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Abstract 

Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, 
COVID‑19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research 
on COVID‑19, and we give an outlook on state‑of‑the‑art therapeutical approaches, as the pandemic is gradu‑
ally transitioning to an endemic situation. The sequencing and characterization of rare alleles in different popula‑
tions has made it possible to identify numerous genes that affect either susceptibility to COVID‑19 or the severity 
of the disease. These findings provide a beginning to new avenues and pan‑ethnic therapeutic approaches, as well 
as to potential genetic screening protocols. The causative virus, SARS‑CoV‑2, is still in the spotlight, but novel threat‑
ening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We 
also note emphatically that to prevent future pandemics and other world‑wide health crises, it is imperative to capi‑
talize on what we have learnt from COVID‑19: specifically, regarding its origins, the world’s response, and insufficient 
preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination 
of effective response and the rapid implementation of containment measures.
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Introduction
Three and a half years after the start of the pandemic 
and the hoped-for endemic transition, the rush of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
does not seem to have stopped, despite the slowdown in 
mortality facilitated by the massive global vaccination 
campaign [1]. Following the declaration of the end of the 
health emergency state [2], we are witnessing a world-
wide reduction of preventive restrictions, a recovery of 
movements comparable to those of the pre-pandemic 
period and an increasingly forced coexistence with the 
virus. The past months have been characterized by the 
emergence of numerous descendent lineages of the Omi-
cron BA.2 and BA.5 variants, i.e., BQ.1, BQ.1.1, BA.4.6, 
BA.2.75.2, BF.7, and the recombinant XBB [3] and its 
subvariants including XBB1.5, which lately (as of June 
2023) represents the most frequent among the sequences 
reported to Global Initiative on Sharing All Influenza 
Data (GISAID) [4–6]. Given the continuous evolution of 
the variants landscape, on March 15th, 2023, WHO has 
changed the monitoring and definition criteria, caus-
ing the de-escalation of the well-known BA.2, BA.4, and 
BA.5 from the list of Variants Of Concern (VOCs).

The efforts of the scientific community have led to a 
greater knowledge on the evolution of the virus, its path-
ogenic and molecular mechanisms; to a growing aware-
ness of the symptoms, new therapeutic approaches for 
the treatment of the primary infection and of long-term 

effects (i.e., Long COVID) [1], as well as the development 
of next-generation mucosal vaccines that could provide 
the basis for countering other respiratory viruses [7].

Actual and potential evolution of SARS‑CoV‑2
The SARS-CoV-2 pandemic is the first contemporary dis-
ease for which we have gained substantial information 
on the dynamics of viral evolution and how this shapes 
the interaction with the host. Other viral outbreaks have 
riddled the twenty-first century, but the sheer amount of 
data accumulated, in geographical and temporal frames, 
provides a trove of information that will prove essential 
in dissecting pathogen–host interactions for years to 
come.

In particular, the frequent recourse to sequencing of 
the viral genome has given scientists an in-depth view on 
the stepwise evolution of the virus [6, 8].

Viruses are known for their high evolutionary rates due 
to rapid accumulation of nucleotide changes stemming 
from both intrinsic errors and viral-host cell interaction, 
fast replication time and the presence of complex viral 
populations (i.e., quasispecies) [9–11].

A first tier of viral diversity originates from the changes 
present in the many viral variants that have occurred 
globally (Fig. 1): starting from the first variant of concern 
(VOC), Alpha (B.1.1.7), initially isolated in the UK (Sep-
tember 2020), to Beta (B1.351, South Africa, May 2020), 
Gamma (P.1, Brazil, November 2020), Delta (B.1.617.2, 

Fig. 1 Temporal appearance of the SARS‑CoV‑2 strains. (Left) Each dot represents a sequenced genome at a given time point. Connecting 
lines indicate the evolutionary relationship among strains. The labels indicate the emerging lineages (nomenclature from nexstrain.org). (Right) 
Frequencies of sequenced genomes across continents (modified from nextstrain.org)
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India, October 2020). Currently circulating variants are 
mostly descendants of the Omicron variant (Botswana 
and South Africa, November 2021). The pattern of spread 
of variants in the first part of the pandemics, with lock-
downs in place, seems rather different from what hap-
pened subsequently, when restrictions were relaxed. 
Indeed, up to mid-2021 several variants coexisted and 
had different spreading patterns across continents. As 
soon as travel became easier, individual variants could 
sweep continents in unison. While this is a testament 
to the infectivity of SARS-CoV-2, it is also a reminder of 
the importance of containment measures: while not any-
more relevant to the current virulence, this is a lesson we 
should remember when new viral challenges will arise.

