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Total RNA sequencing reveals gene 
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Abstract 
Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral 
cavity ranking among the deadliest and the most disfiguring cancers globally. Oral cancer (OC) constitutes 
a subset of head and neck cancer cases, presenting primarily as tobacco‑ and alcohol‑associated oral squamous 
cell carcinoma (OSCC), with a 5‑year survival rate of ~ 65%, partly due to the lack of early detection and effective 
treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi‑step series of clinical 
and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecu‑
lar mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 
human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non‑reactive (HkNR) pathologies, along‑
side healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated 
with cellular plasticity, such as partial EMT (p‑EMT) phenotypes, and with immune response. Integrated analyses 
of the host transcriptome and microbiome further highlighted a significant association between differential 
microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome toward PML 
evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may 
help early diagnosis and disease interception at an early stage.

Author summary 

Patients harboring oral premalignant lesions (PMLs) have an increased risk of developing oral squamous cell carci‑
noma (OSCC), but the underlying mechanisms driving transformation of PMLs to OSCC remain poorly understood. 
In this study, Khan et al., analyzed a newly generated dataset of gene expression and microbial profiles of oral tissues 
from patients diagnosed with PMLs from differing histopathological groups, including hyperkeratosis not reac‑
tive (HkNR) and dysplasia, comparing these profiles with OSCC and normal oral mucosa. Significant similarities 
between PMLs and OSCC were observed, with PMLs manifesting several cancer hallmarks, including oncogenic 
and immune pathways. The study also demonstrates associations between the abundance of multiple microbial spe‑
cies and PML groups, suggesting a potential contribution of the oral microbiome to the early stages of OSCC devel‑
opment. The study offers insights into the nature of the molecular, cellular and microbial heterogeneity of oral PMLs 
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and suggests that molecular and clinical refinement of PMLs may provide opportunities for early disease detection 
and interception.

Keywords Pre‑malignant lesions, Oral cancer, Oral microbiota, Early detection

Graphical abstract

Introduction
Head and neck cancer of the oral cavity ranks among the 
top ten most diagnosed cancers globally, with tobacco- 
and alcohol-associated oral squamous cell carcinoma 
(OSCC) pathology. OSCC arises from oral epithelial 
mucosa in a multi-step process in which normal cells are 
transformed into preneoplastic cells and then to cancer 
[1–3]. These premalignant lesions (PMLs)—also referred 
to as oral potentially malignant disorders (OPMD) [4], 
but mostly presenting as leukoplakia and variants, and 
erythroplakia—transform to OSCCs through various his-
topathological stages, from hyperkeratosis/hyperplasia 
(or hyperkeratosis not reactive, HkNR, known previously 
as keratosis of unknown significance(KUS)), to various 
degrees of dysplasia [5], carcinoma in  situ (CIS), and 
finally to invasive OSCC [6]. The presence of dysplastic 
areas in the epithelium of the oral cavity has been associ-
ated with progression to cancer. Although oral dysplasia 
may progress to OSCC, the initial cause of their malig-
nant transformation remains unclear. While many leu-
koplakias exhibit histopathology of dysplasia or invasive 
SCC at the time of biopsy, many non-dysplastic keratotic 
lesions (HkNR) also transform to invasive OSCCs over 
time, suggesting that such lesions may represent early 
dysplasia before the histologic phenotype of dysplasia is 
established [1, 3]. The genetic signatures of leukoplakia 
without dysplasia and other early oral lesions have not 

been well characterized. Thus, a key step to improve out-
comes of OSCC is to identify the molecular factors driv-
ing disease initiation and progression, as these factors 
represent attractive candidates for disease interception 
through targeted therapies.

Here, we sought to uncover the mechanisms involved 
in OSCC development from PMLs by employing total 
RNA-sequencing and advanced computational analy-
ses. A comprehensive knowledge of global alterations in 
gene expression programs and the detailed characteriza-
tion of cancer-associated transcriptional and microbial 
signatures will provide new insights into the underlying 
molecular networks involved in OSCC initiation and pro-
gression, allowing the development of prognostic mod-
els of early OSCC pathobiology and the identification of 
markers for cancer risk assessment to improve prediction 
accuracy and disease outcome. Gene expression profiling 
represents a powerful tool to investigate progression in 
early oral dysplasia and HkNR [7, 8]. Importantly, adop-
tion of a total RNA-sequencing technique allows us to 
simultaneously characterize the microbiota of the biop-
sies and to correlate microbial differences with host gene/
pathway activity and clinical-pathologic features. While 
the role of the gut microbiome in inflammation and colo-
rectal cancer has received much attention, little is known 
about the role of the oral microbiome in pre-malignant 
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oral lesions [9], and our study contributes to filling this 
knowledge gap.

