 1: Table S9
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Discussion
The present study leveraged BBJ, UKB, and FinnGen 
cohorts to investigate the polygenicity of complex traits 
in EAS and EUR individuals. To our knowledge, this is 
the first effort to comprehensively investigate polygenic-
ity patterns across the human phenotypic spectrum in 
multiple ancestry groups. In line with the expectation 
that the biology of complex phenotypes should be con-
sistent among worldwide populations, we found that 
there was no statistical difference in the proportion of 
susceptibility SNPs when testing the overall distribution 
across multiple traits. However, when investigating poly-
genicity variation (i.e., the proportion of susceptibility 
SNPs per trait) with respect to specific health domains, 
we observed ancestry-specific patterns.

In EAS, there was strong enrichment for metabolic 
and hematologic categories when testing differences with 
respect to the proportion of susceptibility SNPs. Specifi-
cally, metabolic and hematologic traits showed a lower 
degree of polygenicity (i.e., a lower proportion of suscep-
tibility SNPs) than phenotypes related to several other 
categories (e.g., respiratory, neurological, psychiatric, 
and immunological). The polygenicity of complex traits is 
primarily driven by purifying selection where new muta-
tions with large effects tend to be removed from the pop-
ulation while variants with small effects are more likely 
to become common [6, 7]. Ancestry-specific evolution-
ary dynamics may be responsible for the low polygenic-
ity of metabolic and hematologic traits. Compared to 
other ancestry groups, metabolic risk in EAS populations 
appears to be stronger where individuals tend to develop 
prediabetes and diabetes at a younger age and at a lower 
body mass index and waist circumference [13, 14]. The 
genetic risk of type-2 diabetes is partially shared between 
EAS and EUR, but there may be EAS-specific pathways 
related to skeletal muscle, adipose, and liver development 
and function [15]. This ancestry-specific genetic risk may 
be due to adaptations to cereal-based diets. Indeed, the 
diet of EAS populations relied on wild and domesticated 
rice for more than 10,000 years [16, 17]. This long expo-
sure to a cereal associated with high glucose load may 
be responsible for the signatures of selective sweeps and 
polygenic adaption observed in Chinese, Korean, and 
Japanese populations in genes involved in fatty acids 
metabolism, cholesterol/triglycerides biosynthesis from 
carbohydrates, regulation of glucose homeostasis, and 
production of retinoic acid [18].

With respect to the lower polygenicity of hematologic 
traits in EAS compared to other health domains, there 
is limited information regarding which dynamics may 
be responsible. However, there is consistent literature 
regarding the impact of human evolutionary history on 
shaping the variation of genes related to hematologic 

phenotypes. For example, adaptation to malaria strongly 
influenced the genetics of hematologic traits through a 
systematic positive selection of protective alleles that is 
likely to be partially different across ancestry groups [19]. 
Denisovan-introgressed alleles were responsible for high-
altitude adaption in Tibetans, which showed a modified 
response to hypoxia-altering changes in hemoglobin con-
centration [20]. Denisovan-introgressed alleles were also 
associated with hematologic traits (e.g., albumin-globu-
lin ratio) in EAS [21]. Blood biomarkers showed strong 
cross-ancestry heterogeneity in the effect of genome-
wide significant loci [22]. While these mechanisms do 
not directly explain the lower polygenicity of hematologic 
traits in EAS, they support that blood-related phenotypes 
played an important role in human evolution and that 
there may be specific adaptation processes in EAS popu-
lations affecting them.