VOC-defining single-nucleotide variants (SNV) are 
limited and usually easily linked to fitness advantages. 
For example, the D614G change on the Spike protein (S) 
facilitates viral entry thus representing an evolutionary 
advantage that is conserved by positive selection in the 
Omicron descendent subvariants [12–14].

Another layer of complexity is revealed when intra-
host SNVs (iSNVs) are considered: in single individuals 
the viral population is not homogeneous as iSNVs arise 
during viral replications in each infected cell [15–18]. 
This generates a mix of slightly different viruses, the so-
called quasispecies. iSNVs virtually cover each position 
in the viral genome. While most iSNVs remain marginal, 
shared iSNVs become dominant, eventually determining 
the viral variant that will be transmitted [19, 20]. Most 
shared SNVs propagate through genetic drift, with many 
of them arising multiple times (homoplasy) in the differ-
ent lineages [21–23] and only few of them will provide a 
gain in fitness.

Mutational and selection processes determine the evo-
lutionary dynamics of the virus, and each of them is heav-
ily determined by the characteristics of SARS-CoV-2.

Regarding the mutational processes, despite its size, the 
mutation frequency of SARS-CoV-2 is lower than that of 
other RNA viruses [11, 24, 25]. In fact, even though the 
RNA-dependent RNA polymerase (RdRp) is error-prone, 
similarly to that of other viruses [26], NSP14, a 3’-5’ Exo-
nuclease (ExoN), is a proofreading element and it is fun-
damental in viral replication [27–29].

Beyond the intrinsic mutagenicity of the viral repli-
cation machinery, two additional mutagenic processes 
have been identified that result from interaction of the 
viral genome with the host: (i) oxidative damage, where 
SNVs originate from mispairing of guanines converted in 
8-oxo-G adenines [30–33]; (ii) the activity of host deami-
nases—the APOBECs (Apolipoprotein B mRNA edit-
ing enzyme, catalytic polypeptide) and the Adenosine 
Deaminases Acting on RNA (ADARs) [34–36]. These 
enzymes convert cytidines in single-stranded RNA and 

adenines in double-stranded RNA into uracil and ino-
sine, respectively.

All these mutational processes have been observed in 
several viruses and together they constitute the major 
mutagenic force that drives viral evolution [37]. In the 
case of SARS-CoV-2 the main host-derived source of 
mutations are the APOBECs, followed by oxidative dam-
age and, to a much lower extent, by the ADARs. Both 
positive and negative genomic strands are targeted but, 
for APOBECs and oxidative damage, the positive strand 
is strongly preferred for the positive one [34, 38].

Finally, recombination is another factor that increases 
viral diversity. As in other viruses, recombination can 
shuffle genetic elements through exchange of segments 
between distinct viral genomes. In a context in which 
viral quasispecies abound, recombination can merge fea-
tures from different coronavirus variants [39, 40].

It must be noted though that the weight of these muta-
tional processes in viral evolution has been extrapolated 
by analogy with known biological processes through 
bioinformatic analyses on viral genomes. So far, the only 
host-derived mutational process whose role in SARS-
CoV-2 has albeit limited experimental support is by 
APOBECs [41, 42].

Selection is the other orthogonal force that determines 
evolution of the virus. The deluge of genetic and epidemi-
ology data from the pandemic is proving once again the 
weight of the environment–virus–host interaction in the 
case of SARS-CoV-2 in the evolution of the virus. Indeed, 
the density of SNVs on the different open reading frames 
from multiple viral variants can be used to map the way 
the virus evolves. While there are several clusters, the 
gene encoding for Spike, which mediates viral entry, is 
the most targeted one and earlier mutations shape the 
potential for later ones [43]. Thus, immune pressure on 
the receptor-binding domain (RBD) causes convergent 
evolution and, eventually, immune evasion in SARS-
CoV-2 variants [44]. Clusters can be similarly observed 
in the ORF7, ORF8, ORF9 genes, that encode for proteins 
involved in immune-escape [45–47] (Fig. 2).