Materials and methods
Subject population
A cohort of 66 individuals presenting with early oral 
lesions was chosen for this study (Table  1). Partici-
pants were enrolled prospectively from the Brigham 
and Women’s Hospital in Boston, MA, and Erie County 
Medical Center in Buffalo, NY, with protocols approved 
by the institutional review boards at the study sites. 
All study participants provided written informed con-
sent. All patients underwent an oral biopsy and histo-
pathological examination. The histopathology groups 
included normal mucosa (controls, n = 18, 27%), hyper-
keratosis not reactive (HkNR, n = 17, 26%), moder-
ate or severe dysplasia (dysplasia, n = 22, 33%), and 
oral squamous cell carcinoma (OC, n = 9, 14%). The 
patients with progression status ‘Progressed to Dyspla-
sia’ (n = 2; 25%) in the dysplasia group transformed to 

an advanced stage of the dysplasia pathology (e.g., mild 
to moderate and moderate to severe status). Smoking 
status for the missing patients was imputed using a ran-
dom forest classification approach (see Data Analysis 
section below). In our study, the HkNR and dysplastic 
groups are collectively referred to as PML.

Laboratory techniques
Sample preparation
All samples (n = 66) were processed for RNA purifica-
tion using miRNeasy Mini Kit (Qiagen Cat # 217004) 
according to manufacturer’s instructions. Briefly, frozen 
tissue samples were homogenized in QIAzol lysis reagent 
using the TissueLyser II for 30  s and stored at −  70  °C 
until all samples were collected. Next, tissue homogen-
ates were brought up to room temperature and mixed 
with chloroform to extract RNA followed by centrifu-
gation at 12,000×g at 4  °C for 15 min. The top aqueous 
phase (~ 350 μl) was mixed extensively with 1.5 volumes 
of 100% ethanol by pipetting. Samples were then loaded 
onto RNeasy Mini spin columns and centrifuged at 

Table 1 Patient summary by histopathology and clinical factors

Biopsy from patients (n = 66) are separated into four histopathology groups and segregated byage, smoking, and disease progression status
1 Median (Range); n (%)

Histopathology group

Characteristic Control N = 18 (27%)1 Hyperkeratotic; Not Reactive (HkNR) 
N = 17(26%)1

Dysplasia N = 22  
(33%)*

OSCC N = 9(14%)1

Age 66 (51,73) 67 (30, 81) 66 (44, 92) 68 (49, 80)

Sex

  Female 11 (61%) 11 (65%) 11 (50%) 5 (56%)

  Male 7 (39%) 6 (35%) 11 (50%) 4 (44%)

Race

  Asian 0 (0%) 0 (0%) 1 (14%) 0 (0%)

  Black 2 (18%) 0 (0%) 1 (14%) 0 (0%)

  White 9 (82%) 2 (100%) 5 (71%) 3 (100%)

  Unknown 7 15 15 6

Smoking_status

  No 11 (69%) 7 (54%) 10(53%) 7 (88%)

  Yes 5 (31%) 6 (46%) 9 (47%) 1 (12%)

  Unknown 2 4 3 1

Alcohol status

  Current 14(88%) 9 (69%) 13(72%) 4 (50%)

  Former 0 (0%) 0 (0%) 3(17%) 1 (12%)

  Never 2 (12%) 4 (31%) 2 (11%) 3 (38%)

  Unknown 2 4 4 1

Progression status

  Stable 7 (70%) 5(71%) 3 (38%) 2 (100%)

  Progressed to dysplasia 1 (10%) 2 (29%) 2 (25%) 0 (0%)

  Progressed to SCC 2 (20%) 0 (0%) 3 (38%) 0 (0%)

  Unknown 8 10 14 7
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8,000×g for15 seconds at room temperature. The flow 
through was discarded, and this step was repeated once. 
RNA was further purified by DNA digestion on RNeasy 
Mini spin columns (Cat # 7925) and RNA was eluted by 
centrifugation at 8,000×g in 40  μl of RNase-free water. 
RNA concentrations and purity were determined using a 
NanoDrop 2000 spectrophotometer.

RNA sequencing
Total transcriptomic sequencing was performed on biopsy 
samples from 66 patients at BU Microarray and Sequenc-
ing Resource Core Facility. Libraries were prepared from 
100 ng of total RNA from each sample using KAPA RNA 
HyperPrep Kit with RiboErase (HMR) (Kapa Biosys-
tems, USA) according to the manufacturer’s protocol ad 
sequenced on an Illumina NextSeq 500 instrument with 
1.45 pM input and 1% PhiX control library spiked in (Illu-
mina, USA) targeting 30–40 Million reads pairs per sample.

Preprocessing and quality control
Human The fastq files obtained from sequencing runs 
were aligned and mapped using the align() and feature-
Counts() from the Rsubread [10] package. This method 
uses the ‘seed and vote’ strategy to map seeds/subreads 
(small read fragments) to a given genomic location and 
picks the highest voted aligned subread and is much 
faster than other aligners. The human reference genome 
version used was GRCh38.99. Samples with a mapping 
quality of > 40% were retained. Genes with counts greater 
than one count-per-million (cpm) in at least 9 samples 
(the lowest number of samples in a phenotypic group) 
were preserved and used for downstream analyses.