In EUR, endocrine traits showed a lower polygenicity 
degree than other complex phenotypes (i.e., psychiatric, 
musculoskeletal, gastrointestinal, hematological, respira-
tory, cardiovascular, and metabolic traits). The endocrine 
system plays a key role in many aspects (e.g., develop-
ment, reproduction, and response to the environment) 
that were essential to the success of the human species 
[23]. Indeed, several studies reported evidence of sig-
natures of multiple selective pressures acting in genes 
related to the endocrine system [24–26]. In EUR, recent 
positive directional selection was observed in human 
male reproductive genes in response to different environ-
mental conditions [27]. A Neanderthal introgressed allele 
increasing the levels of progesterone receptor is associ-
ated with having more siblings, fewer miscarriages, and 
less bleeding during early pregnancy in EUR individuals 
[28]. Dietary changes may have also contributed to shap-
ing hormonal responses such as the effect of agriculture 
introduction on thyroid hormones [29]. The presence of 
multiple adaption processes may have reduced the effect 
of purifying selection acting on endocrine-related genes 
in EUR.

In our study, we used genome-wide association sta-
tistics generated from the meta-analysis of UKB and 
FinnGen data to maximize the sample size and obtain 
information regarding as many phenotypes as those 
available in BBJ. UKB-FinnGen GWAS meta-analyses 
have been performed by several studies [30–33], because 
Finnish population is within EUR genetic variation [34] 
although they have a peculiar demographic history that 
can permit the study of alleles that are rare in other EUR 
populations [12].

Beyond the link between human evolution and the 
genetics of complex traits, the ancestry-specific poly-
genicity patterns have implications for the translation of 
genetic information into clinical care. Indeed, there are 
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ongoing efforts into defining PGS to stratify disease risk 
[35]. For certain health outcomes, PGS power to stratify 
individual risk appears to be comparable to some mono-
genic mutations [36]. One of the main limitations in PGS 
application is modeling polygenic risk across ancestry 
groups due to the limited representativeness of world-
wide populations among large-scale GWAS [37]. While 
methods are being developed to perform effectively 
cross-population polygenic prediction across ancestry 
groups [38, 39], our findings highlight that modeling 
polygenicity may need to account for ancestry-specific 
differences across different health domains. Specifically, 
the genetic variance explained by susceptibility SNPs 
projected with respect to the sample sizes of 1,000,000 
and 5,000,000 individuals shows how future GWAS may 
generate extremely powerful PGS with ancestry-specific 
predictivity variation with respect to certain phenotypic 
categories. Our results point to several health domains 
that may require closer attention to cross-ancestry 
effects.

Most of our findings were related to the proportion 
of susceptibility SNPs per trait, which is informative of 
the polygenicity degree of the phenotypes investigated. 
However, we also identified significant between- and 
within-population differences in the residual effects not 
captured by the variance of effect sizes (i.e., parameter a). 
This reflects the potential systematic bias in variance esti-
mates due to effects such as population stratification or 
cryptic relatedness [5]. In line with the fact that current 
methods can adequately control these GWAS confound-
ers, we observed extremely low estimates of parameter 
a (Table  1). Nevertheless, we saw differences between 
ancestries and between categories. This is likely due to 
the characteristics of the cohorts and/or the populations 
investigated. The between-category differences may be 
related to the specific dynamics linking population struc-
ture to the assessment of traits analyzed. As mentioned, 
the systematic bias detected is extremely small. However, 
future larger GWAS with the statistical power to detect 
very small effects may need to control further the resid-
ual bias of certain confounders. While πc and a estimates 
showed differences between ancestries and between cate-
gories, we did not observe significant results with respect 
to σ2 parameter (i.e., the variance parameter for non-null 
SNPs). This suggests that ancestry and category differ-
ences are primarily driven by variability in the propor-
tion of susceptibility SNPs per trait. Further studies will 
be needed to confirm this hypothesis across more diverse 
cohorts and a large number of phenotypes.