Beyond SNV position, there are several indicators that 
virus–host interaction is the main driver of viral evolu-
tion. Interestingly, long-term COVID-19 has been found 
to correlate with increased intra-host viral diversity [48], 
although we do not yet know whether it is disease per-
sistence that drives diversity or vice versa. Analogously, 
iSNVs observed in chronic infections also reflect those 
characterizing the main VOCs [49]. An example comes 
from Molnupiravir (MPV), a drug approved by the FDA 
in 2022 for patients who “have a current diagnosis of 
mild-to-moderate COVID-19 and who are at high risk 
for progression to severe COVID-19”—the last phrase 
refers particularly to patients who for a variety of reasons 
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have lowered immunity. MPV acts by inducing RNA 
mutations in the viral genome during the replication 
phase, leading to the generation of disrupted variants. 
However, we could imagine that some viral particles may 
be still viable and may be transmitted. Therefore, regard-
less of current debate about the extent of clinical benefits, 
a question about evolutionary implications is pertinent.

In favor of MPV, it does not target a specific step in 
viral replication so therefore, it is not expected to select 
for resistant mutants (like an antibiotic does). On the 
other hand, MPV is a potent mutagen and therefore, on 
top of the genetic diversity produced by spontaneous 
mutations and by host-induced mutations, it can pro-
duce additional genetic diversity. In principle, it is possi-
ble that one or more MPV-related mutations may confer 
increased infectious and/or pathogenic properties to 
SARS-CoV-2.

As evolutionary dynamics have changed along the 
course of the pandemic, epidemiological and biological 
factors will continue to affect viral evolution and long-
term infections and zoonotic spillovers will continue to 
pose a threat [49–51].

Evolution mainly occurs at contact points between 
virus and host. Since the clash between viruses and innate 
immunity is subject to the whims of random mutations, 
we cannot share the view, or the wishful thinking recur-
rent in many interviews to the press, that evolutionary 
dynamics are oriented toward the predominance of more 
lenient forms of the virus. Currently in a large part of the 
world the virus is kept in check through vaccination and 
acquired immunity, but it is certainly possible that new 
variants with a spectrum of pathogenic potential will 
evolve.

Genetic susceptibility in the host: what has changed?
Pathogen–host interactions have shaped and co-evolved 
over time and continue to do so today [52]. Viral infec-
tions provide strong support to this concept, because 
molecular adaptation to the host genome may occur very 
rapidly through mutations and recombination leading to 

an amino acid change in proteins that bind host recep-
tors and products active in membrane fusion [53]. There-
fore, not surprisingly, initial studies have been focused 
on the genetic variants of those genes that encode for 
the proteins involved in the entry of the virus into cells 
[54]. A recent meta-analysis evaluating 84 different stud-
ies regarding the association of 130 polymorphisms in 
61 candidate genes in over 6,000 patients with severe 
COVID-19 and 8000 infected individuals with mild man-
ifestations revealed a statistically significant association 
of ACE2 with the severity of COVID-19 [55]. The role 
of ACE2 was definitively confirmed through a genome-
wide association study (GWAS) [56], that identified an 
ACE2 variant (c.357-1203A > G, minor allele frequency 
0.2–2%) that reduces by 37% (P = 2.7 × 10 − 8) the expres-
sion of the receptor, and therefore reduces by 40% (odds 
ratio = 0.60, P = 4.5 × 10 − 13) the risk of infection with 
SARS-CoV-2. Interestingly, a recent selective mapping 
study of SARS-CoV-2 and ACE2 revealed that SARS-
CoV-2-RBD binding to hACE2 is variable. This suggests 
that the downregulation of additional factors such as 
SLC1A5, an amino acid transporter which may modulate 
the binding of SARS-CoV-2 to lung tissue, reduces the 
entry of SARS-CoV-2 variants [57].

Several GWAS have shown and demonstrated that 
genetic predisposition plays a role in the susceptibility 
to and severity of COVID-19 [58, 59]. Significant asso-
ciations were found not only with ACE2, but also with 
SLC6A20, JAK1, IRF1, IFN-α, TLR7, DOCK2, FOXP4, 
SFTPD, MUC5B, CIB4, NPNT, ZKSCAN1, ATP11A, 
PSMD3, OAS1. Moreover, a large European study [60] 
reported significant associations with LZTF1, ABO, 
TYK2, MAPT, DPP9, IFNAR2, and suggestive associa-
tions with PCDH7, FREM1, OLFM4, and PTPRM genes 
(Fig. 3).

