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Abstract 

Background As one of the most common intestinal inflammatory diseases, celiac disease (CD) is typically character-
ized by an autoimmune disorder resulting from ingesting gluten proteins. Although the incidence and prevalence 
of CD have increased over time, the diagnostic methods and treatment options are still limited. Therefore, it is urgent 
to investigate the potential biomarkers and targeted drugs for CD.

Methods Gene expression data was downloaded from GEO datasets. Differential gene expression analysis was per-
formed to identify the dysregulated immune-related genes. Multiple machine algorithms, including randomForest, 
SVM-RFE, and LASSO, were used to select the hub immune-related genes (HIGs). The immune-related genes score (IG 
score) and artificial neural network (ANN) were constructed based on HIGs. Potential drugs targeting HIGs were identi-
fied by using the Enrichr platform and molecular docking method.

Results We identified the dysregulated immune-related genes at a genome-wide level and demonstrated their roles 
in CD-related immune pathways. The hub genes (MR1, CCL25, and TNFSF13B) were further screened by integrating 
several machine algorithms. Meanwhile, the CD patients were divided into distinct subtypes with either high- or low-
immunoactivity using single-sample gene set enrichment analysis (ssGSEA) and consensus clustering. By constructing 
IG score based on HIGs, we found that patients with high IG score were mainly attributed to high-immunoactivity 
subgroups, which suggested a strong link between HIGs and immunoactivity of CD patients. In addition, the novel 
constructed ANN model showed the sound diagnostic ability of HIGs. Mechanistically, we validated that the HIGs play 
pivotal roles in regulating CD’s immune and inflammatory state. Through targeting the HIGs, we also found potential 
drugs for anti-CD treatment by using the Enrichr platform and molecular docking method.

Conclusions This study unveils the HIGs and elucidates the networks regulated by these genes in the context of CD. 
It underscores the pivotal significance of HIGs in accurately predicting the presence or absence of CD in patients. 
Consequently, this research offers promising prospects for the development of diagnostic biomarkers and therapeutic 
targets for CD.
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Background
Celiac disease (CD) is the most common autoimmune 
enteropathy worldwide that mainly occurs in geneti-
cally susceptible individuals who develop an immune 
response to gluten [1]. Gluten is found in almost all 
cereals, such as wheat, barley, and rye, making it the 
leading environmental factor in its pathogenesis [2]. 
CD patients have wide-ranging clinical manifestations 
and onsets, including classical intestinal-related symp-
toms (diarrhoea, failure to thrive) and non-intestinal 
manifestations (anaemia, dermatitis, osteoporosis), that 
often lead to a delay in CD diagnosis [3]. Currently, the 
only clinical treatment for CD is strict adherence to a 
gluten-free diet (GFD), which effectively relieves symp-
toms of intestinal inflammation and promotes intestinal 
microvilli regrowth. However, on the one hand, a GFD 
is very difficult to achieve given the ubiquity of gluten 
as a common food additive, as well as due to dietary 
habits, high costs of the GFD and the social restric-
tions it imposed on patients [4]. On the other hand, 
a GFD can be associated with several disadvantages, 
mainly including psychological problems in patients, 
decreased quality of life, fear of mandatory GFD [5], 
metabolic syndrome, possible vitamin and mineral defi-
ciencies, increased cardiovascular risk, and constipa-
tion [6]. Thus, it is necessary to explore the molecular 
characteristics and mechanism of CD development, 
which can provide new strategies for diagnosing and 
treating this disease.

In celiac disease, dietary gluten triggers a T cell-driven 
small intestinal inflammation in a subset of genetically 
predisposed subjects carrying the human leukocyte anti-
gen (HLA) DQ2 and/or DQ8 haplotype [2]. HLA DQ2/
DQ8 can bind gluten peptides and trigger host responses 
such as innate and adaptive immune responses and 
increased intestinal permeability [7]. However, the pres-
ence of a specific HLA accounted only for about 40% of 
the genetic predisposition, indicating that these genes 
are necessary but insufficient for CD to develop and leav-
ing most of the genes involved in the development of CD 
still unknown [8]. Although the aetiology and patho-
physiology of CD are not fully understood, the condition 
is caused by a combination of environmental, genetic, 
and immunological factors [9]. In this direction, whole 
genome-wide revealing the dysregulated immune-related 
genes are hopeful to identify distinct gene expression sig-
natures that could help to stratify patients with CD, or 
highlight new pathways implicated in CD development.

To systematically identify hub immune-related genes 
involved in CD, we integrated multiple machine learning 
algorithms and identified MR1, CCL25, and TNFSF13B 
as the hub immune-related genes (HIGs). Based on these 
HIGs, we constructed an immune genes score (IG score) 
to assess the risk of CD. Meanwhile, we found that most 
high IGscore patients were also characterized by high 
immunoactivity. Further gene set enrichment analysis 
(GSEA) showed that the HIGs are dramatically enriched 
in immune-related pathways, including the intestinal 
immune network for IgA production, a significant driv-
ing force for CD development. Based on these HIGs, 
we also constructed a novel ANN model, which showed 
good accuracy for CD diagnosis in training and test 
cohorts. In addition, we also revealed the potential drugs 
that target HIGs. Together, these results will expand 
our understanding of the functional characteristics of 
immune-related genes involved in CD progression and 
provide potential diagnostic biomarkers and therapeutic 
targets.