In conclusion, we provide the first comprehensive evi-
dence of polygenicity patterns among human traits and 
diseases in EAS and EUR. Our findings confirm that 
there is an overall similarity between ancestry groups in 

the polygenicity of complex phenotypes. However, we 
observed ancestry-specific patterns in the polygenicity 
observed across multiple health domains. We hypoth-
esize that these are due to evolutionary mechanisms that 
acted specifically in certain population groups. These may 
have important implications in the future applications 
of PGS to individuals of diverse ancestral backgrounds. 
Although these are novel insights into the genetics of 
complex traits, we have to acknowledge several limita-
tions. First, our study compared two ancestry groups 
leveraging data from three large biobanks. Because of 
the differences in the characteristics and the assessment 
of the cohorts investigated, our results may be partially 
due to cohort-specific factors rather than due to genetic 
variation between ancestries. Our study was based on 
publicly available datasets and we were not able to find 
additional resources to expand our analyses to other 
cohorts. Our findings will need to be confirmed in other 
large cohorts including diverse participants. Second, the 
difference in the sample size available for EAS and EUR 
may have affected the results of some of the analyses 
conducted. We hope that in the next years, additional 
data will become available for EAS and other population 
groups that are currently underrepresented in genetic 
research. Third, although we greatly expanded the num-
ber of phenotypes investigated with respect to the ones 
analyzed in the initial GENESIS analysis [5] and provided 
novel insights into ancestry differences, future studies 
will need to focus on possible differences between effect 
size distribution derived from single cohorts and those 
detected from GWAS meta-analysis of many cohorts 
with different characteristics. Fourth, we discussed 
our results in the context of EAS and EUR evolution-
ary history. However, because of the lack of information 
regarding the implication of evolutionary processes with 
respect to human traits and diseases across worldwide 
populations, some of our hypotheses should be consid-
ered speculative because they rely on findings related to a 
single phenotype rather than multiple phenotypes within 
different health domains.

Materials and methods
Study populations
In our study, we used data generated from EAS and EUR 
participants enrolled in BBJ, UKB, and FinnGen. BBJ is a 
prospective biobank that collected DNA and serum sam-
ples from 12 medical institutions in Japan and recruited 
approximately 200,000 participants, mainly of Japanese 
ancestry. The mean age of participants at recruitment 
was 63  years old, and 46% were female. BBJ phenotype 
information including disease endpoints, past medi-
cal history, electronic health records (EHR), biomark-
ers, and prescription category [10]. UKB is a biobank 
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that enrolled more than 500,000 participants assessed 
through detailed web-based questionnaires on their diet, 
cognitive function, work history, health status, and other 
relevant phenotypes [11]. EHRs are available for the UKB 
cohort, providing information regarding primary care, 
hospital episodes, death registry, and laboratory test 
results [11]. The mean age of UKB participants at recruit-
ment was 57 years old, and 54% were female. FinnGen is 
a public–private partnership project combining genotype 
data from Finnish biobanks and digital health record data 
from Finnish health registries [12]. The mean age of par-
ticipants at the time of the DNA sample collection was 
52 years old and 56% were female.

To avoid biases due to population stratification [40], 
BBJ genome-wide analyses were restricted to 178,726 
EAS participants as estimated by the principal compo-
nent analysis-based sample selection criteria [9]. The 
same approach was used to define EUR participants 
from UKB [9]. Principal component analysis was also 
used to detect ancestry outliers among FinnGen partici-
pants (description available at https:// finng en. gitbo ok. io/ 
docum entat ion/v/ r3/ metho ds/ phewas/ quali ty- checks). 
A total of 357,658 and 135,638 EUR participants were 
investigated from UKB and FinnGen.

The genome-wide association statistics were generated 
following the analytic approach described previously [9]. 
Briefly, the association analysis of binary traits (i.e., dis-
ease endpoints and medication usage) was performed by 
using the generalized linear mixed model implemented 
SAIGE (v.0.37) [41], including age,  age2, sex, age × sex, 
 age2 × sex and the top 20 principal components as covari-
ates. For sex-specific diseases, age,  age2, and the top 20 
within ancestry principal components were included as 
covariates, and only controls of the sex to which the dis-
ease is specific were used. BOLT-LMM (v.2.3.4) [42] was 
used to conduct GWAS of quantitative traits (i.e., bio-
markers) by using a linear mixed model and including the 
same covariates as used in the binary traits above. UKB 
and FinnGen GWAS meta-analyzed using the inverse-
variance method to create a single EUR dataset [9]. A 
total of 215 traits and 152 matching phenotypes were 
investigated in EAS and EUR, respectively (Additional 
file 1: Table S1).