A recent meta-analysis on COVID-19 severity and sus-
ceptibility to SARS-CoV-2 infection from host COVID-
19 Genetic Initiative (data release 7), summarized data 
regarding over 200,000 cases and over 3 million controls, 
and identified 51 distinct significant genome-wide loci, 

Fig. 2 Amino acid change in SARS‑CoV‑2 evolution. Distribution of amino acid changes detected in viral genes, indicated in color (y axis). The 
number of aa changes that affect the same codon is reported on x axis (generated by nextstrain.org)
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adding 28 loci to those in a previous data release [61]. 
These GWAS, performed in less than two years, identi-
fied numerous candidate genes, and helped define the 
main biological pathways (virus entry, mucus defense, 
and role of interferons) involved in disease susceptibility 
and severity (Fig.  3). Interestingly, recent GWAS stud-
ies did not find significant associations with HLA alleles 
[62], contrary to what was hypothesized and expected, 
given the biological role of HLA in viral infections due to 
other coronaviruses (SARS-CoV-1 and MERS-CoV) [63–
65]. The lack of association with HLA alleles of SARS-
CoV-2 infection suggests that host–pathogen coevolution 
in balancing selection that maintains high levels of HLA 
allelic diversity within populations, might involve other 

mechanisms [66]. Furthermore, given the success of 
SARS-CoV-2 as a pathogen, it is not surprising that 
it has developed multiple strategies to evade immune 
responses [67]. Associations with specific Y-chromo-
some haplogroups have also not been found but given 
that Y-haplogrouping is difficult in GWAS, further tar-
geted studies may be needed [62]. Interestingly, Augusto 
et al.  (Nature https:// doi. org/ 10. 1038/ s41586- 023- 06331-
x, 2023) revealed that the common variant HLA-B*15:01 
is strongly associated with asymptomatic SARS-CoV-2 
infection. About 10% of people with European ancestry 
have one or more copies of this genetic variant and they 
had a high probability of remaining asymptomatic after 
SARS-CoV-2 infection compared to people negative for 

Fig. 3 Chromosome ideogram representing the location of genes of interest investigated for a role in defining susceptibility to SARS‑CoV‑2 
infection or COVID‑19 severity (generated by visualization.ritchielab.org). For each gene, the involved pathways or mechanisms have been reported 
as per the legend

https://doi.org/10.1038/s41586-023-06331-x
https://doi.org/10.1038/s41586-023-06331-x
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this variant.  Although this association demonstrates a 
"modest" odds ratio, it is still stronger than all other com-
mon variants found to date associated with COVID-19.

The candidate gene approach has also been widely used 
to confirm and complement GWAS-derived findings and 
provide useful information to identify specific pathways 
and proteins important in disease pathogenesis [1, 68, 69] 
(Fig. 3). In this regard, it is interesting that impairment of 
CFTR function, resulting from certain alleles of this gene, 
is associated with the severity of COVID-19, which also 
appears to activate a synergistic effect with estrogens in 
the response to infection [69]. Numerous other candidate 
genes have been analyzed and validated by functional 
studies to provide relevant clinical information [70, 71]. 
Among these, genes involved in innate immunity and 
those of the interferon pathway are currently regarded 
as important players underlying the susceptibility to 
SARS-CoV-2 infection and the consequent symptoms 
of COVID-19 [72] (Fig. 3). In fact, the cellular response 
to infection is initiated by viral pathogen-associated 
molecular patterns (PAMPs,) which are recognized by a 
variety of pathogen-recognition receptors (PPRs). This 
is followed by the activation of downstream signaling 
molecules such as adapter proteins MAVS and MyD88, 
TBK1 kinase, IKK, transcription factors IRF3, NF-κB, 
activator protein 1 (AP-1), and others, which results in 
elevated IFN-I-III production and pro-inflammatory cel-
lular stress in general [73]. In addition, IFN-stimulated 
gene (ISG) expression products such as OAS, IFITM, and 
others seem to protect cells from SARS-CoV-2 infection 
by reducing virus entry [74]. Several human genetic stud-
ies carried out by the CHGE Consortium (Covid Human 
Genetic Effort, https:// www. covid hge. com/ about) have 
identified and characterized rare mutant alleles of these 
genes that confer susceptibility to COVID-19 and estab-
lished causal connections between function variants 
of TLR7 and TRL3 genes and severe COVID-19 phe-
notype [75–77]. Remarkably, Matuozzo et  al. [76] have 
pinpointed that the zygosity status of the mutant alleles 
significantly influences the penetrance of the severe dis-
ease phenotype. In this regard, it is interesting to observe 
how unvaccinated patients with homozygous mutations 
of the MyD88 or IRAK-4 genes have been associated 
with COVID-19 hypoxemic pneumonia resulting from 
reduced TLR7-dependent type I IFN production in plas-
macytoid dendritic cells (pDCs), a subtype of immune 
cell otherwise known for the abundant secretion of 
interferon [78]. The characterization of TLR7 variants 
in patients with critical COVID-19 could prove impor-
tant for a possible therapeutic approach [79]. Indeed, 
N-acetylcysteine (NAC), through binding to TLR7 vari-
ants, may prevent NF-κB activation by scavenging ROS, 
inhibiting nuclear translocation of IKKb and NF-κB, and 

