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Comprehensive analysis of alternative 
splicing across multiple transcriptomic cohorts 
reveals prognostic signatures in prostate cancer
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Abstract 

Background Alternative splicing (AS) plays a crucial role in transcriptomic diversity and is a hallmark of cancer 
that profoundly influences the development and progression of prostate cancer (PCa), a prevalent and potentially 
life-limiting cancer among men. Accumulating evidence has highlighted the association between AS dysregulation 
and the onset and progression of PCa. However, a comprehensive and integrative analysis of AS profiles at the event 
level, utilising data from multiple high-throughput cohorts and evaluating the prognosis of PCa progression, remains 
lacking and calls for thorough exploration.

Results We identified a differentially expressed retained intron event in ZWINT across three distinct cohorts, encom-
passing an original array-based dataset profiled by us previously and two RNA sequencing (RNA-seq) datasets. 
Subsequent in-depth analyses of these RNA-seq datasets revealed  141 altered events, of which 21 demonstrated 
a significant association with patients’ biochemical recurrence-free survival (BCRFS). We formulated an AS event-based 
prognostic signature, capturing six pivotal events in genes CYP4F12, NFATC4, PIGO, CYP3A5, ALS2CL, and FXYD3. This 
signature effectively differentiated  high-risk patients diagnosed with PCa, who experienced shorter BCRFS, from their 
low-risk counterparts. Notably, the signature’s predictive power surpassed traditional clinicopathological markers 
in forecasting 5-year BCRFS, demonstrating robust performance in both internal and external validation sets. Lastly, 
we constructed a novel nomogram that integrates patients’ Gleason scores with pathological tumour stages, demon-
strating improved prognostication of BCRFS.

Conclusions Prediction of clinical progression remains elusive in PCa. This research uncovers novel splicing events 
associated with BCRFS, augmenting existing prognostic tools, thus potentially refining clinical decision-making.

Keywords Alternative splicing, Microarray, RNA-seq, Prognosis, Prostate cancer

Background
Prostate cancer (PCa) is the commonest cancer affect-
ing the male reproductive system and stands as the sec-
ond leading cause of male mortality globally, with men 
over 65 years of age being at elevated risk [1, 2]. Previ-
ous research has shown that RNA alternative splicing 
(AS), a fundamental biological process that results in the 
generation of diverse mRNA isoforms encoding distinct 
transcripts [3] plays a pivotal role in PCa progression 
and aggressiveness [4–6]. Dysregulation or malfunc-
tion of AS is associated with cellular dysfunction and the 
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pathogenesis of various diseases, including cardiovascu-
lar disease [7], neurological disorders [8, 9], and cancers 
[10–12]. Mutations or alterations in the expression of 
splicing factors can facilitate the production of cancer-
promoting splicing isoforms, thereby granting growth or 
survival advantages to tumour cells [10]. Consequently, 
aberrant AS has been proposed as a hallmark of cancer 
[13]. Harnessing the power of genome-wide transcrip-
tome approaches will uncover the full potential of AS 
events as PCa markers. These approaches will facilitate 
identification of individuals at greater risk of progres-
sion or recurrence and may allow clinicians to devise 
personalised treatment plans that optimise efficacy while 
minimising side effects. Furthermore, investigating the 
associations between cancer-specific splicing events and 
disease features may indicate future prognostic biomark-
ers and therapeutic targets, ultimately offering the poten-
tial for improved outcomes for patients diagnosed with 
PCa [14–16].

AS significantly contributes to transcriptomic and pro-
teomic diversification in eukaryotes, with approximately 
95% of human genes undergoing AS to produce proteins 
exhibiting distinct functions [17]. Grasping the intricate 
function of AS may illuminate the enigmatic pathology of 
PCa. AS events can be classified into five primary catego-
ries: skipped exon (SE), alternative 5′ splice site (A5SS), 
alternative 3′ splice site (A3SS), mutually exclusive exons 
(MXE), and retained intron (RI). Each of these has the 
potential to have profound effects on the nature, abun-
dance, or stability of the resultant transcripts and con-
sequently, on the functionality of the gene product. The 
advent of ultra-high density microarray technologies and 
high-throughput RNA sequencing (RNA-seq) techniques 
has enabled researchers to apply bioinformatics meth-
odologies to large transcriptome-wide data to identify 
expression or splicing changes that can inform on disease 
parameters. Tools developed for AS analysis can be cate-
gorised into three types depending on their mathematical 
background, including event-based, exon-based, and iso-
form-based approaches [18]. Tools such as rMATS [19], 
SpliceSeq [20], and EventPointer [21] are event-based 
and can be employed to query the association of specific 
AS events with clinical parameter such as disease status 
or risk of recurrence.

In this study, we aimed to comprehensively explore the 
AS landscape of PCa utilising advanced AS analytical 
tools. We thoroughly examined our previous array-based 
PCa cohort alongside three independent high-through-
put transcriptomic PCa datasets at the event-level of 
AS. This approach was designed to counter potential 
biases from single studies and to identify shared patterns 
of differentially expressed alternative splicing events, 
termed DEAS events, across the respective datasets. 

Subsequently, we sought to pinpoint a robust set of prog-
nostic events and define a minimal event-based signature 
associated with biochemical recurrence-free survival 
(BCRFS) in patients diagnosed with PCa. Biochemical 
recurrence is defined as a rise in the blood level of pros-
tate-specific antigen (PSA) in patients diagnosed with 
PCa after treatment with surgery or radiation. Addition-
ally, we constructed a correlation network between aber-
rantly altered splicing factors and the prognostic events 
to uncover potential upstream splicing regulators. We 
developed an AS event signature capable of predicting 
3-, 5-, and 8-year BCRFS in patients diagnosed with PCa, 
validated both internally and externally. Furthermore, we 
established a nomogram incorporating the AS event sig-
nature and clinicopathological factors to predict BCRFS 
at the same time intervals. Both the nomogram and the 
AS signature outperformed the Gleason score in BCRFS 
prediction, indicating their potential utility in PCa clini-
cal management. Given the critical role of AS mecha-
nisms in PCa, our findings have identified potential 
prognostic AS event biomarkers which may aid clinicians 
when designed treatment or follow-up regimens. Fur-
thermore, the results here may suggest novel potential 
targets for future PCa therapeutics designed to manipu-
late splicing decisions.

Materials and methods
Datasets acquisition
In this work, four independent PCa datasets were ana-
lysed and are summarised in Table 1.