The genome-wide association statistics used in the 
present study were downloaded from https:// pheweb. jp/ 
downl oads in November 2021.

Effect size distribution
The GENESIS R package [5] was used to determine the 
descriptive statistics regarding the effect size distribu-
tion of complex traits in EAS and EUR (Additional file 1: 
Table  S1). Briefly, GENESIS approach can distinguish 
susceptibility SNPs (i.e., those that have a detectable 

influence without requiring genome-wide significance) 
from null SNPs (i.e., those that have no detectable effect 
on a trait) to estimate parameters describing the poly-
genic architecture of a trait: (i) πc, the proportion of sus-
ceptibility SNPs per trait; (ii) σ2, the variance of non-null 
SNPs; and (iii) a, the residual effects not captured by the 
variance of effect-sizes (e.g., population stratification, 
underestimated effects of extremely small effect size 
SNPs, and/or genomic deflation) [5]. As recommended 
by the developers [5], the GWAS data used in the pre-
sent study were filtered to include only HapMap3 SNPs 
with an ancestry-specific minor allele frequency ≥ 0.05 
[43]. Using the preprocessing() function, SNPs were also 
removed if: (i) their effective sample sizes were less than 
0.67 times the 90th percentile of the per-SNP sample size 
distribution; (ii) they were within the major histocom-
patibility region (excluded because of its complex LD 
structure); and (iii) they had extremely large effect sizes 
(per-SNP effect χ2 > 80). In line with GENESIS develop-
ers’ recommendations [5], we applied these filters to 
avoid that the effect-size distribution estimates may be 
affected by the presence of outlier variants. After these 
quality control steps, the genesis() function was used to 
implement the two-component model, which assumes 
that the distribution of effects for non-null SNPs follows 
a single normal distribution. The same preprocessing 
(Additional file 2: Fig. S1) and parameter estimation were 
performed for EAS and EUR datasets. EAS and EUR LD 
score reference panels were used with respect to the cor-
responding ancestry group (available at https:// github. 
com/ yando razha ng/ GENES ISasi an and https:// github. 
com/ yando razha ng/ GENES IS, respectively). According 
to simulation analyses [5], models with more than two 
components could substantially underestimate the total 
number of non-null SNPs for GWAS of modest sample 
size (N < 25,000) and this bias can some bias can persist 
even in much larger sample sizes (e.g., N = 100,000). For 
this reason, we decided to implement only the two-com-
ponent model to avoid possible biases due to the sample 
size of the input GWAS.

The expected proportion of genetic variance explained 
by susceptibility SNPs reaching genome-wide sig-
nificance considering projected sample sizes equal to 
1,000,000 and 5,000,000 by applying the projection() 
function in GENESIS [5]. These sample sizes were 
defined, because several GWAS already included more 
than 1,000,000 individuals [44–50] and there is a contin-
uing increase in GWAS sample size [1].

Statistical analyses
We tested within- and between-population differences of 
the descriptive statistics related to the polygenic architec-
ture of complex traits using non-parametric tests. This 

https://finngen.gitbook.io/documentation/v/r3/methods/phewas/quality-checks
https://finngen.gitbook.io/documentation/v/r3/methods/phewas/quality-checks
https://pheweb.jp/downloads
https://pheweb.jp/downloads
https://github.com/yandorazhang/GENESISasian
https://github.com/yandorazhang/GENESISasian
https://github.com/yandorazhang/GENESIS
https://github.com/yandorazhang/GENESIS
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permitted us to avoid issues related to the distribution 
of the variables investigated and to the presence of pos-
sible outliers. The KW test was used to compare differ-
ences across multiple groups (e.g., phenotypic categories) 
in a single analysis. To follow up KW results, we used the 
Dunn test to perform post-hoc pairwise comparisons. 
To account for the number of pairwise comparisons, we 
applied FDR multiple testing correction. KW and Dunn 
tests were performed using the rstatix R package.
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