Microbiome To obtain the metagenomic profiles, the 
same sequencing files that were used for human align-
ment and mapping were processed with Pathoscope 2.0 
[11]. The tool first removes all reads that align to the host 
transcriptome, with the remainder aligned and mapped 
to reference microbial taxonomies such as bacteria, 
fungi, and viruses. Bowtie alignment (the aligner used 
within Pathoscope) was run with parameters ‘–local 
-k’ (multiple local alignments option) set to 20, ‘–min-
score’ set to 90% (to extract only fragments that map 
to microbial genomes with high confidence) and read 
length, L, set to 70 (from fastQC). The microbial refer-
ence genome used was the 2020 version of the RefSeq 
library that includes reference genomes for bacteria, 
virus, and fungi. These reference genomes include the 
taxonomic levels from Phylum to Species and yielded 948 
operational taxonomical units (OTU) consisting of 323 
genera (across all samples) with a read count of ~ 607K 
per sample on average. The whole analysis was carried 
out using the animalcules R package. [12]

Data analysis
Signature projection
Several transcriptional signatures were used to interro-
gate our dataset (Figs. 1C and 4). For each signature of 
interest, either paired sets of up- and down-regulated 
genes, or a one-directional geneset were defined. For 
each geneset, an aggregate “activity” score was com-
puted by Gene Set Variation Analysis (GSVA) [13]. For 
bidirectional signatures, a combined score was com-
puted based on the difference of the up- and down-
regulated GSVA scores. The following signatures were 
derived from publicly available datasets: (1) a signa-
ture of the comparison of Adjacent Epithelial (AE, 
n = 44) with Head and Neck Squamous Cell Carcinoma 
(HNSCC, n = 500) from the TCGA [14], consisting of 
1317 up- and 1330 down-regulated markers in HNSC; 
(2) a signature comparing malignant-transforming (MT, 
n = 10) with not-transforming (NT, n = 10) oral poten-
tially malignant disorders (OPMD) [15], consisting of 
9 up- and 28 down-regulated markers. OPMD were 
there defined as oral lesions diagnosed as leukoplakia 
or erythroleukoplakia, and carrying a potential risk of 
malignant transformation [15]; 3)  a one-directional 
signature of “partial epithelial-to-mesenchymal transi-
tion” (pEMT), a molecular phenotype characteristic of 
cells spatially localized to the leading edge of primary 
tumors and shown to be an independent predictor of 
nodal metastasis [16].

Dimensionality reduction and visualization
UMAP dimensionality reduction analysis was performed 
based on the 2nd through 10th principal components 
(PC) derived from the top 500 highly variable genes in 
the dataset. Probabilistic clustering as implemented in 
the mclust [17] package was performed to estimate the 
number of clusters, which yielded k = 3 clusters, followed 
by application of k-means clustering, which yielded the 
cluster assignments depicted in Fig.  1B. Cluster enrich-
ment for any of the lesion groups was assessed based on 
a three-group chi-square test, with the group labeling a 
cluster identified as the one with a positive and higher 
chi-square score than the other groups.

Smoking status imputation
Smoking status, when missing, was estimated based on 
imputation. To this end, multiple classifiers—random 
forest (RF), support vector machine (SVM), and K near-
est neighbors (KNN)—were evaluated by tenfold cross 
validation on the dataset restricted to the top 1000 genes 
with highest median absolute deviation (MAD) and the 
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Fig. 1 PMLs show transcriptional heterogeneity. A Heatmap of top 2000 highly varying genes, with rows (genes) and columns (patients) sorted 
by hierarchical clustering. The columns are split into three groups as determined by a 3‑way cut of the dendrogram. Row annotation highlights 
epithelium‑related genes in red and immune‑related genes in green. B (top) UMAP analysis of gene expression profiles from all samples colored 
by histopathological group. The progression status of 27 patients is denoted with black circles (stable), blue squares (progressed to dysplasia), 
and red squares (progressed to SCC). B (bottom) Clustering analysis using K‑means, with k = 3. Within each cluster, the group positively 
enriched by chi‑square test is highlighted. C Boxplots of GSVA‑based enrichment scores. Displayed from left to right are: score differences 
of up‑ and down‑regulated OPMD signatures (n = 37 genes; up = 9, down = 27); score differences of up‑ and down‑regulated TCGA HNSCC 
signatures (n = 2647; up = 1317, down = 1330); and scores from a unidirectional p‑EMT signature (n = 100). P‑values are obtained using an ANOVA 
test
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samples with available smoking status, with the RF clas-
sifier yielding the best area under the curve (AUC = 0.79). 
A RF classifier trained on all complete data (n = 56) was 
then applied to the prediction of the missing smoking 
status (n = 10).

Differential analysis
Differential gene expression analysis was performed 
based on DESeq2 [18]. Age, sex, and smoking status were 
included as covariates in the analysis. Differential signa-
tures were defined as the sets of transcripts with FDR-
corrected q-value ≤ 0.05 and  log2 fold-change ≥ 1.5 for 

up-regulated signatures and  log2 fold-change ≤ − 1.5 for 
down-regulated signatures.