The first dataset, referred to as Clariom D, is a series 
of nine paired samples consisting of benign and malig-
nant tissue from the same patient. Transcriptomes were 
produced using the ultra-high density the Clariom D 
Pico GeneChip Whole Transcriptome (WT) platform 
(Thermo Fisher, Waltham, MA, USA). Analysis, patient 
anthropometrics and clinical parameters for this patient 
group have been described in our previous paper [22]. 
The second dataset, referred to as TCGA-PRAD (https:// 
portal. gdc. cancer. gov/ proje cts/ TCGA- PRAD), involves 
541 normal and tumour prostate samples. RNA-seq 
counts, clinical, pathological, and survival information 
for patients diagnosed with PCa were obtained from the 
Genomics Data Commons (GDC) [23] using the R pack-
age TCGAbiolinks [24]. The third dataset, generated by 
Illumina HiSeq 2000, consists of 14 PCa tumour and 14 
matched normal samples [25] and was obtained from the 
European Nucleotide Archive (ENA) [26] using fastq-dl 
[27] under the accession number PRJEB2449. The fourth 
and final dataset includes 61 tumour samples [28] and 
only batch 2 samples were selected, which had been pro-
filed with the Affymetrix Human Transcriptome Array 
2.0 (HTA 2.0), for this study. Raw CEL data (i.e. probe 

https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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intensities) and corresponding survival information were 
downloaded from the Gene Expression Omnibus (GEO) 
[29] under the accession number GSE107299 (date 
accessed: 30/09/2022) and PCaDB (http:// bioin fo. jialab- 
ucr. org/ PCaDB/; date accessed: 11/05/2023), respectively. 
In this study, we used BCRFS as our survival endpoint. 
Patients with BCRFS less than one month were excluded. 
The design of this study is illustrated as a flowchart in 
Fig. 1.

Identification of DEAS events in Clariom D array dataset
The raw array CEL data of the Clariom D dataset were 
pre-processed using the R package EventPointer under 
the aroma.affymetrix framework [30]. We conducted dif-
ferential splicing event analysis between the nine malig-
nant and nine matched benign prostate samples, using 
the R package EventPointer and annotated the results 
using genome reference GRCh38. EventPointer computes 
percent-spliced-in (PSI) to quantify each AS event. For 
discovery, significant DEAS events associated with PCa 

were screened with unadjusted p < 0·01 and |ΔPSI|> 0·1. 
To explore the relevance of the parent genes of the DEAS 
events to cancer, we used CancerMine, a literature-based 
database, to categorise them into key drivers, oncogenes, 
and/or tumour suppressors [31].

Identification of DEAS events in TCGA‑PRAD dataset
The raw counts of the TCGA-PRAD cohort were pre-
processed using the R package edgeR [32], and differ-
ential gene expression analysis was performed using 
Limma–Voom pipeline [33, 34]. The PSI values, which 
represent the ratio between reads including or excluding 
exons, were retrieved from the TCGA SpliceSeq data-
base for the TCGA-PRAD cohort (https:// bioin forma 
tics. mdand erson. org/ TCGAS plice Seq/ PSIdo wnload. 
jsp; date accessed: 09/05/2022). To ensure a reliable 
dataset of splicing events, we applied stringent thresh-
olds to exclude (a) splicing events for which the PSI val-
ues were missing or not expressed in more than 25% of 
the samples and (b) samples with missing/NA events 

Fig. 1 Flowchart illustrating workflow. The flowchart demonstrates the major steps employed in the study. DEAS differentially expressed alternative 
splicing, SF splicing factor, BCRFS biochemical recurrence-free survival, TCGA  The Cancer Genome Atlas, PRAD prostate adenocarcinoma

http://bioinfo.jialab-ucr.org/PCaDB/
http://bioinfo.jialab-ucr.org/PCaDB/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
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greater than 30%. The remaining missing events were 
imputed using K-nearest neighbours (KNN). We retained 
AS events with average PSI > 0·05 and standard devia-
tion > 0·01 for downstream analysis. Each splicing event 
was assigned a unique identifier consisting of the splic-
ing type, gene symbol, and ID number to facilitate event 
identification and ensure accuracy. For example, an event 
ID ’ZWINT|11811|RI’ consists of a parent gene symbol 
’ZWINT’ and a unique ID number ’11811’ assigned to 
the ’RI’ event type. We identified DEAS events between 
PCa tumour and normal samples in the TCGA-PRAD 
dataset using the R package limma [33] based on the PSI 
values. Significant DEAS events were screened using BH 
FDR-adjusted p < 0·05.

Identification of DEAS events in PRJEB2449 dataset
The raw RNA-seq reads in the PRJEB2449 dataset were 
analysed to identify DEAS events between 14 PCa 
tumour and 14 matched normal samples. Quality assess-
ment was performed using FastQC [35] and MultiQC 
[36]. Low-quality reads were trimmed to have a mini-
mum length greater than 20 base pairs using TrimGalore 
[37]. Human genome sequencing reference and anno-
tation files were downloaded from the Ensembl data-
base (version: GRCh38/hg38, release 108) and indexed 
using Spliced Transcripts Alignment to a Reference 
(STAR) [38]. Reads from each sample were mapped to 
the genome reference hg38 and quantified using STAR. 
Subsequently, we employed rMATS (v4.0.2) to conduct a 
pairwise statistical analysis between tumour versus nor-
mal group comparison and identify significant DEAS 
events with BH FDR-adjusted p < 0·05. To effectively 
illustrate the diversity and prevalence of the splicing pat-
terns, we used sashimi plots to provide an intuitive visu-
alisation of RNA-seq data and splicing junctions. The 
analysis of this dataset was conducted in a Linux environ-
ment, utilising remote ISCA High-Performance Comput-
ing (HPC) clusters supported by the University of Exeter.

Concordance and validation of DEAS events 
across datasets
To identify overlapping DEAS events across differ-
ent cohorts, we used the UCSC LiftOver tool (https:// 
genome. ucsc. edu/ cgi- bin/ hgLif tOver) to convert the 
genomic coordinates of each event from reference assem-
bly GRCh38 to GRCh37, or vice versa. Finally, we con-
firmed the overlapping DEAS events by comparing the 
genomic coordinates of each event along with the UCSC 
Genome Browser. This ensured that the same event was 
identified in each cohort and allowed us to perform 
downstream analyses with confidence.