impairing pro-inflammatory cytokine synthesis [80]. 
Interestingly, at least five regions among the 24 identi-
fied by GWAS as critical for COVID-19 susceptibility 
are linked to the type I IFN pathway (TYK2, IFNAR1, 
OAS1, OAS2, OAS3 loci), and in 2 of them (TYK2 and 
IFNAR1) rare predicted loss of function variants (pLOFs) 
have been identified in COVID-19 [75, 81, 82] (Fig.  3). 
However, we can note that the COVID-19 susceptibility 
genes, identified via GWAS and the rare variants identi-
fied through the candidate gene approach, such as those 
of the interferon pathway, do not always overlap. This is 
reminiscent of the experience in breast cancer suscepti-
bility research, where many common variants found by 
GWAS in the BRCA1 and BRCA2 genes are not always 
the same as “rare high-risk variants” [83, 84]. It is quite 
evident that today, the characterization of rare variants 
plays a priority and unique role in the genetics of com-
plex diseases in humans due to their distinctive char-
acteristics, unlike the common variants. In fact, these 
constitute a precise objective of the functional analysis 
to understand the disease mechanisms, a new favorable 
target for the development of drugs and a valid genetic 
biomarker for estimating the disease risk [85, 86]. It is 
possible that some rare variants in GWAS genes associ-
ated with COVID-19 will be identified later when more 
patients are tested.

Common genetic variants have reportedly only a mod-
est effect and explain only a very small fraction of the 
clinical variability [87]. For this reason, we believe that 
the search for rare variants that confer a stronger suscep-
tibility to life-threatening COVID-19 should extend, per-
haps to subgroups of populations and within individual 
families [88].

Current COVID‑19 clinical knowledge state of the art
As detailed in our previous review “COVID-19 2022 
update: transition of the pandemic to the endemic phase” 
[1], COVID-19 infection produces a multi-system condi-
tion that primarily involves the respiratory system. It can 
lead to a systemic inflammatory response and potentially 
to multiorgan impairment, and death in the most critical 
cases [89]. Over the last two years of the pandemic, with 
the increase in the immunization rate in the world popu-
lation, the availability of new therapies, and the spread of 
new variants and subvariants, the symptoms pattern has 
evolved in parallel. In this context, we have witnessed a 
mitigation of signs and symptoms, at the expense of a 
faster diffusion and lower lethality [90]. Despite efforts, 
severe outcomes cannot be eluded in all cases, even in 
vaccinated subjects, as recently reported in literature 
[91]. The ease with which currently available mRNA vac-
cines [92] can be updated has made it possible to deal 

https://www.covidhge.com/about
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with the new variants of the virus in a timely manner [93, 
94].

Persistence of shortness of breath, exercise limita-
tions, fatigue, neurological and vascular manifestations, 
are the most common of Long COVID syndrome [1]. 
As discussed in some detail in our previous update, this 
syndrome is as a multiorgan systemic condition [1], the 
pathophysiology of which is still under investigation 
[95]. Understanding the mechanisms of the infection’s 
sequelae may pave the way to new therapeutic perspec-
tives [95]. We have already discussed the possibility of 
applying antiplatelet and antioxidant therapy in affected 
patients [1]. Recently, epipharyngeal abrasive therapy 
(EAT) for the treatment of chronic epipharyngitis post 
SARS-CoV-2 infection has been reported [96]. Chronic 
pain is the most common symptom [97, 98], and neu-
romuscular pain may persist for up to one year after 
the primary infection [99]. An interesting, randomized 
case–control trial has demonstrated that an endocannab-
inoid-like mediator (co-ultramicronized palmitoylethan-
olamide/luteolin) can enhance GABA-ergic transmission 
and reduce neuro-inflammation in a group of patients 
showing cognitive dysfunction (or “brain fog” [100]) and 
fatigue after COVID-19 [101]. Subarachnoid hemor-
rhage may occur in about 0.1% of COVID-19 patients, 
and whether this entails further neurovascular sequelae 
should be investigated [102].