Pathway enrichment analysis
Differential signatures were annotated by over-repre-
sentation analysis (ORA) based on hyper-geometric 
test using the hypeR package [19] and the HALLMARK 
and REACTOME geneset compendia available through 
MSigDB [20, 21]. hypeR was run with the complete set of 
genes in the dataset as background (n = 21,500), and the 
significant pathways were defined as those with an FDR-
corrected q-value ≤ 0.1. The hierarchy of pathways as 

Fig. 2 Pathway enrichment of the PML and OSCC signatures. A Over‑representation‑based enrichment results based on the Hallmarks 
compendium of differentially expressed genes from pairwise analysis with control and OSCC groups. The size of the dot is proportional 
to the number of overlapping genes, and the color coding represents the FDR‑corrected q‑val. B Over‑representation‑based enrichment results 
based on the Reactome compendium. The hierarchical organization of related pathways is shown on the right
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depicted in Fig. 2B was derived using the hierarchicalSets 
[22] method.

Immune cell type deconvolution
Using TPM-normalized (transcripts per million) counts, 
CIBERSORT [23] was applied with reference signatures 
from immune cell types derived from human hematopoi-
etic cells consisting of 22 main immune cell-types.

Microbiome analysis
The microbiome analysis was carried out using animal-
cules [12], which provides various functions to create a 
multi-assay experiment object that contains the relative 
abundance of microbes detected in the study and several 
visualization methods. The relative abundance and diver-
sity plots in Additional file 1: Figures S5 A-C were gen-
erated using this package. DESeq2-based [18] differential 
analysis of microbes abundance between groups was 
also performed using an animalcules wrapper. An FDR-
corrected q-value ≤ 0.05 was used to select differentially 
abundant microbes.

Microbe‑set enrichment analysis and pathway activation
The microbe-set enrichment analysis (MSEA) [24] 
python package was used to establish significant asso-
ciations between microbes and genes. MSEA defines 
gene-labeled microbe-sets by tallying gene-microbe 
co-occurrences in PUBMED publications, and by then 
grouping microbes that co-occur with the same gene. 
For example, the microbe-set for gene UHRF2 consists 
of the 4 microbes (Porphymonas, Haemophilus, Fuso-
bacterium, and Campylobacter) found to “significantly” 
co-occur with that gene across publications based on a 
Jaccard index criteria. A library of ~ 1,300 microbe-sets 
thus defined, corresponding to as many genes, was used 
for our analysis [24].

Next, microbial genera found to be differentially abun-
dant in OSCC and PML compared to the control group 
were tested for enrichment against this microbe-set 
library, and the results visualized as a bipartite graph 
consisting of microbe-gene interactions with a significant 
FDR-corrected q-value ≤ 0.05 and a positive MSEA com-
bined score.

Finally, the union of mset-labeling genes was tested for 
enrichment of the significant Hallmark genesets found in 
the host analyses (OSCC vs. control and PML vs. control, 
Fig. 2A). Genes in the overlap between Hallmarks and the 
host differential signatures were tested against the mset-
labeling genes, and those significant at a q ≤ 0.25 were 
reported.

Results
Patient population
A cohort of 66 individuals selected for this study included 
patients with oral lesions representing controls (normal 
mucosa, 27%), hyperkeratosis not reactive (HkNR, 26%), 
moderate or severe dysplasia (dysplasia, 33%), and oral 
squamous cell carcinoma (OSCC, 14%) (Table  1). The 
mean age of patients was 55. Clinical characteristics 
such as smoking status—current or former, and follow-
up information on the progression of the lesions were 
included, when available. Progression status for 27 of 
the 66 patients was available, with 10 patients progress-
ing to the next stage of pre-cancer or OSCC pathology. 
In particular, 2 patients with HkNR histopathology trans-
formed to dysplasia, and 3 patients with dysplastic phe-
notype progressed to OSCC, accounting for ~ 8% of the 
PML population. Additionally, 2 patients in the control 
group progressed to OSCC.