Identification of prognostic AS events and construction 
of potential splicing regulatory network
We extracted overlapping DEAS events between the 
TCGA-PRAD and PRJEB2449 cohorts and performed 
univariate Cox regression analysis using the TCGA-
PRAD set to obtain events that were associated with 
BCRFS (with p < 0·05). To identify putative regulators of 
the BCRFS-associated DEAS events, an initial list of tis-
sue-specific and experimentally validated splicing factors 
were retrieved from the SpliceAid2 database [39] (www. 
intro ni. it/ splic eaid. html; date accessed: 11/05/2023). Dif-
ferentially expressed splicing factors were identified using 
the TCGA-PRAD RNA-seq data and Limma-Voom pipe-
line with BH FDR-adjusted p < 0·05. To explore potential 
upstream regulators of the prognostic AS events, Pear-
son correlation network analysis was conducted between 
the expression of dysregulated splicing factors and PSI 
of BCRFS-associated events. Correlation significance 
was set at p < 0·01, and the network was visualised by the 
Cytoscape software.

Construction and validation of prognostic AS event model 
for BCRFS of PCa patients
We used the overlapping DEAS events from the two 
RNA-seq studies to determine their prognostic sig-
nificance and establish an AS event signature model 
for predicting BCRFS of patients diagnosed with PCa. 
The TCGA-PRAD dataset was randomly divided into 
training (n = 289; 70%) and testing (n = 123; 30%) sets. 
The training set served to construct the prognostic 
signature, which was then evaluated in the testing set 
and entire dataset. Association of each overlapping 
event with BCRFS was evaluated via univariate Cox 
regression and Kaplan–Meier (KM) analysis. LASSO 
regression was performed on the prognostic events 
to minimise the residual sum of squares plus a pen-
alty  term, and thus prevent overfitting of the model. 
This was performed using the R package glmnet [40]. 
Optimal events identified were then used to construct 
a multivariate Cox proportional hazards model with a 
bidirectional stepwise variable selection, using the R 
package survival [41]. For each patient, the risk score 
was calculated based on the weighted linear combina-
tion of the event coefficient derived from the multi-
variate Cox regression analysis and the corresponding 
PSI value. Patients diagnosed with PCa were classi-
fied into high-risk and low-risk groups based on the 
risk scores, using the R package  survminer   [42]. We 
used the KM method to assess if patients in the high-
risk group was associated with worse survival. The 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.introni.it/spliceaid.html
http://www.introni.it/spliceaid.html
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prognostic model was validated on the TCGA-PRAD 
testing set, the entire set, and on an external dataset, 
GSE107299. We pre-processed the GSE107299 dataset 
and calculated the PSI value of each AS event using the 
R package EventPointer. Model efficiency in predict-
ing 3-, 5-, and 8-year BCRFS was assessed using time-
dependent receiver operating characteristic (ROC) 
analysis, using the R package survivalROC [43]. The 
area under the ROC curve (AUC) and the Harrell’s 
concordance index (C-index) were used to evaluate the 
model performance.

Clinical significance and nomogram construction
Univariate and multivariate Cox regression analyses 
were conducted to evaluate the association between 
the event signature risk scores and BCRFS. In addition, 
we also took into account the widely accepted clin-
icopathological parameters in PCa. These parameters 
include patient age at diagnosis (< 60 vs. ≥ 60), Gleason 
score (≤ 7 vs. > 7), pathological T stage (T2 vs. T3–T4), 
and pathological N stage (N0 vs. N1). We employed the 
Student’s t-test to investigate the differences in of risk 
scores between the two clinically delineated patient 
groups, considering a p < 0·05 as statistically signifi-
cant. A nomogram was constructed for predicting 

BCRFS at 3-, 5-, and 8-year intervals using the param-
eters that proved statistical significance (p < 0·05) from 
the multivariate Cox regression analysis conducted on 
the TCGA-PRAD training set. The predictive perfor-
mance of the nomogram was further validated inter-
nally using the TCGA-PRAD dataset using the ROC 
analysis and the C-index.

Results
Identification of PCa‑associated aberrant AS events 
in Clariom D array dataset
Event types that can be detected by each AS tool are 
illustrated and summarised in Fig. 2.

EventPointer differentiates events into eight catego-
ries, including mutually exclusive exons (ME), alterna-
tive 3′ splice site (A3SS), alternative 5′ splice site (A5SS), 
cassette exon (CE), alternative last exon (ALE), alterna-
tive first exon (AFE), retained intron (RI) and complex 
event (i.e. none of the standard categories above). Of the 
171,994 found AS events, 119,896 were annotated with a 
gene name. These comprise 515 MEs in 464 genes, 3765 
A3SSs in 3285 genes, 4622 A5SSs in 3684 genes, 6338 
CEs in 5031 genes, 17,733 ALEs in 10,330 genes, 17,680 
AFEs in 10,226 genes, 25,206 RIs in 9851 genes, and 
44,037 complex events in 13,203 genes. The number of 
events and the associated parent genes detected in each 

Fig. 2 Splice model illustrating event types identified by SpliceSeq, EventPointer, and rMTAS. Each box is individually annotated with an exon 
number. Splice junctions are represented by red curves, while red boxes signify alternatively spliced exons. NA not applicable
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event type are summarised in Fig.  3a, b, respectively. 
Among these, 1849 annotated events deriving from 1586 
genes demonstrated significant differential expression in 
relation to PCa. These include 4 MEs in 4 genes, 47 A3SSs 
in 47 genes, 51 A5SSs in 51 genes, 61 CEs in 61 genes, 
173 ALEs in 173 genes, 182 AFEs in 175 genes, 578 RIs in 
522 genes, and 753 Complex Events in 691 genes (Fig. 3c, 
d; Additional file 1: Table S1). The resulting events high-
lighted some genes exhibited multiple AS events, a prev-
alent mechanism for generating protein diversity that 
may contribute to malignant tumour formation and pro-
gression (Fig.  3e, f ). Differentially regulated events and 
the top 10 up-regulated and down-regulated AS events, 
ranked in ascending p-value, are listed in Table  2. The 
CancerMine database indicated that around 32% of the 
DSGs have been previously identified or cited as key bio-
markers with different roles, including 138 drivers, 393 
oncogenes, and 237 tumour suppressors in different can-
cer types. Among these genes, the two most frequently 
cited genes were TP53 (1837 overall; 49 citations reveal-
ing as a tumour suppressor (35), driver (9), and oncogene 
(5) in PCa) and MET (417 overall; 4 citations playing as 
an oncogene in PCa) (Additional file 2: Table S2).