Brief therapeutic approach overview
On April 20, 2023, the COVID-19 Treatment Guidelines 
Panel published major revisions to the therapeutic rec-
ommendations [103].

Below we provide an overview of currently approved 
treatments.

Currently, Remdesivir is the only FDA-approved antivi-
ral drug targeting the RNA-dependent RNA polymerase. 
Administered to adults and children aged ≥ 28  days, its 
efficacy was recently confirmed in a meta-analysis cover-
ing data from 10,480 patients, with a significant reduc-
tion in 28-day mortality in cases requiring no or low-flow 
oxygen administration [104]. Although more investiga-
tions are needed and against predictions due to improved 
immune evasion strategies, initial evidence shows that 
Remdesivir maintains its neutralizing capacity in  vitro 
even against the BQ.1.1 and XBB variants [105].

Other antiviral agents have instead received Emer-
gency Use Authorizations from the FDA. Among them, 
the Paxlovid. This oral formulation contains nirmatrel-
vir, a protease inhibitor, and ritonavir, a pharmacokinetic 
boosting agent that inhibits cytochrome P450 (CYP) 3A4 
to increase plasma concentration of the active ingredient. 
It is precisely this adjuvant function that determines the 

need for a careful management of the prescription, since 
it is the basis for reported drug-drug interactions.

Another therapeutic approach under EUA is Mol-
nupiravir, a broad-spectrum ribonucleoside prodrug of 
beta-D-N4-hydroxycytidine (NHC), whose use is indi-
cated within 5 days of the onset of symptoms, if the non-
hospitalized patient is at high risk of severe disease. Since 
it appears to have lower efficacy compared to the previ-
ously mentioned treatments [106], it is not the treatment 
of election. Recent studies proved that Molnupiravir 
might be effective against the Omicron sublineages [107, 
108].

On the other hand, it is contraindicated in pregnant 
and lactating patients due to the antiviral mechanism, 
and the trials did not evaluate children (MOVe-OUT 
[109], PANORAMIC [110]). The NHC triphosphate 
used by RdRp leads to the incorporation of G or A 
bases, introducing mutations in the RNA product. Fur-
thermore, the affinity between NHC and G or A in the 
complex is stable to the point of reducing the proof-
reading activity, thereby increasing the mutation rate 
of the polymerase leading to a lethal viral replication 
arrest [111]. Concerns about high mutagenicity of this 
antiviral and its role in the viral evolution have been 
described in the previous paragraph and are currently 
under investigation [112]. Since it could influence the 
rate of variability and selection of SARS-CoV-2 vari-
ants, continuous monitoring of emerging variants is 
active.

While there are no striking evidence supporting the 
effectiveness of alpha and beta interferons, proposed as 
treatments during the early stages of the pandemic, new 
studies are investigating the effect of pegylated interferon 
lambda (PEG-IFN lambda) and the first results have 
recently been published. From a TOGETHER protocol-
based trial [79] on a predominantly vaccinated (83%) 
population of hospitalized patients, a therapeutic regi-
men with a single subcutaneous administration of PEG-
IFN lambda within 7  days of onset showed a reduction 
in hospitalization and emergency observation period 
compared to placebo administration. Although it has 
limitations, this study takes into consideration symp-
tomatic patients affected by different variants; moreo-
ver, the prevalence of a risk OAS1 gene haplotype (AAA 
for rs1131454-A, rs10774671-A, and rs2660-A), which 
allows to stratify patients based on the probability of a 
positive response to therapy [113], is ensured.

Antivirals proposed on the early stage of the pan-
demic, such as hydroxychloroquine, chloroquine, Lopi-
navir/Ritonavir, and ivermectin, are no longer indicated 
for treatment since their use has not shown significant 
benefits in terms of reduction of the mortality rate or 
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improvement of clinical status. For this reason, they are 
not covered in this work.