The transcriptional profiles of PMLs display heterogeneity
We selected the top 2000 highly variable genes based on 
median absolute deviation (MAD) and visualized their 
log-transformed and scaled expression profiles on a 
heatmap in Fig. 1A, with the rows (genes) and columns 
(samples) clustered across histopathological groups in an 
unsupervised manner. The heatmap was partitioned into 
the three top branches identified by hierarchical cluster-
ing, which was independent of the probabilistic cluster-
ing results shown in Fig. 1B (bottom panel). Importantly, 
the groupings displayed in Fig.  1A, B captured similar 
salient features of the histopathological groups, attest-
ing to the robustness of the transcriptionally driven 
patient segregation. In particular, Cluster 1 predomi-
nantly contained control samples, cluster 2 consisted 
primarily of PMLs and some of the control samples, and 
cluster 3 included all but one OSCC samples along with 
some PMLs. Of note, cluster 3 also contained the control 
sample that progressed to OSCC. Several genes within 
pathways that were the focus of subsequent sections are 
highlighted. For example, genes associated with epithe-
lial and extracellular matrix-related functions, such as 
COL7A1, TGFB1, LAMA3, and KRT10, are labeled in 
red, and immune-related genes, such as HLA-A, HLA-
B, and STAT1, are labeled in green. From this heatmap a 
pattern emerged where all the OSCC samples and some 
of the dysplastic and HkNR samples showed high expres-
sion in most of the genes related to these processes, with 
the remaining samples showing patterns that matched 
the control group. Importantly, some of the samples from 
the non-cancer groups that progressed to OSCC showed 
transcriptional patterns similar to those of OSCC.
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While the heatmap shows transcriptional heterogene-
ity, the unsupervised organization of the PML groups 
determined using a UMAP dimensionality reduction 
approach showed the clear separation of the control and 
OSCC groups, with the PML groups distributed along a 
gradient between the two extremes (Fig. 1B, top panel). 
Within these groups, most of the dysplastic samples were 
located proximal to the OSCC group region on the upper 
right side of the plot, while the HkNR samples were more 
scattered in-between suggesting more heterogeneous 
phenotypes. Model-based probabilistic clustering [17] 
was applied to estimate in an unbiased, data-driven fash-
ion the number of clusters and their composition, which 
yielded a 3-cluster partition. The resulting cluster assign-
ments are shown in Fig. 1B (bottom panel), with cluster 
1 comprising a majority of control samples, cluster 2 
comprising some control samples and a significant pro-
portion of HkNR, and cluster 3 including all the OSCC 
samples and a significant proportion of the dysplastic 
samples.

Figure  1B (bottom panel) also shows the progres-
sion status of patients (n = 27) obtained through follow-
up visits. Progression status is denoted by red and blue 
shaded boxes, while black denotes a stable condition. 
Patients with dysplasia that transformed to OSCC seg-
regated toward the cancer cluster (cluster 3). Of note, a 
control sample that progressed to OSCC was clustered 
with the cancer group (cluster 3) by the UMAP analysis, 
suggesting clinical relevance of the associated molecular 
profile. This sample had a unique transcriptional profile 
that shared similarities with the SCC group as shown in 
Fig. 1A.

Taken together, these unsupervised analyses highlight 
the considerable transcriptional heterogeneity of PMLs. 
The limited availability of lesions with long-term follow-
up precluded us from drawing stronger conclusions, but 
we note that PMLs likely to progress share greater tran-
scriptional similarity with OSCCs than non-progressing 
PMLs.

PMLs are enriched for malignant‑transforming 
and partial‑EMT signatures
To evaluate the transcriptional patterns associated with 
progressive malignant transformation in our datasets, 
we leveraged multiple signatures from published studies 
capturing salient features of such a transformation. These 
included: a tumor versus normal signature derived from 
the cancer genome atlas (TCGA) of HNSCC RNAseq 
dataset [14]; a signature of malignant-transforming (MT) 
vs. not-transforming (NT) OPMD [15]; and a signature of 
“partial-EMT” (pEMT)—a molecular phenotype shown 
to be an independent predictor of nodal metastasis [16]. 

For each of the signatures, GSVA-based enrichment 
scores corresponding to the up- and down-regulated 
genes were estimated for each of the samples, and the 
difference scores (up–down) were then computed. The 
scores were then stratified by histopathology group (Con-
trol, HkNR, Dysplasia, OSCC), as shown in Fig. 1C.

When stratifying the samples by the OPMD signa-
ture, HkNR showed higher and more variable enrich-
ment scores among the PML. Stratification by the TCGA 
HNSCC “tumor vs. normal” signature showed a clear 
upward trend tracking with progression, as did stratifica-
tion by the p-EMT signature, a defining characteristic of 
more aggressive HNSCs [16].

In summary, these results confirm that our data cap-
ture salient features of transformation identified in pre-
vious studies and help further refine the transcriptional 
programs shared by different oral lesions. In particular, 
known signatures of premalignant and malignant trans-
formation and tumor aggressiveness tracked with the 
canonical lesion progression represented by our histopa-
thology groups, with interesting exceptions. Notably, the 
HkNR group displayed a higher level of the OPMD signa-
ture (but also higher variability) than the putatively more 
advanced dysplasia.