Differential splicing profiles of RNA‑seq datasets
After stringent data processing and filtering, a total of 
541 samples (52 normal and 489 tumour samples) and 
29,415 AS events were retained in the TGCA-PRAD 
dataset. Events were categorised into alternate acceptor 
sites (AA), alternate donor sites (AD), alternate promoter 
(AP), alternate terminator (AT), exon skip (ES), mutually 
exclusive exons (ME), and retained intron (RI). Next, a 
total of 8440 DEAS events from 4257 genes were differ-
entially expressed (Additional file 3: Table S3), including 
2372 APs in 1289 genes, 2217 ATs in 1238 genes, 2198 
ESs in 1550 genes, 790 RIs in 580 genes, 433 ADs in 376 
genes, 394 AAs in 360 genes, and 36 MEs in 35 genes 
(Additional file 9: Figure S1a and S1b). An upset plot for 
the DEAS events was generated, indicating certain genes 
can have up to five AS events and over a third of genes 
occurred to have exon skipping event (Additional file 9: 
Figure S1c). Top 30 DEAS events are show as a heatmap 
in Additional file 9: Figure S1d. We also found that PAK6 
had the most significant up-, and down-regulated events 

and both in AP type (Additional file 9: Figure S1e and S1f, 
respectively).

The splicing patterns of PCa in PRJEB2449 cohort 
were analysed using rMATS with a paired statistical 
model. Our analysis demonstrated that matched tumour 
and normal samples of 14 PCa patients triggered AS 
changes in 2131 genes with 3593 significantly regulated 
events (FDR < 0.05): 497 alternative 3′ splice site (A3SS) 
events in 375 genes, 185 alternative 5′ splice site (A5SS) 
events in 168 genes, 283 skipped exon (SE) events in 200 
genes, 91 mutually exclusive exons (MXE) events in 67 
genes, and 2537 retained intron (RI) events in 1679 genes 
(Additional file 10: Figure S2a and S2b; Additional file 4: 
Table S4a–S4f). Moreover, a substantial proportion of the 
involved parent genes exhibited RI event and some genes 
had up to five event types (Additional file 10: Figure S2c).

The DEAS events across the Clariom D, TCGA-PRAD, 
and PRJEB2449 datasets were compared based on their 
genomic coordinates. Figure 4a summarises the number 
of common events observed, including overlaps between 
individual datasets as well as events common to all three 
datasets. In a comparison between the Clariom D and 
TCGA-PRAD datasets, we identified common DEAS 
events: 1 alternative first exon event, 3 cassette exon 
events, 4 retained intron events, and 5 alternative last 
exon events (Additional file  5: Table  S5a). The Clariom 
D and PRJEB2449 datasets had 16 overlapping retained 
intron events (Additional file 5: Table S5b). Notably, only 
one retained intron event (ZWINT,  chr10:  58117947–
58118137, GRCh37) was found to be significantly 
expressed across all three datasets (Additional file  5: 
Table S5c).

Despite this, it showed differential regulation depend-
ing on the dataset, with the intron showing a higher 
inclusion rate in tumour samples relative to normal sam-
ples in the PRJEB2449 dataset (Fig. 4b, c) but a decrease 
in inclusion rate in tumour/malignant samples as com-
pared to normal/benign samples in both the TCGA-
PRAD and Clariom D datasets (Fig. 4d, e, respectively). 
From the two RNA-seq datasets, we identified 141 
matching DEAS events (Additional file 5: Table S5d) and 
further functional analysis revealed these parent genes 
were significantly enriched in metabolic processes and 
RNA regulation, including the GO terms ‘regulation of 

(See figure on next page.)
Fig. 3 Detected AS and DEAS Events in malignant vs. benign prostate samples: Clariom D cohort. a Circle plot shows the count and proportion 
of detected alternative splicing (AS) events, while c presents the differentially expressed alternative splicing (DEAS) events, broken down by event 
type. Circle plots b and d represent the number of parent genes implicated in detected AS and DEAS events, respectively, per event type. e UpSet 
plot elucidates the detected AS event parent genes, indicating the number of genes engaged in distinct event types (illustrated by horizontal bars) 
and their involvement in various event type combinations (represented by vertical bars and connected red dots). The UpSet plot f does the same 
for DEAS event parent genes. RI retained intron, A3SS alternative 3′ splice site, A5SS alternative 5′ splice site, CE cassette exon, ME mutually exclusive 
exons, AFE alternative first exon, ALE alternative last exon



Page 8 of 24Mou et al. Human Genomics           (2023) 17:97 

Fig. 3 (See legend on previous page.)



Page 9 of 24Mou et al. Human Genomics           (2023) 17:97  

RNA splicing’, ‘regulation of mRNA splicing, via spliceo-
some’, ‘negative regulation of mRNA splicing, via spliceo-
some’, and ‘RNA splicing’ (Fig. 4f ). Interestingly, splicing 
factor genes such as HNRNPA2B1, SRSF4, SRSF7, and 
RBMX were found to be highly presented in the top 
terms (Fig. 4g). The discrepancy in the number of over-
lapping events across different studies combinations 
could be attributed to the different profiling technologies 
and differential splicing tools employed. Furthermore, we 

elected to exclude the ’complex events’, constituting 41% 
of the total DEAS events, from the Clariom D dataset 
prior to our overlap analysis. These complex events do 
not conform easily to the conventional categories of AS 
events, as they may encompass multiple simultaneous 
occurrences within the same transcript. Consequently, 
these complex events complicate the comparison and 
overlapping of events identified in other datasets.

Table 2 Top 10 up-regulated and down-regulated alternative splicing events in the Clariom D dataset

PSI percent-spliced-in

ProbeID Gene name Event type Genomic position Splicing Z value Splicing p value Delta PSI

Top10 up-regulated events

TC1500008343.hg_3 UNC45A Alternative Last Exon 15:90931052–90933977 − 5.30043915 1.16E−07 0.200665185

TC0600011184.hg_1 HIST1H2BJ Complex Event 6:27126462–27132525 − 5.059966554 4.19E−07 0.152888644

TC1700011923.hg_6 CANT1 Complex Event 17:78997774–78998148 − 4.997983001 5.79E−07 0.2510289

TC0100018146.hg_1 ZNF692 Complex Event 1:248850516–248853937 − 4.820815714 1.43E−06 0.106067575

TC0100008145.hg_1 TSPAN1 Complex Event 1:46175409–46181100 − 4.75097649 2.02E−06 0.258356425

TC0400007928.hg_7 FRAS1 Cassette Exon 4:78419063–78424388 − 4.661850479 3.13E−06 0.13807046

TC1100013040.hg_13 TM7SF2 Complex Event 11:65115394–65115893 − 4.572538539 4.82E−06 0.121049901

TC0400011721.hg_1 MAD2L1 Complex Event 4:120060977–120066662 − 4.485818363 7.26E−06 0.18598516

TC1600009200.hg_3 TRAP1 Complex Event 16:3671791–3674339 − 4.481367645 7.42E−06 0.126216189