Results
Identification of differentially expressed immune‑related 
genes in CD
We conducted a set of analyses to investigate the role of 
immune-related genes in celiac disease systematically. 
The study design is illustrated in Fig. 1. We downloaded 
the RNA-seq datasets from 110 CD patients and 22 
healthy controls retrieved by GEO datasets (GSE11501) 
and performed differential gene expression analysis. Our 
results identified 896 differentially expressed genes, of 
which 369 are up-regulated and 527 are down-regulated 
(Fig. 2A) (Additional file 1: Table S1). To further screen 
the immune-related genes among the indicated dif-
ferentially expressed genes, we intersected the 896 dif-
ferentially expressed genes with 2483 immune-related 
genes annotated by the ImmPort database (https:// www. 
immpo rt. org/ resou rces), and finally obtained 58 dif-
ferentially expressed immune-related genes (Fig.  2B). 
The expression profiles of the differentially expressed 
immune-related genes are shown in Fig.  2C. To inves-
tigate the role of these genes, we performed Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis. Consequently, GO enrich-
ment analysis revealed multiple immune-related bio-
logical processes, including “T cell and B cell activation”, 
“T-helper cell differentiation”, “interleukin-6/-8 pro-
duction”, “interleukin-15-mediated signalling pathway”, 
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“MHC class II protein complex binding”, “antigen pro-
cessing and presentation of exogenous peptide antigen 
via MHC class II”, “MyD88-dependent toll-like receptor 
signalling pathway”, “G protein-coupled receptor bind-
ing”, “peptidyl-tyrosine autophosphorylation”, “regula-
tion of cytokine production involved in inflammatory 
response”, “regulation of acute inflammatory response 
to antigenic stimulus”, “chemokine (C-X-C motif ) ligand 
2 production”, and “regulation of NLRP3 inflammasome 
complex assembly” (Additional file  2: Fig. S1A). The 

KEGG enrichment analysis again enriched the indicated 
differentially expressed immune-related genes in multi-
ple immune-related pathways, including “T cell receptor 
signalling pathway”, “B cell receptor signalling pathway”, 
“Th1 and Th2 cell differentiation”, “Th17 cell differentia-
tion”, “Natural killer cell-mediated cytotoxicity”, “EGFR 
tyrosine kinase inhibitor resistance”, “Intestinal immune 
network for IgA production”, and “PD-L1 expression and 
PD-1 checkpoint pathway in cancer” (Additional file  2: 
Fig. S1B).

Fig. 1 Schematic view of the procedures for data collection and analyses in celiac disease. HC represents healthy control; CD represents celiac 
disease; C1 and C2 are stratified by the ssGSEA score of celiac disease patients. C1 represents high-immunoactivity patients, while C2 represents 
low-immunoactivity patients. HIGs represents hub immune-related genes
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Identification of hub immune‑related genes (HIGs)
Next, to find out the hub differentially expressed 
immune-related genes in CD, we applied 3 machine 
learning algorithms, including least absolute shrink-
age and selection operator (LASSO), support vector 
machine recursive feature elimination (SVM-RFE), and 
random forest. Firstly, we utilized the LASSO algorithm 
to identify the variation in regression coefficients of 58 
differentially expressed immune-related genes (Fig.  2D), 
and eventually, 15 candidate genes were screened. We 

also established the SVM-RFE model to screen out the 
genes with the minimum cross-validation error (Fig. 2E), 
and the SVM-RFE algorithm eventually screened 33 
candidate genes with an accuracy of 0.932 and an error 
of 0.0681. Besides, the differentially expressed immune-
related genes were also incorporated into the random for-
est model, and the cross-validation error was minimized 
to 28 trees (Fig.  2F). Subsequently, 10 candidate genes 
with important points larger than one was eventually 
identified by random forest (Additional file 1: Table S2). 

Fig. 2 Identification of the hub immune genes (HIGs). A The volcano plot shows the differentially expressed genes (DEGs) in celiac disease retrieved 
from GSE11501. B Venn plot shows the intersection of DEGs with immune-related genes. C Heatmap shows the overall landscape of 58 differentially 
expressed immune-related genes between healthy control and celiac disease. D LASSO coefficient profiles of the indicated differentially expressed 
immune-related genes (left panel). After cross-validation for tuning parameter selection, 15 candidate HIGs were identified (right panel). E SVM–
RFE algorithm identified 33 candidate HIGs with an accuracy of 0.932 (left panel) and an error of 0.0681 (right panel). F RandomForest algorithm 
identified 10 candidate HIGs. RandomForest error rate versus the number of classification trees (left panel) and gene importance scores (right 
panel). G Venn plot shows the overlapped candidate HIGs
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In summary, the LASSO algorithm identified 15 candi-
dates, the SVM-RFE algorithm identified 33 candidates, 
and the randomForest algorithm identified 10 candidates 
(Table 1). By intersecting all the candidates (Fig. 2G), we 
found that MR1, CCL25, and TNFSF13B could be identi-
fied by the three machine learning approaches and thus 
defined as hub immune-related genes (HIGs).