PML signatures are associated with oncogenic 
and immune‑altering pathways
The observed highly varying transcriptional profiles of 
PMLs (Fig. 1A–B) may contribute to current challenges 
in their evaluation and clinical treatment even with his-
topathology information. To gain further insight into the 
transcriptional programs defining the different groups, 
we performed pairwise differential gene expression and 
pathway analyses using DESeq2 and hypeR, respectively. 
Differential analysis was performed by comparing each 
remaining group to controls, to OSCC, and by pair-
wise comparing the PML sub-groups, while controlling 
for sex and smoking status. The number of significant 
markers along with differential analysis results for each 
pairwise comparison is reported in the Additional file 
section (Additional file 1: Figure S1 and Additional file 2, 
Additional file  3, Additional file  4: Tables S1–S3). As 
shown in Fig. 2, the signature genes with a logFC cutoff 
of ± 1.5 and q-value ≤ 0.05 were found to be significantly 
enriched for several immune response pathways defined 
in the Hallmark and Reactome compendia. Hallmark 
pathways that were significantly enriched in the OSCC 
and dysplastic groups compared to controls included 
key cancer progression and transformation pathways, 
such as epithelial-to-mesenchymal transition (EMT) 
and KRAS signaling, as well as inflammatory response 
pathways such as TNF-α signaling via NF-κB, interferon 
gamma (IFN-γ) and alpha (IFN-α) response, IL2/STAT5, 
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and IL6/JAK-STAT3 signaling. Genes driving the EMT 
enrichment in both groups included extracellular matrix-
related genes such as ADAM12, TGFB1, LAMA3, MMP1 
and MMP3, and in the OSCC group multiple collagen 
genes (COL11A1, COL12A1, COL4A1) and serine pro-
teinase inhibitors SERPINE1 and SERPINH1, among oth-
ers, while genes driving the IFN-γ and IFN-α enrichment 
in both groups included multiple chemokine ligands 
(CXCL9, CXCL10, CXCL11), and in the OSCC group 
multiple interferon induced proteins (IFIT1-3, IFI35, 
IFI44, etc.) among others (see Additional file 3: Table S2). 
The comparisons to the cancer group revealed similar 
enrichment patterns of immune response pathways in the 
cancer group compared to the dysplastic and the HkNR 
groups. The signatures derived from comparing HkNR 
and dysplasia groups were not significantly enriched for 
any of the Hallmark pathways, while they were enriched 
for multiple pathways from the Reactome collection.

The differential signatures were then tested for enrich-
ment with pathways in the Reactome compendium 
to evaluate potential metabolic and pathogenic asso-
ciations. Multiple pathways from the same biologi-
cal processes were found to be enriched and were thus 
organized and visualized with their hierarchical struc-
ture in Fig. 2B. This analysis showed a significant enrich-
ment, in PMLs and OSCCs when compared to control, 
of tumor microenvironment-related activities, such as 
extracellular matrix (ECM) organization, and activation 
of matrix metalloproteinases. Confirming the Hallmarks-
based analysis, the Reactome-based analysis also identi-
fied and further resolved several enrichments of immune 
and pathogenic pathways. Signaling by interleukins, the 
FC gamma receptor (FCGR) mediated regulation, and 
FCGR phagocytosis were enriched in the OSCC and 
dysplasia groups when compared to controls and HkNR 
groups. Figure 2B shows their hierarchical organization, 
with multiple FCGR-related pathways, as well as multiple 
immune-related pathways.

The strong enrichment of p-EMT and EMT signa-
tures in the PML groups raised the question of whether 
this enrichment stems from increased plasticity within 
the epithelial compartment or from alterations in adja-
cent stroma. To investigate this, we tested our series 
for enrichment with respect to a cancer-associated 
fibroblast (CAF) signature previously described [25], 
inclusive of genes COL1A1, COL1A2, COL3A1, and 
PDGFRB, among others. Interestingly, the signature was 
significantly enriched in the non-control groups, with 
the strongest enrichment observed in the PML groups 
(Additional file 1: Figure S2B). Furthermore, CAF enrich-
ment was significantly positively associated with p-EMT 
enrichment (Additional file  1: Figure S2C), with the 

association stronger in PMLs. These observations suggest 
that CAF infiltration and increased plasticity co-occur in 
PMLs, and single cell-based studies will be needed to fur-
ther elucidate their interplay.

PMLs and OSCC have significantly higher levels of immune 
activity than controls
Our differential gene and pathway analyses showed that 
the PMLs shared significant similarities with the OSCC 
group. Given the observed up-regulation of multiple 
immune pathways, we next focused on the immune 
landscape by investigating changes in immune cell pro-
portions across healthy and disease groups. To this end, 
we performed immune cell type deconvolution using 
a gene signature compendium comprising 22 immune 
cell-types derived from human hematopoietic cells. The 
cell proportions estimated with CIBERSORT, visualized 
as boxplots in Fig.  3, were stratified by histopathology 
group at different levels of resolution. Immune cell types 
were first divided into the innate and adaptive immune 
components in the top panel of Fig.  3. These were fur-
ther subdivided into their main subtypes, with the innate 
component subdivided into macrophages (M0-like, 
M1-like and M2-like), monocytes, mast cells, NK cells 
and neutrophils (Fig. 3, bottom left panel), and the adap-
tive immune component subdivided into B- and T-cells 
(Fig.  3, bottom right panel). Of note, the abundance of 
all innate immune cell subtypes significantly increased in 
non-control groups, including PMLs and cancer groups. 
Also, B- and T-cells showed an increase in non-control 
groups but did not reach significance. A detailed break-
down of the cellular activities in these immune cells is 
shown in Additional file 1: Figure S4 A–B. For example, 
CD8 + T-cells, Tregs and CD4 memory resting/activated 
cells showed an increased abundance in PMLs and can-
cer. Sample level breakdown is visualized as a heatmap in 
Additional file 1: Figure S4C.