TC1100011094.hg_5 UBXN1 Complex Event 11:62678118–62678690 − 4.429188469 9.46E−06 0.11029505

Top10 down-regulated events

TC0600012049.hg_1 GSTA7P Retained Intron 6:52739711–52741583 5.016013876 5.28E−07 − 0.138058598

TC1600006607.hg_7 ABCA17P Complex Event 16:2404228–2406828 4.954495463 7.25E−07 − 0.272021512

TC2200008103.hg_1 YPEL1 Retained Intron 22:21701218–21703370 4.882892011 1.05E−06 − 0.249262708

TC0X00008794.hg_1 SLC6A8 Alternative Last Exon X:153692107–153693041 4.723126799 2.32E−06 − 0.216009533

TC0900008516.hg_4 C9orf91 Retained Intron 9:114637070–114638544 4.644610178 3.41E−06 − 0.201023874

TC0400009396.hg_8 NEIL3 Retained Intron 4:177341642–177351380 4.641704288 3.46E−06 − 0.272342085

TC1700012277.hg_2 CDK5RAP3 Complex Event 17:47974031–47974400 4.504297022 6.66E−06 − 0.209587634

TC1400008749.hg_5 RABGGTA Retained Intron 14:24266889–24267660 4.491051378 7.09E−06 − 0.216635165

TC0100010297.hg_16 NCSTN Complex Event 1:160352206–160353160 4.434837994 9.21E−06 − 0.231525085

TC0800009237.hg_15 GPAA1 Alternative 5′ Splice Site 8:144084040–144084134 4.379927673 1.19E−05 − 0.26203504

Fig. 4 Composite figure demonstrating various analytical aspects of the study. a Venn diagram showcasing overlapping differentially expressed 
alternative splicing (DEAS) events among the three datasets. b Sashimi plot of the overlapping ZWINT retained intron (RI) event, derived 
from the PRJEB2449 dataset. The x-axis indicates genomics locations, while the y-axis indicates normalised fragments per kilobase of transcript 
per million mapped reads (FPKM) values, averaged across samples within each group. The bulk/ ‘sashimi-like’ region indicates a heavily 
transcribed, i.e. exonic, region. The gaps between these exonic regions indicate the presence of intronic regions. Red and blue sections symbolise 
grouped tumour and normal samples, respectively. Junction reads are shown as curved lines crossing the exons, with their numbers indicated 
on the corresponding curves. The averaged percent-spliced-in (PSI) value, calculated within each sample group, is shown on the right as ‘IncLevel’. 
The bottom black panel represents the alternative exon–intron structures. c Box plot shows the PSI values of the ZWINT RI event in the PRJEB2449 
dataset, comparing tumour samples with their matched normal counterparts. Boxplots d and e display the PSI values of the ZWINT RI event 
in the TCGA-PRAD set, comparing tumour samples versus normal ones, and in the Clariom D set, comparing malignant samples versus matched 
benign ones, respectively. The unadjusted p or the Benjamini–Hochberg (BH) false discovery rate (FDR) values on the box plots were 
derived from the results of the corresponding differential splicing analyses conducted using the respective tools. f Bubble plot of the Gene 
Ontology Biological Process (GO BP) functional enrichment analysis performed on the parent genes of the 141 DEAS events that overlap 
between the PRJEB2449 and TCGA-PRAD cohorts. g Gene-concept network presents the top five significant terms and the associated genes. TCGA  
The Cancer Genome Atlas, PRAD prostate adenocarcinoma

(See figure on next page.)
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Correlation network between splicing factors 
and BCRFS‑associated AS events
In the following work of this study, we considered the 
141 overlapping DEAS events across the two RNA-
seq datasets as initial event set. In the TCGA-PRAD 
cohort, 49 splicing factors were found to be differentially 
expressed between normal and tumour PCa samples 
via Limma-Voom analysis (Additional file  6: Table  S6a), 
and 41 events were demonstrated significant association 
with BCRFS (Additional file 6: Table S6b). A correlation 
network analysis was performed between the differen-
tially expressed splicing factors and the BCRFS-associ-
ated events in the TCGA-PRAD dataset (Fig.  5a). This 
revealed that RBFOX1, ELAVL3 and NOVA1 were the 
top three splicing factors correlated with the prognostic 
events (28, 20 and 13 times, respectively).

Among the prognostic events, HNRNPDL.69705.
ES emerged as the most interacted risk event (HR > 1), 
and its PSI value was found to be negatively associated 
with the expression of all connected SFs. Conversely, 
RPS24.12296.ES was identified as a protective event 
(HR < 1) that demonstrated a positive correlation with 
only the top three SFs. Correlation between the most 
involved splicing factor, RBFOX1, and the two top events, 
HNRNPDL.69705.ES and RPS24.12296.ES, is shown in 
Fig. 5b, c, respectively.

Prognostic signature construction and clinical significance
The TCGA-PRAD dataset was divided into training 
and testing sets for the development of our AS signa-
ture. After performing both univariate Cox regression 
(Additional file  7: Table  S7a) and KM survival analysis 
(Additional file 7: Table S7b), we identified 21 events sig-
nificantly associated with  BCRFS. These events served 
as candidate events for constructing a prognostic sig-
nature model in the TCGA-PRAD training set. Using 
LASSO (Lambda minimum = 0.01805583; Additional 
file  11: Figure S3a and S3b) and multivariable COX 
regression methods, we derived an AS event-based prog-
nostic signature. This consisted of DEAS events in six 
genes: CYP4F12, NFATC4, PIGO, CYP3A5, ALS2CL and 
FXYD3. For each signature event, we generated a sashimi 
plot using the PRJEB2449 dataset (Additional file  12: 
Figure S4a–S4f; left panel). The PSI values of signature 

events showed a significant increase, indicating an up-
regulation, in the tumour samples compared to the nor-
mal ones in both the PRJEB2449 and TCGA-PRAD 
datasets (Additional file 12: Figure S4a–S4f; right panel). 
For each patient, the predictive risk score can be calcu-
lated as follows, using the six AS events in the signature 
along with their corresponding coefficients (Additional 
file 7: Table S7c):

Table  3 summarises the sample characteristics in the 
TCGA-PRAD sets, after removal of records with incom-
plete clinicopathological information.