CD patients were stratified into subgroups with distinct 
immunoactivities
Celiac disease is an autoimmune disease in which the 
immune system plays a central role in its pathogenesis, 
suggesting that CD patients’ immunoactivity is closely 
related to CD development. Thus, to assess the relation-
ship between CD patients’ immunoactivity and CD risk, 
we performed ssGSEA and consensus clustering. We per-
formed the ssGSEA of 28 immune gene sets annotated 
by the TISIDB database (http:// cis. hku. hk/ TISIDB/). 
The ssGSEA score of 28 immune gene sets in each CD 
patient was calculated (Additional file 1: Table S3, Addi-
tional file  2: Fig. S2). We classified GSE11501-retrieved 
CD patients using the k-means of unsupervised consen-
sus clustering based on the ssGSEA score of 28 immune 
gene sets. The optimal cluster number was then deter-
mined as K = 2 (Fig. 3A–C and Additional file 2: Fig. S3). 
As shown in Fig. 3A–C, in the case of k = 2, CD patients 
were divided into two subgroups, C1 and C2, with clear 
boundaries, suggesting a stable and reliable clustering. 
Following that, UMAP and t-SNE analyses were per-
formed to validate the subtype assignments, and results 
from both methods indicated that samples in one sub-
group were more similar to each other than samples in 
the other (Figs. 3D, E).

Upon comparing the ssGSEA score of 28 immune gene 
sets between the C2 and C1 subgroups, we observed 
significant differences in the landscape of 15 immune 
cells. Notably, the C1 subgroup exhibited notably higher 
ssGSEA score for immune cells such as "Central memory 

CD8 T cell," "Natural killer cell," "Natural killer T cell," 
"Activated dendritic cell," "Plasmacytoid dendritic cell," 
"Macrophage," "Eosinophil," "Mast cell," and "Neutrophil" 
(Additional file 2: Fig. S4). Furthermore, we examined the 
relationship between the immunoactivity of the C1 and 
C2 subgroups by comparing their respective ssGSEA 
score. Our findings demonstrated a substantially higher 
ssGSEA score for the C1 subgroup compared to the C2 
subgroup (Fig.  3F), indicating that the overall immu-
noactivity of the C1 subgroup surpassed that of the C2 
subgroup. Consequently, based on their immune char-
acteristics, we were able to classify CD patients into two 
distinct subgroups: the high-immunoactivity group and 
the low-immunoactivity group.

Construction and validation of the IG score based on HIGs
Based on the HIGs mentioned above (MR1, CCL25, and 
TNFSF13B), we calculated the IG score, which was fur-
ther used to assess the risk of developing CD for each 
sample retrieved from GSE11501 using principal compo-
nent analysis. All samples retrieved from GSE11501 were 
classified as low-IG or high-IG score subgroups accord-
ing to the IG score < or > 0 (Additional file  1: Table  S4). 
Meanwhile, we proceeded to a correlation analysis to 
assess the relevance of IG score and immunoactivity. By 
visualizing the basic profiles of each sample in alluvial 
plots, which included high- and low-IG score groups 
and high- and low-immunoactivity patients divided by 
ssGSEA mentioned above analyses. Our results showed 
that most CD patients with high IG scores belong to the 
C1 subgroup, while most CD patients with low IG score 
belong to the C2 subgroup (Fig.  4A). Subsequently, we 
also compared the IG score among the three subgroups, 
including healthy control, the C1 subgroup, and the 
C2 subgroup. The results showed that the IG score of 
patients in the C1 subgroup was higher than in the C2 
subgroup, and the IG score of patients with CD (C1 and 
C2) was higher than healthy control (Fig.  4B). In addi-
tion, when we performed correlation analysis, we found 
a positive correlation between the IG score and the 
ssGSEA score (Fig. 4C). We executed a ROC analysis to 
further evaluate the IG score’s predictable power. As the 
area under the IG score’s ROC curve (AUC) was 0.758, 
the result indicated the IG score has a well-predictable 
performance (Fig. 4D). Together, these data not only indi-
cated a predictable power of the IG score based on HIGs 
to identify the risk of individuals developing CD, but also 
built a strong connection between HIGs and immunoac-
tivities of CD patients.

In addition, we evaluated whether the IG score based 
on HIGs has a similar predictable value in another inde-
pendent CD patient cohort. We included CD patients 
from GSE164883 in the IG score analyses (Additional 

Table 1 Scanning of candidate machines by 3 machine learning 
algorithms

Methods Genes

Lasso CTSS, MR1, PSMC1, PSMC4, PSMD11, SLPI, ORM1, CCL25,
UNC93B1, LTBP2, SCGB3A1, TNFSF13B, ANGPTL3, TYROBP, 
MIF

RandomForest TYROBP, GZMB, CCL25, LANCL1, TNFSF13B, SH3BP2, MR1,
CSF2RB, NFATC3, CD70

SVM-REF MIF, CCL25, LCP2, ANGPTL3, MR1, ORM1, SCGB3A1, GZMB,
PDK1, PSMC4, SLPI, UNC93B1, TMSB10, HTR3B, LCK, CBL,
PPP4C, CKLF, ISG20, CSF2RB, IRF7, AP3B1, CRLF3, CTSS,
CD70, TNFSF13B, ULBP3, MAPK3, CKLF, NR1D2, TNFSF14,
RARA, PSMC1, EIF2AK2

http://cis.hku.hk/TISIDB/
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Fig. 3 Consensus clustering based on the ssGSEA score to stratify distinct immunoactivity patients. A, B relative change in area under cumulative 
distribution function (CDF) curve for k = 2 to 9 (A). Consensus clustering CDF for k = 2 to 9 (B). C Consensus clustering heatmap when K = 2. Related 
to Additional file 2: Fig. S2. D, E Each dot represents a single sample of UMAP (D) and t-SNE (E) analysis for the GSE11501-retrieved celiac disease 
patients. F The violin plot shows the ssGSEA score of the indicated GSE11501-retrieved celiac disease patients distributed in the C1 and C2 groups

Fig. 4 Construction and evaluation of the IG score on HIGs. A The alluvial plot shows the connection between IG score groups, ssGSEA score 
groups, healthy control, celiac disease and healthy control. B The violin plot shows the IG score of healthy control and patients distributed in the C1 
and C2 groups. C Correlation analysis between IG score and ssGSEA score. D The ROC curve of the IG score
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file  1: Table  S5). Similarly, we found that the IG score 
of CD patients was higher than the control (Additional 
file 2: Fig. S5A). The AUC score of 0.886 also showed a 
predictable performance (Additional file  2: Fig. S5B). 
These results again suggested that the IG score based on 
HIGs has well sensitivity and predictability.