Oral PMLs show transcriptional similarities with bronchial 
PMLs
Given the contiguity of the oral cavity in the upper airway 
with the lungs in the lower airway, we next assessed the 
transcriptional similarities between our oral PMLs and 
bronchial PMLs. Beane et al. [26] identified four distinct 
PML bronchial subgroups, including a proliferative and 
an inflammatory response sub-groups, and nine gene co-
expression modules recapitulating their transcriptional 
programs. Significantly, the gene modules correspond-
ing to cell-cycle (proliferative sub-group), inflammatory 
response and IFN signaling (inflammatory response sub-
group) showed enrichment in our non-control groups 
(Additional file 1: Figure S3), suggesting that oral lesions 
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from the upper airway region and lesions from the main 
airway compartment share common processes likely to 
be implicated in their progression to malignancy.

Differentially abundant microbes in PMLs and OSCC are 
associated with pathways that promote malignancy 
and immune activity
The relative abundance of the microbial taxa stratified 
by the phylum, genus and species levels are plotted in 
Fig. 4A. Overall, the microbial abundance across groups 
varied, with the genus of Fusobacterium dominating the 
OSCC group, (Additional file  1: Figure S5A; Fusobacte-
rium in green). The alpha and beta diversity stratified by 
the histopathological group were higher in the OSCC and 
PML groups compared to the healthy individuals (Addi-
tional file 1: Figure S5 B–C). To identify microbes (at the 
genus level) that were differentially abundant in PML and 
OSCC compared to the control group, we performed 
differential abundance analysis. With an FDR-corrected 
q-value ≤ 0.05, 27 microbes were more abundant in the 
OSCC group than the control group, 8 in HkNR and 28 
in dysplasia (Additional file  5: Table  S4). Some of the 
microbial genera that were significantly more abundant 

in both PML and OSCC groups than in the control group 
were Fusobacterium, Shewanella, and the fungus Can-
dida (Additional file 1: Figure S5D). These have all been 
shown to be associated with cancer in previous studies 
[27–31].

To explore potential associations between differ-
entially abundant microbial genera and the host tran-
scriptome, we performed microbe-set enrichment 
analysis (MSEA) [24], whereby the differentially abun-
dant microbes we identified were tested for enrichment 
against a library of ~ 1,300 gene-labeled microbe-sets, 
and the significant microbe-gene associations were 
visualized in Fig.  4 and tabulated in Additional file  6: 
Table  S5. The union set of genes labeling significantly 
enriched microbe-sets was in turn tested for enrich-
ment against the Hallmark compendium using hypeR 
(Additional file  7: Table  S6) The significant genesets 
overlapping with those found in the host analysis in 
Fig. 2A are also displayed in Fig. 4 (center).

The genesets corresponding to EMT, KRAS signaling, 
IL6/STAT/JAK3, IL2/STAT5, IFN Gamma Response, 
Inflammatory Response, and TNFa via NFkB, were found 
to be significantly enriched in both analyses, suggesting 

Fig. 3 Cell‑type proportions Relative abundance of immune cell‑types stratified by histopathology. The distribution of immune cell‑type 
proportions inferred from CIBERSORT is plotted stratified by histopathological groups at different levels of resolution. (Top) Cell type proportions 
of the total innate (left) and adaptive (right) compartments. (Bottom) Specific cell sub‑type proportions within the two compartments. In all plots, 
proportions were estimates relative to the total within each sample. P‑values are obtained from ANOVA test
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a potential mediation by the microbiome of the associa-
tion between OSCC’s and PML’s phenotypes and selected 
cancer- and immune-related pathways. For example, 
when comparing OSCC to control, Veillonella, Aggregati-
bacter, Prevotella, Porphyromonas, and Neisseria drove 
the enrichment with respect to both the SERPINE1- and 
IL6-indexed microbe-sets, which in turn are included in 
the Hallmarks’ EMT geneset (Additional file 7: Table S6). 
Similarly, Fusobacterium, Campylobacter, Aggregati-
bacter and Porphymonas drove the enrichment with 
respect to the IFI16-indexed microbe-set. IFI16 is an 

interferon gamma inducible gene that activates the pro-
inflammatory pathway IFN-χ. Differentially abundant 
microbes were also enriched for the microbe-sets labeled 
by CXCL10, CXCL11, and CCL20, among others. Similar 
patterns were observed for the PML group.

Discussion
OSCC are thought to arise from PMLs in the oral cav-
ity, which have the potential to transform to cancer 
through a multi-step series of clinical and histopathologi-
cal stages. Histologically, PMLs may represent varying 