Our signature risk score exhibited notable associa-
tions with conventional clinicopathological parame-
ters. High risk scores were significantly associated with 
patients presenting a higher Gleason score (> 7) in the 
training set (p < 0.0001), the testing set (p < 0.001) and 
the complete set (p < 0.0001) (Additional file  13: Figure 
S5b left, middle and right, respectively). Likewise, the 
signature revealed a significantly elevated risk score in 
patients with more advanced tumour stages (T3 or T4) 
across all three TCGA sets (Additional file  13: Figure 
S5c left (p < 0.0001; training set), middle (p < 0.05; test-
ing set), and right (p < 0.0001; complete set)). Patients 
under the age of 60 demonstrated significantly lower risk 
compared to those aged 60 or higher in both the train-
ing set (p < 0.001) and the complete set (p < 0.01) (Addi-
tional file  13: Figure S5a left and right, respectively). In 
both the training and the complete sets, high signature 
risk scores were significantly associated with patients 
exhibiting lymph node metastasis (N1) (p < 0.001 for both 
sets; Additional file  13: Figure S5d left and right). Fur-
thermore, univariate Cox regression analysis revealed 
that our event-based signature had a significant correla-
tion with patients’ BCRFS in the training set (p < 0·0001 
and Hazard ration (HR) = 2.648 (95% confidence inter-
val (CI): 1.769–3.963); Additional file 14: Figure S6a and 

Risk score = (1.37 ∗ CYP4F12|48110|RI)

+ (1.84 ∗NFATC4|26991|RI)

+ (−4.52 ∗ PIGO|86233|RI)

+ (0.970 ∗ CYP3A5|80711|RI)

+ (1.01 ∗ ALS2CL|64461|RI)

+ (15.6 ∗ FXYD3|49039|RI)

(See figure on next page.)
Fig. 5 Correlation analysis between differentially expressed splicing factors and prognostic events. a Pearson correlation network 
between differentially expressed splicing factors (DESFs) and biochemical recurrence-free survival (BCRFS)-associated events in the TCGA-PRAD 
cohort. Blue diamonds denote DESFs, while red and green circles signify events with hazard ratios (HR) greater and less than 1, respectively. 
Red and green lines denote positive and negative correlations, respectively. b A scatter plot visualises the correlation between RBFOX1 
and HNRNPDL.69705.ES. c A scatter plot represents the correlation between RBFOX1 and RPS24.12296.ES. TCGA  The Cancer Genome Atlas, PRAD 
prostate adenocarcinoma
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Additional file  8: Table  S8a), and in the complete set 
(p < 0.0001 and HR = 2.481 (95% CI 1.750–3.516); Addi-
tional file 14: Figure S6e and Additional file 8: Table S8c). 
Multivariate Cox regression indicated that the signature 
significantly contributed to risk (i.e. it acted as a risk fac-
tor with HR > 1) and remained to serve as an independ-
ent prognostic factor in both the training set (p = 0.003 
and HR = 1.931 (95% CI 1.242–3.001); Additional file 14: 
Figure S6b and Additional file  8: Table  S8a), and the 
complete set (p = 0.002 and HR = 1.829 (95% CI 1.256–
2.665); Additional file 14: Figure S6f and Additional file 8: 
Table S8c).

Prognostic performance of the signature and external 
validation
The number of patients experiencing biochemical recur-
rence increased with the rising event signature risk score, 
as evidenced by the risk score distribution and biochemi-
cal recurrence status of each sample (Additional file 15: 
Figure S7a–S7c, pertaining to the training set, testing set, 
and complete set, respectively). The KM survival analy-
sis demonstrated that the signature risk score could sig-
nificantly differentiate between low- and high-risk groups 
of patients diagnosed with PCa in the TCGA-PRAD 

training set (p < 0.0001), the testing set (p = 0.0076), the 
complete set (p < 0.0001), and the external GSE107299 set 
(p = 0.043) (Fig.  6a–d, respectively). Importantly, these 
KM survival curves confirmed that patients categorised 
in the high-risk group exhibited significantly poorer 
survival compared to patients in the low-risk group. 
Moreover, the signature demonstrated strong predictive 
capabilities for 3-, 5-, and 8-year BCRFS in the TCGA-
PRAD sets (AUCs: 0.724, 0.741 and 0.721 in the training 
set; 0.641, 0.761 and 0.776 in the testing set; 0.705, 0.745 
and 0.734 in the complete set, respectively; Fig.  6e–g). 
The corresponding C-index values were 0.701 [95% CI 
0.630–0.773], 0.604 [95% CI 0.469–0.739] and 0.679 [95% 
CI 0.614–0.744]. The prognostic efficacy of the signature 
was subsequently validated in the external GSE107299 
dataset, showcasing relatively good predictive power 
for both 3- and 5-year BCRFS (AUCs: 0.643 vs. 0.655; 
Fig. 6h) and a C-index of 0.579 [95% CI 0.449–0.708].

Nomogram construction and survival performance
Significant parameters identified through the multivari-
ate Cox regression from the training set were used to con-
struct a nomogram, including the event-based signature 
risk score, pathological T stage (p = 0.044 and HR = 2.497 

Table 3 Clinical characteristics of the prostate cancer tumour samples in three TCGA-PRAD sets

TCGA  The Cancer Genome Atlas, PRAD prostate adenocarcinoma, Age age at diagnosis, T stage tumour stage, N stage lymph node status (N0 = without lymph node 
metastasis; N1 = with lymph node metastasis)

Clinical feature Training set Validation set Complete set
TCGA‑PRAD (n = 248) TCGA‑PRAD (n = 108) TCGA‑PRAD (n = 356)

Age (year) (%)

 < 60 87 (35.1) 46 (42.6) 133 (37.4)

 ≥ 60 161 (64.9) 62 (57.4) 223 (62.6)

Biochemical recurrence events (%) 49 (19.8) 15 (13.9) 64 (18.0)

Pathological T stage (%)

T2 85 (34.3) 33 (30.6) 118 (33.1)

T3-4 163 (65.7) 75 (69.4) 238 (66.9)

Pathological N stage (%)

N0 205 (82.7) 85 (78.7) 290 (81.5)

N1 43 (17.3) 23 (21.3) 66 (18.5)

Gleason score (%)

 ≤ 7 130 (52.4) 59 (54.6) 189 (53.1)

 > 7 118 (47.6) 49 (45.4) 167 (46.9)

Fig. 6 Performance of event-based signature across various datasets. Kaplan–Meier (KM) curves for biochemical recurrence-free survival (BCRFS) 
in low- and high-risk prostate cancer (PCa) patient groups. Curves are differentiated based on the six prognostic alternative splicing (AS) event 
signature risk score. These curves are presented for a the training set from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD), 
b the testing set, c the entire set, and d the GSE107299 cohort. Time-dependent receiver operating characteristic (ROC) curves evaluate 
the performance of the six-event signature for predicting 3-, 5-, and 8-year BCRFS in e the TCGA-PRAD training set, f the testing set, g the complete 
set, and h the GSE107299 cohort