HIGs play pivotal roles in contributing to the inflammatory 
state of CD
To further investigate the regulatory roles of HIGs, we 
conducted GSEA analysis to identify the HIGs-regulated 
signalling pathways. The results showed that CCL25 was 
significantly enriched in “B cell receptor signalling path-
way”, “Colorectal cancer”, “Gastric cancer”, “IL-17 sig-
nalling pathway” and “Human T-cell leukaemia virus 1 
infection”. TNFSF13B was significantly associated with 
“TNF signalling pathway”, “IL-17 signalling pathway”, 
“Inflammatory bowel disease”, “T cell receptor signal-
ling pathway”, and “Antigen processing and presentation”. 
MR1 has significantly associated with “B cell receptor 
signalling pathway”, “Primary immunodeficiency”, “Viral 
carcinogenesis”, “Colorectal cancer”, and “Th1 and Th2 
cell differentiation” (Fig.  5A). In conclusion, we found 
that HIGs can regulate immune cell receptor signal-
ling pathways, such as the B cell or T cell receptor sig-
nalling pathways. Among them, CCL25 and TNFSF13B 
can regulate IL-17 signalling pathways, notably IL-17 as 
pro-inflammatory cytokines which promote the chronic 
inflammatory state characteristic during CD develop-
ment [10]. TNFSF13B can regulate the TNF signalling 
pathway and possibly trigger inflammatory bowel dis-
ease. MR1 can regulate Th1 and Th2 cell differentiation, 
which produces abundant pro-inflammatory cytokines.

To reveal the regulator roles of HIGs, we further inte-
grated the KEGG pathway analysis and literature reports 
and drew the major involvement of HIGs in CD devel-
opment in the Figdraw platform (Fig. 5B). We found that 
CCL25 and TNFSF13B were enriched in hsa04672 -Intes-
tinal immune network for IgA production. The activated 
T helper cells in the pathogenesis of CD will activate B 
cells to induce them to produce IgA antibodies against 
tissue transglutaminase, gliadin and endomysium, which 
exacerbate the chronic inflammatory state characteris-
tic of CD. It has also been shown that MR1 is expressed 
on dendritic cells (DCs), which present antigens to 
mucosal-associated invariant T (MAIT) cells, leading 
to MAIT activation and production of pro-inflamma-
tory cytokines, such as tumour necrosis factor (TNF)-α, 
interferon (INF)-γ, interleukin (IL)-23, IL-17 [11]. Sub-
sequently, these mediators will recruit and activate other 
immune cells, contributing to the induction of gut tissue 
inflammation.

Construction and validation of ANN model
To verify the diagnostic roles of the HIGs, we detected 
the receiver operating characteristic (ROC) curve of each 
HIG in diagnostic test assessment for both the GSE11501 
training set and the GSE164883 validation set (Addi-
tional file 2: Fig. S6). With the AUC score of MR1 = 0.696, 
CCL25 = 0.860, and TNFSF13B = 0.839, we found that all 
these HIGs could discriminate CD from healthy controls 
with higher accuracy in the GSE11501 training set (Addi-
tional file 2: Fig. S6A). Following the GSE11501 training 
set, the AUC score was also calculated in an independ-
ent GSE164883 validation set. With the AUC score of 
MR1 = 0.741, CCL25 = 0.906, TNFSF13B = 0.988, we also 
found that all these HIGs could discriminate CD from 
healthy controls with higher accuracy in the GSE164883 
validation set (Additional file  2: Fig. S6B). Besides, we 
also constructed ANN based on HIGs to diagnose the 
onset of CD.

ANN stands out as a prominent form of artificial intel-
ligence extensively utilized across various specialized 
domains within clinical medicine. Notably, numerous 
studies have underscored the remarkable potential of 
ANN in diagnosing and treating gastrointestinal diseases 
[12–14]. In line with these findings, we integrated HIGs 
into an ANN framework to develop a predictive model 
capable of discerning whether samples belonged to the 
healthy control or CD groups. The ANN model encom-
passed three fundamental components: the input layer, 
hidden layer, and output layer (Fig. 6A). Subsequently, we 
compared the predictions generated by the ANN model 
with the actual grouping information of the samples. The 
accuracy of the ANN predictions for the training and 
test sets is presented in Table 2, yielding values of 0.9146 
and 0.92, respectively. Moreover, we employed Receiver 
Operating Characteristic (ROC) analysis to evaluate 
the predictive capability of the ANN model on both the 
training and test sets. The area under the curve (AUC) 
value for the training set was 0.793 (Fig.  6B), while the 
AUC value for the test set was 0.821 (Fig. 6C). Addition-
ally, we constructed an ANN model (Additional file  2: 
Fig. S7A) to diagnose the C1 and C2 subsets, aiming to 
identify CD patients with varying degrees of risk sever-
ity. Additional file 1: Table S6 showcases the accuracy of 
the ANN predictions for the training and test sets, which 
yielded values of 0.8171 and 0.7143, respectively. The 
ROC analysis further demonstrated the prediction capa-
bility of the ANN model, with an AUC value of 0.824 for 
the training set (Additional file 2: Fig. S7B) and an AUC 
value of 0.733 for the test set (Additional file 2: Fig. S7C). 
In summary, the ANN model exhibits substantial prom-
ise and can potentially serve as an independent diagnos-
tic predictor for CD.
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Identification and docking of potential drugs targeting 
HIGs
To find out the drugs targeting HIGs, we used the 
Enrichr platform (https:// maaya nlab. cloud/ Enric hr/) 
for online analysis and screening. We identified seven 
drugs targeting HIGs based on the DSigDB database 
with a p value < 0.05 (Table 3). Next, we used the molec-
ular docking method (MDM) to investigate the binding 