A different class of agents employed in contrasting 
SARS-CoV-2 is that of neutralizing antibody products. 
Many efforts have been made to develop monoclonal 
antibodies, but their effectiveness has been undermined 
by the appearance of resistant variants [114, 115]. From 
December 2022, the use of plasma from donors who 
have recovered from SARS-CoV-2, containing antibod-
ies useful for the arrest of viral replication (i.e., convales-
cent plasma), has been restricted to high titer products 
only, to be administered only to immunocompromised 
patients [116]

Immunomodulators have been used to sustain the 
action of antiviral agents or alone. Low-dose dexameth-
asone, a corticosteroid, still represents the therapeutic 
standard [117]. A recent randomized trial conducted on 
COVID-19 patients requiring simple oxygen therapy has 
shown that high doses of corticosteroids need to be care-
fully with attention as they appear to be harmful, since 
they increase the 28-day mortality rate [118]. The data 
are currently not supported by the COVIDICUS [119] 
and COVID STEROID 2 [120] trials, so the debate is still 
under investigation.

Interleukin inhibitors are also being studied, as a tool 
to contrast the increase in interleukins, which are associ-
ated with inflammatory damage resulting from infection 
and elevated in patients with COVID-19. There is insuf-
ficient evidence to recommend the use of interleukin-1 
(IL-1) inhibitors, such as the recombinant IL-1 receptor 
agonist Anakinra, or the monoclonal antibody Canaki-
numab. On the other hand, studies have been conducted 
on inhibitors of interleukin 6 (IL-6) (RECOVERY [121], 
REMAP-CAP [122]), such as Tocilizumab, a repurposed 
monoclonal antibody. A recent update of the results 
obtained from the trial on the long-term effects of this 
therapeutic approach on critically ill patients shows a 
marked improvement in 180-day mortality [123]. The 
data are in contrast with previously conducted trials 
(EMPACTA [124] and REMDACTA [125]), making fur-
ther investigations necessary. Another strategy to block 
the inflammatory cascade involves the use of Janus kinase 
(JAK) inhibitors, preventing the phosphorylation of 
proteins involved in downstream signaling (JAK-STAT 
pathway). Among these, promising randomized trials to 
have been conducted on Baricitinib, a selective inhibitor 
of JAK1 and JAK2 [126], and on Tofacitinib, a selective 
inhibitor of JAK1 and JAK3 [127].

What we have learned in these years of study and 
struggle in search of increasingly effective and acces-
sible therapies is that the emergence of novel variants 
could compromise the work done so far. This observation 

should prompt us to direct future efforts toward the 
development of pan-coronavirus vaccines and inhibitors.

Outlook
As the item “COVID-19” in PubMed returns, on July 3, 
2023, 371,188 results, one might ask what factors have 
fueled this pandemic of publications regarding a viral 
pandemic: is it the public health burden, the scientific 
interest in SARS-CoV-2 evolution and in virus–host cell 
interactions, the clinical interest in the panoply of mani-
festations, the laudable re-conversion of laboratories to 
research on a major urgent world-wide problem, the pri-
ority funding of research on COVID-19, the enormous 
financial interests related to production of vaccines and 
of potential therapies, the jumping on the band-wagon 
of a topic for which journals have provided a fast-track 
publication pathway, possibly coupled with the publish-
or-perish imperative. We daresay, all the above.

Therefore, we must perhaps justify why with this man-
uscript, we increase the total to 364,655. We certainly 
did not intend to attempt a review of this massive topic; 
rather, we wished to focus on some aspects for which an 
update may be in order.