(See figure on next page.)
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(95% CI 1.023–6.098)), and Gleason score (p = 0.004 and 
HR = 2.990 (95% CI 1.416–6.312)) (Fig.  7a). The nomo-
gram is a modelling tool that enables individualised pre-
dictions. For each patient’s predictor variable, a vertical 
line is drawn to obtain a corresponding ‘point’. The points 
from all variables are then summed to generate a ‘total 
point’, which gives the predicted probability for 3-, 5-, or 
8-year BCFRS. The nomogram demonstrated strong pre-
dictive power for 3-, 5-, and 8-year BCRFS, as evidenced 

by the AUCs of 0.807, 0.809 and 0.996 in the training set; 
0.708, 0.699 and 0.664 in the testing set; and 0.775, 0.772 
and 0.740 in the complete set (Fig. 7b–d, respectively).

The corresponding C-index of the nomogram was 
0.740 (95% CI 0.670–0.810) in the training set, 0.688 (95% 
CI 0.604–0.772) in the testing set, and 0.726 (95% CI 
0.667–0.784) in the complete set. Our AS event signature 
and nomogram demonstrated superior predictive per-
formance for 5-year BCRFS compared to all standalone 

Fig. 7 Nomogram and its predictive performance. a Nomogram predicting 3-, 5-, and 8-year biochemical recurrence-free survival (BCRFS) 
for patients diagnosed with prostate cancer (PCa). The performance of the nomogram is evaluated through receiver operating characteristic (ROC) 
curves in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) training set (b), the testing set (c), and the complete set (d)
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Fig. 8 ROC curve comparisons of various model parameters for predicting patient’s 3-, 5-, 8-year BCRFS. Receiver operating characteristic (ROC) 
curves illustrating 3-, 5-, and 8-year biochemical recurrence-free survival (BCRFS) predictions for patients diagnosed with prostate cancer in The 
Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) training set (a, b, and c, respectively), the testing set (d, e, and f, respectively), 
and the complete set (g, h, and i, respectively). Different parameters employed are colour-coded and labelled in each subfigure. Age (< 60 
vs. ≥ 60): age at diagnosis; Path_T/pathological T stage (T2 vs. T3-T4): tumour stage; Path_N/pathological N stage (N0 vs. N1): lymph node status 
(N0 = without lymph node metastasis; N1 = with lymph node metastasis); Gleason: Gleason score (≤ 7 vs. > 7)
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clinicopathological variables across all three TCGA-
PRAD sets (Fig. 8b, e, and h). Importantly, these models 
outperformed both the Gleason score and the patient’s 
age at diagnosis as prognostic markers for BCRFS at all 
three time points across the three sets (Fig. 8). While the 
nomogram demonstrated a stronger predictive capability 
than all other parameters, including the AS event signa-
ture, for BCRFS prediction at three distinct time points 
in the training set (Fig.  8a–c), the AS event signature 
exceeded the predictive performance of the nomogram 
for both 5- and 8-year BCRFS in the testing set (Fig. 8e–
f) and for 8-year BCRFS in the complete set (Fig. 8i).

Discussion
Prostate cancer (PCa) is a complex disease with signifi-
cant clinical challenges due to the heterogeneity of its 
progression and prognosis. This complexity often lim-
its the effectiveness of existing biomarkers in provid-
ing precise prognostic outcomes for individual patients. 
Acknowledging the important role that AS events play 
in the tumorigenesis, progression, and advancement 
of PCa, it is crucial to pinpoint and clarify potential AS 
events that may serve as valuable prognostic markers. In 
this study, our overarching aims were threefold; identify-
ing differentially expressed alternative splicing (DEAS) 
events that overlap across multiple PCa datasets, devel-
oping an AS event-based signature model capable of pre-
dicting BCRFS, and synthesising potential parameters to 
establish a nomogram to enhance BCRFS prognosis. Our 
results revealed several DEAS events across various PCa 
datasets, with some displaying a significantly association 
with patients’ BCRFS. A robust signature based on six 
AS events, alongside a potential clinical nomogram, were 
developed, exhibiting satisfactory predictive power for 
patients’ BCRFS. These prognostic models outperformed 
some traditionally parameters used in PCa, such as Glea-
son score, for 3-, 5-, and 8-year BCRFS prediction, dem-
onstrating their potential clinical utility.

Dysregulation of AS and its regulatory controls has 
been revealed to be directly associated with the develop-
ment, progression, and aggressiveness of PCa [6, 44, 45]. 
This is well exemplified by dysregulated expression of the 
ARv7 isoforms of the androgen receptor (AR), which is 
the is the primary target for early treatment of PCa. ARv7 
exhibits skipping of exon 3 and is constitutively expressed 
in the nucleus of PCa cells, independent of androgen 
stimulation [46]. It is the most clinically relevant splicing 
variants associated with increased biochemical recur-
rence and poor survival of PCa [47–49]. Another AR 
variant, ARv567, involves the skipping of exons 5–7, is 
characterised by androgen independence, and exhibits 
high expression levels in advanced prostate tissue [48, 

50]. Other AS events in genes such as VEGF [51, 52], 
BCL2L1 [53], SH3GLB1 [54] and CCDN1 [55–57] have 
also been demonstrated to play critical roles in PCa 
development. The afore-mentioned findings substantiate 
the significance of identifying AS events in genes, which 
not only contributes to the understanding of potential AS 
mechanisms, but also enables the discovery of potential 
diagnostic and/or prognostic biomarkers for PCa, as well 
as the identification of potential therapeutic targets for 
treatment.