affinity of the drugs with their targeting HIGs, and their 
binding energy is shown in Table 4. The results showed 
that Tetradioxin was able to target all the HIGs, and 
the absolute values of the binding energy of the three 
HIGs proteins to Tetradioxin were higher than those 
to the other drug molecules (Fig.  7A–C), in the order 
of CCL25-Tetradioxin (− 5.6  kcal/mol), MR1-Tetra-
dioxin (− 6.8  kcal/mol), and TNFSF13B-Tetradioxin 

Fig. 5 Functional enrichment of the indicated HIGs. A GSEA analysis of MR1, TNFSF13B, and CCL25. B Schematic illustration of HIGs promoting 
intestinal inflammation. CCL25 and TNFSF13B were enriched in hsa04672 -Intestinal immune network for IgA production. Besides, Céline Mortier 
et al. found that MR1 promotes intestinal inflammation by activating MAIT to produce pro-inflammatory factors

https://maayanlab.cloud/Enrichr/
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(− 6.62 kcal/mol). Among them, the amino acid binding 
sites LEU-43 and TRP-47 of CCL25 were at the near-
est distances of 3.46  Å and 3.28  Å, respectively, from 
Tetradioxin, while PRO-68, LYS-69, LEU-89 and LEU-
90 were relatively distant from Tetradioxin. The amino 
acid binding sites TYR-206, ASN-235 and LEU-240 of 
the TNFSF13B were all distant from Tetradioxin, and 
only PRO-237 was nearer to Tetradioxin with a dis-
tance of 3.33  Å. In contrast, among the seven amino 
acid binding sites of MR1, PHE-30 had three hydrogen 
bond-forming interactions with Tetradioxin, LEU-32 
was at a distance of 3.47  Å from Tetradioxin, ILE-45 
had a distance of 3.55  Å with Tetradioxin, GLN-115 
had a distance of 3.00  Å with Tetradioxin, and ALA-
135 had a distance of 3.74  Å with Tetradioxin. Over-
all, the distance of the nearest amino acid binding site 
(GLN-115 3.00  Å) between MR1 and Tetradioxin was 
shorter than the nearest distances of CCL25 (TRP-
47 3.28 Å) and TNFSF13B (PRO-237 3.33 Å). Thus, in 
terms of the distance of the HIGs amino acid binding 
sites from Tetradioxin, there are multiple and nearer 
amino acid binding sites between MR1 and Tetradioxin, 
and these amino acids can form more interactions, that 
is, MR1 exhibits a stronger binding energy of 6.8 (kcal/
mol) relative to CCL25 and TNFSF13B. In addition, 

Fig. 6 Construction of ANN based on HIGs. A Construction of ANN based on MR1, TNFSF13B, and CCL25. B The AUC of the training cohort 
with a value of 0.793. C The AUC of the test cohort with a value of 0.821

Table 2 ANN diagnosis effect for the training and test sets

Training set Test set

Healthy control Celiac disease Healthy control Celiac disease

Prediction

Healthy control 8 5 6 3

Celiac disease 2 67 1 40

Accuracy 0.9146 0.92

AUC 0.793 0.821

Table 3 Potential drugs targeting HIGs

Drugs P value Target genes (HIGs)

Tetradioxin CTD 00006848 0.006682774 CCL25; MR1;TNFSF13B

DMBA CTD 00007046 0.011059423 MR1

diuron CTD 00005864 0.0212979 TNFSF13B

Demecolcine CTD 00005762 0.005581458 MR1; TNFSF13B

CROTONALDEHYDE CTD 00000669 0.027348037 CCL25

FENRETINIDE CTD 00007166 0.033813077 TNFSF13B

Cyclophosphamide CTD 00005734 0.041416571 MR1

Table 4 The estimated binding energy (kcal/mol) of HIGs-drugs

Drugs CCL25 MR1 TNFSF13B

Tetradioxin CTD 00006848  − 5.6  − 6.8  − 6.62

CROTONALDEHYDE CTD 00000669  − 3.03 – –

DMBA CTD 00007046 –  − 6.8 –

Demecolcine CTD 00005762 –  − 5.94  − 6.01

Cyclophosphamide CTD 00005734 –  − 4.64 –

FENRETINIDE CTD 00007166 – –  − 6.56

diuron CTD 00005864 – –  − 5.4
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the absolute values of the binding energies of the three 
complexes, CCL25-CROTONALDEHYDE (− 3.03 kcal/
mol), MR1-DMBA (− 6.8  kcal/mol) and TNFSF13B-
FENRETINIDE (− 6.56  kcal/mol), were relatively high 
(Fig.  7D–F), while four complexes, MR1-Demecolcine 

(− 5.94  kcal/mol) and MR1-cyclophosphamide 
(− 4.64  kcal/mol), and TNFSF13B- Demecolcine 
(− 6.01  kcal/mol) and TNFSF13B- diuron (− 5.4  kcal/
mol), four complexes with relatively low absolute values 
of binding energy (Additional file 2: Fig. S8), suggesting 
that these drugs may have a regulatory effect on HIGs.