Like in many other infectious diseases, the clinical 
picture is complex, since it depends on the interaction 
between two biological entities. After ACE2 receptor-
mediated entry of SARS-CoV-2 into epithelial cells of 
the respiratory tract, pattern-recognition receptors and 
endosomal toll-like receptors (TLRs) are engaged by viral 
single-stranded RNA; whereupon, downstream signal-
ing cascades trigger the secretion of type I/III interfer-
ons (IFNs), that could potentially kill virus-infected cells. 
However, it seems that SARS-CoV-2, like other corona-
viruses, can interfere with one or more steps of this fun-
damental mechanism of antiviral innate immunity [128]. 
The resulting infection of the respiratory tract could be 
regarded as “regular” COVID-19: with acquired immu-
nity setting in, this is a self-limited disease in most cases. 
On the other hand, severe life-threatening COVID-19 is 
probably related in most cases either to host fragility, or 
to the down-side offshoot of innate immunity, namely 
inflammation. SARS-CoV-2 proteins might induce IL-6 
and IL-8 production, potentially by inhibiting an endog-
enous NF-kB repressor [129]; and many pre-disposing 
host factors can contribute to hyper-inflammation [130], 
eventually precipitating a potentially fatal cytokine 
storm, i.e., an adverse outcome pathway [131]. In keep-
ing with this, several genes discussed in the above host 
genetic susceptibility section are part of the innate 
immunity network; and it is particularly interesting that 
rare variants of TLR7 are associated with impaired sign-
aling [132].
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As outlined in the section on evolution and evolv-
ability, this process has been naturally a major feature 
of SARS-CoV-2 since the onset of the pandemic. Ran-
dom mutations are part and parcel of every round of 
viral replication, of which there have been zillions; and 
it is remarkable that mutations may result not only from 
errors by the RNA-dependent RNA polymerase encoded 
by the viral genome, but also from the same genome 
being edited by ADAR and APOBEC enzymes of host 
cell origin [33]. This finding has been challenged [34], 
but then validly upheld [35]. Most of the tens of thou-
sands of SARS-CoV-2 mutations are essentially neutral; 
only a very small minority may undergo positive selec-
tion, as they increase the rate of transmission, and/or 
the severity of disease, and/or increase the risk of rein-
fection and reduce the protection afforded by neutraliz-
ing antibodies and vaccination [133]. The importance of 
tracking mutants in all parts of the world has emerged 
prominently through the remarkable work from the 
group of Tulio de Oliveira at the University of Stellen-
bosch in South Africa [134], that has documented the 
spread of several omicron variants. In the case of bac-
teria antibiotics have been for decades a major source of 
selection of resistant mutants; therefore, we have to con-
sider how far a new antiviral agent may be similar agents 
of selection.

In September 2022, when asked whether the COVID-
19 pandemic was finished, the Director-General of WHO 
Tedros Adhanom Ghebreyesus said that: “We are not 
there yet; but the end is in sight”. Dr Tedros further said 
that the world has never been in a better position to end 
the COVID-19 pandemic. On March 9, 2023, one of the 
main trackers of COVID-19, the Johns Hopkins Coro-
navirus Research Center, whose maps many of us have 
perused regularly, has decided to close down (but the 
wealth of existing data will remain available).

SARS-CoV-2 has not been eradicated, in the way that 
the smallpox virus has; however, from the almost total 
abrogation of physical and of travel restrictions, and 
especially from sensing the mood of people, it seems rea-
sonable to say not only that the worse is over, but that 
COVID-19 is no longer conditioning the world. If, from 
now on, people at large will use common sense in aiming 
to avoid transmission of respiratory infections through 
droplets and through aerosols, including the wearing of 
masks when appropriate, this will be at least one posi-
tive legacy from COVID-19. Instead, a most unwelcome 
legacy, still very much with us, is a wide range of psycho-
logical consequences from the pandemic and from lock-
down periods: both have been traumatic stressors [135], 
and they are still causing eating disorders and other self-
damaging behavior patterns [136] that need care by pro-
fessionals and by families.

Conclusions
In several countries, there have recriminations about 
the fact that, in 2019, health services in most countries 
were not as prepared for a pandemic as they should have 
been. As we are not public health experts, we feel unfit to 
judge the perfect balance between resources in the area 
of prevention and containment to be in readiness for fac-
ing new contingencies, versus resources needed all the 
time for facing current medical needs. One thing is clear: 
namely, that the public sector of the health services has 
taken the brunt of the pandemic, and that things have 
gone better, with respect to both clinical outcomes and 
vaccination, in countries where a National Health Ser-
vice (NHS) is in place and is efficient. It may be wise to 
plan and steel ourselves against another pandemic: but 
we suggest that the top priority is strengthening the NHS 
in every country that has one, and to introduce a NHS 
in every country that does not yet have one. There is 
no doubt that the world must remain vigilant about the 
evolution of COVID-19 and SARS-CoV-2: this requires 
world-wide cooperation and it is vital that coordination 
by the WHO remains vigorous.

Lastly, there will be ongoing progress in the human 
genomics of susceptibility to the disease and evolution 
of the virus itself. These scientific developments should 
be closely monitored.
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