Fig. 4 Differential microbial abundance and their association with PML and OSCC. A Log‑CPM normalized relative proportions of microbial 
profiles of Phylum, Genus and Species level stratified by histopathological grouping. B Associations of differentially abundant microbes 
with human genes and host‑response pathways are outlined. The node size denotes the total number of associations for a microbe or a gene, 
and the edges’ thickness is proportional to the enrichment score between a microbe and a gene. The node color indicates whether the gene 
was up‑ (red) or down‑regulated (blue) in the corresponding host transcriptome differential analysis. The gene‑pathway edges denote enrichment 
by over‑representation analysis
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degrees of oral epithelial dysplasia, although very little is 
known about pre-OSCC biology [1]. Characterization of 
the transcriptional programs defining these premalignant 
stages may help identify important mechanisms of early 
transformation and support the design of novel inter-
ception strategies. To this end, we generated total RNA 
sequencing profiles from biopsy samples of 66 patients 
comprising healthy controls, PML lesions that included 
HkNR and dysplasia, as well as OSCC, with the goal of 
defining molecular profiles associated with dysplasia 
pathobiology. We performed statistical and bioinformat-
ics analysis of the transcriptional profiles to define and 
annotate signatures corresponding to the distinct patient 
groups, and to investigate the biological pathways associ-
ated with progressive transformation. Importantly, avail-
ability of the total transcriptome allowed us to query and 
overlay the oral microbial gene signatures onto the host 
transcriptome.

Our results indicate that PMLs show considerable 
heterogeneity, as highlighted in Fig.  1. Of particular 
interest was the large heterogeneity manifested by the 
HkNR group based on hierarchical clustering as well as 
on dimensionality reduction and model-based cluster-
ing analyses (Fig. 1A–C), with subjects from that group 
included in all three clusters (although predominantly 
in the middle cluster). HkNR has been recognized as an 
early dysplastic lesion with significant malignant trans-
formation potential [35], and its transcriptional hetero-
geneity described here suggests the need for a molecular 
refinement of this broad phenotype. The availability of 
follow-up information for a subset of the patients, and 
their segregation tracking with progression placement 
in the control-to-cancer gradient (Fig.  1B) also suggests 
the feasibility of developing prognostic biomarkers based 
on expression profiles. Still, the latter will require a larger 
PML patient cohort than the one available in this study.

Differential signature and pathway analyses across the 
different groups showed a significant early activation of 
cancer-associated pathways (EMT and KRAS signaling) 
as well as of immune and inflammatory pathways, con-
firming the important role played by the immune system 
in malignant transformation [32, 33]. Further mecha-
nistic studies will be necessary to elucidate whether the 
activation of these pathways is a response to, or driver 
of, such transformation. It should be emphasized that, 
within the PML group, these enrichments were mainly 
found in the dysplastic samples, reflecting the higher het-
erogeneity of the HkNR sub-group. Also relevant was a 
significant enrichment of Fc gamma receptor (FCGR)-
mediated regulation and FCGR phagocytosis in OSCC 
and dysplasia compared to control. Fc gamma receptors 

are a family of heterogeneous molecules that play both 
activating and inhibitory tumor activity, and can bind to 
immunoglobulin (Ig) classes and subclasses, including 
those present in infected cells and pathogens [34]. Once 
bound, the FCGR phagocytosis process functions to 
eliminate the unwanted pathogenic activity [35, 36]. This 
may suggest that to prevent PMLs from progressing to 
malignancy, these inflammatory pathways are recruited 
to remove any of the pathogens or abnormal cells.

Another relevant finding was the enrichment in can-
cer and PMLs in pathways associated with extracellular 
matrix (ECM) organization, and activation of matrix 
metalloproteinases. The former has known roles in cell 
proliferation and migration, and the latter has a role in 
wound healing but adverse effects in cancer when acti-
vated by certain growth factors [37].

The oral microbiota is the second most diverse micro-
flora in the human body after the gut. The relative abun-
dance of several microbial genera in Additional file  1: 
Figure S5 is an indication of how varied the microbiota 
of the PML groups is when compared to the normal oral 
mucosa (control group), with a higher alpha diversity 
measure (Additional file  1: Figure S5A). Varying levels 
of certain microbes can be correlated with disease pro-
gression, and our results confirm this association. For 
instance, Fusobacterium—a gram-negative bacterium 
significantly more abundant in PML and OSCC than 
in control in our series (Additional file  1: Figure S5C 
and Additional file  3: Table  S2)—has been shown to be 
abundant in patients diagnosed with oral cancer [27, 31]. 
Fusobacterium nucleatum, a sub-species of the Fuso-
bacterium genus, has adhesion properties such that it 
may latch onto other bacteria and infected cells and pro-
mote an EMT-like phenotype and metastasis in some 
cases [28]. This role was supported by our MSEA analy-
sis which showed a significant association with the EMT 
phenotype (Fig. 4B). Similarly, the genus of Neisseria, also 
more abundant in PML and OSCC than in control in our 
series (Additional file 1: Figure S5C and Additional file 3: 
Table S2), has been hypothesized to play a role in alcohol-
related oral carcinogenesis. Taken together, our results 
support the conclusion that an increase in the activity 
of these microbes is associated with PML progression 
[30], and functional studies will be needed to decode the 
details of the observed associations.

In summary, our results indicate that higher levels of 
gene expression in PMLs and OSCCs are associated with 
selected oncogenic pathways, including EMT and KRAS 
signaling, as well as with pro- and anti-inflammatory 
pathways, which in turn are associated with the differen-
tial abundance of multiple microbial genera [38].
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