Fig. 7 3D (left) and 2D (right) views of the interacted interface between HIGs and their top two potential binding drugs. A–C The structure 
of the complex formed by the docking of Tetradioxin with CCL25, MR1 and TNFSF13B. D The structure of the complexes formed by the docking 
of CROTONALDEHYDE with CCL25. E The structure of the complex formed by the docking of DMBA with MR1. F The structure of the complex 
formed by the docking of FENRETINIDE with TNFSF13B. The indicated drugs were selected according to the absolute values of the binding energy 
to CCL25, MR1 and TNFSF13B
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Discussion
CD is an autoimmune disease typically characterized 
by chronic small intestine inflammation [15]. The inci-
dence and prevalence of CD have increased over time, 
and worse, it can occur at any age, from infancy to older 
people [3]. However, the diagnosis of CD remains chal-
lenging for clinical practice. On the one hand, the diges-
tive tract is beyond our visual observation. On the other 
hand, CD is a multifactor disease, and the symptoms of 
CD are currently unclear. A single diagnostic method 
based on imaging examinations heavily relying on radi-
ologists’ experiences is limited. The application of ANN 
based on gene expression signatures has gradually broken 
through this dilemma. One strong piece of evidence is 
that ANN has excellent potential in diagnosing gastroin-
testinal diseases closely related to CD [12]. For another, 
this state-of-the-art technique exhibits excellent perfor-
mance in diagnosis, prognostic prediction, and treatment 
in many other diseases, and some evaluation indexes of 
ANN models even achieved an accuracy of 100% [16, 17]. 
Therefore, we incorporated HIGs into the ANN and con-
structed an ANN model to predict whether the samples 
belonged to healthy control or CD in the present study, 
and the prediction accuracy for the training and test sets 
are 0.9146 and 0.92, respectively. Meanwhile, we evalu-
ated the prediction capability of the ANN model on the 
training and test sets using the ROC curves, where the 
AUC value for the training set is 0.793, and the AUC 
value for the test set is 0.821. That is, ANN based on the 
HIGs’ expression levels has the potential to be used as an 
independent diagnostic predictor for CD.

Differential gene expression analysis first identified the 
HIGs used for building ANN models. We obtained 58 
differentially expressed immune-related genes between 
healthy controls and CD patients. The enrichment analy-
sis of these genes suggests that B and T’s cells play a piv-
otal role in the pathogenesis of CD. Then, we applied 3 
machine learning algorithms, including LASSO, SVM-
RFE, and random forest, to identify the hub immune-
related genes (HIGs). We found that the machine 
learning identified MR1, CCL25, and TNFSF13B, indi-
cating the central role of MR1, CCL25, and TNFSF13B 
in B and T cell regulation and CD progression. Indeed, 
our GSEA and KEGG pathway analyses enriched these 
HIGs in immune-/inflammatory-related functions and 
pathways.

Meanwhile, literature reports have also shown the criti-
cal roles of the HIGs in regulating inflammatory bowel 
disease’s immune and inflammatory state [11, 18, 19]. 
For example, CCL25 is a thymus-expressed chemokine 
expressed mainly in the thymus and epithelial cells of 
the small intestinal villi lining. The interaction of CCL25 
and its receptor is involved in T cell development and 

gut-associated immune responses [20, 21], as well as par-
ticipating in various inflammatory diseases and contrib-
uting to inflammatory responses, including inflammatory 
bowel disease [22]. MR1 can specifically recognize small 
metabolite antigens and present antigens to activate T 
cells [23, 24]. Once MR1 binds antigens, the MR1-antigen 
complex is revealed on the cell surface and is recognized 
by mucosal-associated invariant T (MAIT) cells which 
could produce the pro-inflammatory cytokines. These 
pro-inflammatory cytokines will recruit and activate 
other immune cells to contribute to the inflammation of 
gut tissue [11]. TNFSF13B can induce B cell proliferation, 
differentiation and immunoglobulin production. Once 
the expression of TNFSF13B is dysregulated, it disrupts 
B cell self-tolerance, leading to autoimmune diseases and 
B cell malignancies [25–27]. In summary, our GESA and 
KEGG pathway analyses and the literature reports have 
all shown that the HIGs play pivotal roles in regulating 
CD progression.

As an autoimmune disease, the immune characteris-
tics of different models can provide a theoretical basis 
for classifying the immune subtypes of CD. Therefore, 
immune subtypes of CD were also identified using “Con-
sensusClusterPlus” package based on the ssGSEA score 
of 28 immune gene sets in this paper. According to the 
ssGSEA score of 28 immune gene sets, the immune sub-
types of CD were divided into 2 clusters and defined as 
C1 and C2. Among them, C1 is the high-immunoactiv-
ity group, and C2 is the low-immunoactivity group. The 
correlation between HIGs and 2 immune subtypes of 
CD was further analysed. Also, we constructed the IG 
score based on HIGs to assess the CD risk. The results 
showed that the CD risk of patients in the C1 subgroup 
was higher than in the C2 subgroup, and the CD risk of 
patients with CD (C1 and C2) was higher than healthy 
controls, which suggested that HIGs could be a predictor 
for the immunoactivity and the risk of CD.

Considering the critical roles of HIGs in regulating 
CD’s immune and inflammatory state, we start to seek 
potential drugs for CD treatment by targeting HIGs. 
Knowing the only clinical treatment for CD is strict 
adherence to a GFD currently. However, research stud-
ies have shown that approximately half of patients with 
CD are dissatisfied with the GFD and want to seek treat-
ments that can replace the GFD [28]. As mentioned 
above, the HIGs might function at the key nodes of CD 
development. Thus, targeting HIGs might provide a novel 
effective therapeutic method for CD treatment. In this 
paper, we utilized the Enrichr platform to pinpoint seven 
potential drugs targeting HIGs: FENRETINIDE, cyclo-
phosphamide, diuron, CROTONALDEHYDE, Deme-
colcine, DMBA, and Tetradioxin. Among these options, 
FENRETINIDE stands out for its ability to impact diverse 
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biological pathways, encompassing insulin resistance, 
glucose tolerance, autophagy, and cell growth, thereby 
exhibiting a broad spectrum of pharmacological effects 
on conditions such as diabetes, cancer, and neurological 
diseases, all while demonstrating limited toxicity [29]. 
Cyclophosphamide is applied to enhance the expectancy 
and quality of life of cancer patients. However, it is con-
sidered as a dose-limiting drug because of the accompa-
nied neurotoxicity [30]. Diuron treatment shows promise 
in ameliorating mammary tumour incidence or multi-
plicity [31]. CROTONALDEHYDE, generated through 
lipid peroxidation, possesses the capacity to modulate 
inflammatory processes by triggering epigenetic modi-
fications via DNA adduct formation [32]. Demecolcine, 
a classic inhibitor of spindle fibre formation during M 
phase, finds widespread application as a mitotic inhibitor 
and apoptosis inducer [33]. DMBA treatment can result 
in differential expression of immune-related genes in 
mammary gland tissues from Wistar-Kyoto and Wistar-
Furth rats [34]. While Tetradioxin hasn’t been directly 
employed for therapeutic purposes, recent studies have 
unveiled its considerable potential in regulating immune 
systems among HIV-infected individuals as well as those 
afflicted by COVID-19 [35, 36]. Given that these drugs 
find application in processes linked to inflammation, 
immune response, or tumorigenesis, and that the utiliza-
tion of specific drugs correlates closely with the expres-
sion of immune-related genes, we subsequently employed 
the molecular docking method (MDM) to delve into the 
binding affinity between the aforementioned drugs and 
their associated HIGs. Finally, our result revealed that 
Tetradioxin could theoretically bind to all the HIGs with 
the highest binding affinity, which suggested that Tetra-
dioxin might be a promising drug for anti-CD treatment.

Certainly, there are some limitations in the pre-
sent study. Firstly, we constructed a diagnostic predic-
tion model based on only 132 samples from the GEO 
database. Thus, a larger cohort of patients is needed to 
confirm. Secondly, the GEO database provides limited 
clinical information and patient genetic data. Finally, to 
further reveal the potential regulatory role of immune-
related genes in CD, functional experiments will be 
required in the future.

Conclusions
In summary, we used three machine learning algo-
rithms to identify HIGs for CD and validated the diag-
nostic effect of these HIGs in two independent datasets. 
We constructed an IG score based on HIGs which could 
assess the risk of CD. Also, we constructed a novel ANN 
model for CD diagnosis based on HIGs. In addition, we 
investigated the regulatory effect of HIGs in the patho-
genesis of CD and identified potential drugs targeting 

HIGs using the Enrichr platform and MDM. The present 
findings may help comprehend CD’s pathogenesis and 
provide a new perspective for CD’s diagnostic and treat-
ment strategy.

Methods
Data acquisition and preprocessing
The workflow chart of this study is shown in Fig. 1. We 
queried CD-related datasets from the GEO database, and 
the datasets needs to fulfill the following three criteria to 
be included in the present study. First, in order to per-
form gene expression analysis, the dataset should contain 
unbiased gene expression data with intact annotation. 
Second, in order to conduct the clinic-related analyses, 
CD patients included in the dataset should have com-
plete clinical information. Third, to ensure the reliability 
of the bioinformatic analyses, CD patients included in 
the training cohort and validation cohort should be dif-
ferent and independent. Considering the above criteria, 
we screened and downloaded two independent CD data-
sets, GSE11501 and GSE164883, from the GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/). The GSE11501 
dataset contains 110 CD patients and 22 healthy controls 
from The United Kingdom of Great Britain and North-
ern Ireland. The probes were transformed into the cor-
responding gene symbols using the GPL6104 platform 
annotation information. The GSE164883 dataset contains 
26 CD patients and 22 healthy controls from Germany. 
The probes were transformed into the corresponding 
gene symbols using the GPL10558 platform annota-
tion information. The GSE11501 dataset is used as the 
training set, and the GSE164883 dataset is used as the 
validation set. Then, based on the ImmPort database 
(https:// www. immpo rt. org/ resou rces), we downloaded 
a list of immunologically relevant genes, which has 2483 
immune-related genes (Additional file  1: Table  S7). We 
downloaded the 28 immune gene sets from the TISIDB 
database (http:// cis. hku. hk/ TISIDB/) (Additional file  1: 
Table S8).

Differential analysis of gene expression
We compared the expression profiles of CD patients and 
healthy controls to identify the differentially expressed 
genes (DEGs) of two clusters using the R package 
"limma", with a p value < 0.05 as the criterion. The p val-
ues were calculated using the Wilcoxon rank sum test.

Functional enrichment analysis
To clarify which biological processes and functions the 
58 differentially expressed immune-related genes are 
enriched in, to better comprehend the pathogenesis of 
CD, and we performed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 

https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/resources
http://cis.hku.hk/TISIDB/
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of the 58 differentially expressed immune-related genes 
using the “clusterProfiler” package in R software [37].

Selection of hub immune‑related genes (HIGs)
We used 3 machine algorithms to identify HIGs, namely: 
randomForest, LASSO and SVM-RFE, as these machine 
learning approaches have been widely employed to ana-
lyse biological data and accurately identify hub genes in 
gene expression profiles [38]. Firstly, we used the RF algo-
rithm of “randomForest” package, the LASSO algorithm 
of “glmnet” package and the SVM-RFE algorithm of 
“e1071” package for screening 58 differentially expressed 
immune-related genes to identify potential candidate 
genes [39–41]. Then, we used venn diagrams to intersect 
the candidate genes screened by the above 3 algorithms, 
and finally found 3 intersecting HIGs.

ssGSEA and consensus clustering analysis
We utilized the R packages "GSVA" and "GSEABase" to 
conduct single-sample gene set enrichment analysis 
(ssGSEA), and using the ssGSEA algorithm to evaluate 
the immunological characteristics among CD patients, 
respectively. We first obtained 28 immune gene sets 
from the TISIDB database (http:// cis. hku. hk/ TISIDB/), 
and then performed ssGSEA based on these 28 immune 
gene sets, and the ssGSEA score of 28 immune gene 
sets in each CD patients were calculated. Based on the 
ssGSEAscore of 28 immune gene sets, we used “Consen-
susClusterPlus” package to identify the immune subtypes 
of CD patients. Using the pam algorithm with euclidean 
distance, the samples were iterated 1000 times, with the k 
value increased from 2 to 9.

Generation of immune genes score
In order to quantify the immune-related gene expression 
pattern of celiac disease patients, we constructed a set 
of scoring systems—the immune genes score, which we 
termed as IG score. The procedures for establishment of 
IG score were as follows:

In order to construct IG score, principal component 
analysis (PCA) was performed based on the expression 
levels of HIGs and principal component 1 and principal 
component 2 were used as feature scores. The formula 
for calculating IG score is shown as follows:

In the formula, “i” represents HIGs. We grouped sam-
ples with IG score > 0 as high-IG score group and samples 
with IG score ≤ 0 as low-IG score group [42, 43].

IG score = (PC1i + PC2i)

Construction and validation of the ANN model
We constructed the ANN model using HIGs, which 
was built using the R package “neuralnet” and consists 
of 3 parts:

a. Input layer, which includes the gene expression of 3 
HIGs;

b. The first hidden layer, which includes the gene 
expressions of the 3 HIGs and the weights of the 3 
HIGs; and the second hidden layer, which includes 
the weights of all neurons in hidden layer 1.

c. Output layer, which indicates whether the sample 
belongs to healthy control or celiac disease.

To speed up the convergence and improve the accu-
racy of the ANN, and the first hidden layer was set to 6 
neurons and the second hidden layer was set to 2, and 
ROC is used to evaluate the prediction performance of 
the ANN.

Gene set enrichment analysis
To further identify which biological functions and sig-
nalling pathways are associated with HIGs, gene set 
enrichment analysis (GSEA) was performed on differ-
ent subgroups of CD patients according to their median 
expression level of HIGs, with P < 0.05 considered statis-
tically significant.

Selection and docking of drugs targeting HIGs
To screen the drugs targeting HIGs, we used the Enrichr 
platform (https:// maaya nlab. cloud/ Enric hr/) for online 
analysis and screening. First, we input the gene symbol 
of HIGs in the primary webpage of Enrichr platform, and 
then screened the drugs targeting HIGs based on the 
DSigDB database in the “Diseases/Drugs” module, and 
with P < 0.05 being statistically significant. Subsequently, 
we used molecular docking method (MDM) to investi-
gate the interaction and binding affinity of the screened 
drug molecules to their HIGs in order to screen for the 
most potential drugs. Specifically, the protein (CCL25, 
MR1 and TNFSF13B) that was used in this study was 
deposited in the NCBI-Protein databases under the 
accession number of O15444, Q95460 and Q9Y275. The 
validation and quality estimation of predicted CCL25, 
MR1 and TNFSF13B model were evaluated by PRO-
CHECK and QMEAN, respectively [44, 45]. AutoDock 
tools were used to prepare the ligand and protein files 
[46]. Protein–ligand docking was performed with Auto-
Dock tools, and the resulting interactions between recep-
tor and ligand were visualized with PyMOL (version 2.5) 
and LigPlus (version 2.2) [47].

http://cis.hku.hk/TISIDB/
https://maayanlab.cloud/Enrichr/
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Statistical analysis
Statistical analysis and visualization were conducted 
using R software for this study. The analysis of variance 
(ANOVA) method was employed to statistically analyse 
multi-group data, while the wilcoxon rank sum test was 
used to compare two groups. The association between 
the ssGSEA score and IG score was assessed using spear-
man’s correlation coefficient. Statistical significance was 
defined as P < 0.05 for all statistical analyses.
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