Our analysis of 141 overlapping DEAS events, obtained 
from the two RNA-seq datasets both generated using 
the Illumina HiSeq 2000 platform, led to the identifi-
cation and subsequent validation of a six-event-based 
AS signature for BCRFS. The event signature includes 
intron retention events in the CYP4F12, NFATC4, PIGO, 
CYP3A5, ALS2CL and FXYD3 genes. Our event-based 
signature exhibits a significant correlation with preva-
lent clinicopathological factors in PCa, including age at 
diagnosis, Gleason score, pathological T and N stages, 
suggesting its potential for clinical applicability. Our AS 
event signature demonstrated effective performance 
in predicting 5-year BCRFS. Within the internal train-
ing subset of the TCGA-PRAD cohort, the signature 
model achieved an AUC of 0.741. This performance was 
consistent in the testing subset (AUC = 0.761) and the 
complete set (AUC = 0.745) of the same cohort. When 
applied to the external GSE107299 cohort, our AS event 
signature also yielded a respectable AUC of 0.655, high-
lighting its potential generalisability. By utilising Kaplan 
Meier survival analysis, we found that low-risk patients 
classified by our signature in both the TCGA-PRAD 
and GSE107299 sets displayed higher BCRFS rates. Our 
composite nomogram outperformed all other variables 
in the TCGA-PRAD training set, while the event signa-
ture remained competitive in both testing and complete 
sets. Furthermore, for predictions at 3-, 5-, and 8-year 
BCRFS, both our AS event signature and the nomogram 
displayed superior predictive performance compared to 
the Gleason score of patients across all three subsets of 
TCGA-PRAD cohort. Several previous studies have pio-
neered the development of AS event-based signatures in 
PCa. For instance, one study [58] developed alternative 
splicing event signatures based on distinct event types 
and demonstrated their predictive ability for 5-year dis-
ease-free survival (DFS) in PCa patients, using data from 
the TCGA-PRAD SpliceSeq. These signatures yielded 
AUCs ranging from 0.380 to 0.761. Upon direct com-
parison of the retained intron signature identified in the 
study with our event signature, ours has better perfor-
mance in predicting 5-year survival (AUC of signature in 
the study: 0.612 vs. AUC of our signature: 0.741, 0.761, 
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and 0.745 for the three TCGA-PRAD sets, respectively). 
Another study identified a prognostic signature com-
posed of six AS events of various types, which predicted 
a 5-year progression-free survival (PFS) in PCa patients 
with an AUC of 0.793 [15], again using the TCGA-PRAD 
SpliceSeq data. The slight superiority of this signature 
over ours could potentially be attributed to the fact that 
it comprises different types of events. A third study [14] 
developed a set of AS event type-based signatures from 
the TCGA-PRAD cohort, with AUCs ranging from 0.663 
to 0.868 for predicting DFS. The retained intron based 
model identified in this third study yielded an AUC of 
0.724, which is slightly lower than our 5-year based pre-
dictive signature (AUCs: 0.741, 0.761, and 0.745 for the 
three TCGA-PRAD sets, respectively). However, the 
majority of existing prognostic AS event signatures in 
PCa, regardless of the survival endpoint, have been con-
structed and validated solely from the TCGA-PRAD 
SpliceSeq dataset, and hence lack either internal or exter-
nal validation, which calls into question their broad prog-
nostic applicability. Our study aims to bridge this gap by 
comprehensively investigating AS events across multi-
ple PCa datasets from different platforms, searching for 
consistency among them at the level of AS events. Fur-
thermore, we developed a prognostic AS event signature, 
trained and tested both internally and externally, across 
the selected datasets. To the best of our knowledge, such 
an approach has not been thoroughly explored in existing 
literature.

AS events in PIGO and CYP3A5 genes have been rel-
atively understudied. However, PIGO, which encodes 
phosphatidylinositol glycan anchor biosynthesis class 
O protein, has been reported to be upregulated in pros-
tate tumours, suggesting its role in promoting cell 
growth [59]. CYP3A5 encodes the cytochrome p450 3A5 
enzyme, involves in xenobiotic metabolism [60]. Genetic 
variation in CYP3A5 impacts drug response, which will 
affect individual response to therapeutic drugs. CYP3A5 
inhibitors can enhance androgen depletion therapy 
(ADT), while inducers may reduce efficacy [61]; and its 
polymorphism may specifically decrease the risk of devel-
oping low-grade or early stage PCa in the Japanese popu-
lation [62]. CYP4F12 encodes cytochrome p450 4F12 
and an intron retention event in the CYP4F12 gene, has 
been previously demonstrated to hold prognostic value 
in cervical cancer, being incorporated into a retained 
intron-based signature model to predict overall survival 
in patients with cervical cancer [63]. The same retained 
intron event identified in our study has also been found 
to be negatively regulated in both left- and right-sided 
colon tumour tissues compared to normal tissues [64], 
suggesting a wider impact of CYP4F12 dysregulation on 

cancer pathogenesis. NFATC4 encodes a protein called 
nuclear factor of activated T cells, a transcription factor 
involves in immune response, cell growth, and differen-
tiation. The same intron retention event in the NFATC4 
gene we identified in our study has been implicated in 
prognosis in other cancer types. In papillary thyroid can-
cer, it predicted patients’ progression-free survival (PFS) 
[65], and in glioblastoma, it was considered as a key event 
in predicting overall survival [66]. Whilst the alternate 
donor site (AD) event in NFATC4 has been identified as 
a poor prognostic indicator for overall survival in gastric 
cancer [67], its association with overall survival appears 
to be the opposite in pancreatic cancer [68]. These find-
ings highlight the complex and context-dependent 
nature of splicing events in cancer, as the same event 
can have different prognostic implications in different 
types of cancer. splicing alterations could impact cancer 
pathogenesis by regulating essential pathways. ALS2CL 
encodes a guanine-nucleotide exchange factor for Rab5 
and acts as a modulator for endosome dynamics [69]. Its 
role in cancer is relatively unexplored, but research links 
alternative splicing at this locus to colorectal cancer [70, 
71]. Alternative splicing events in ALS2CL are upregu-
lated in primary tumours compared to normal tissues 
and may be prognostic markers for overall survival and 
disease-free survival (DFS) [70, 71]. FXYD3, encodes the 
FXYD domain-containing ion transport regulator 3A and 
regulates ion transport activity. The alternate promoter 
(AP) event identified in FXYD3 has been reported to be 
a significant overall survival predictor in lung cancer [72]. 
It has been demonstrated to be over-expressed in pros-
tate tumour samples and it is important for proliferation 
in prostate carcinomas [73, 74].

An interesting observation in our data is the abun-
dance of dysregulated splicing events involving retained 
introns; of the 141 DEAS events shared between datasets, 
115 were retained intron events. Retained introns may 
be unreliably detected in short read NGS data [75] and 
as such are likely to have been underrepresented in such 
datasets. RI events can arise from mutation, epigenetic 
change or splicing factor dysregulation, resulting in a fail-
ure to properly recognise splice sites. The consequences 
of this may be the production of aberrant out-of-frame 
transcripts, which are subject to nonsense-mediated 
decay. If not degraded at the transcript level by NMD, 
proteins may be produced with inappropriate amino 
acid inserts, or changes to the amino acid sequence 
after the splicing error that bear no resemblance to the 
consensus sequence for the gene. As such, one would 
expect them to be deleterious for cell, tissue and organ 
function, and accordingly, they have been demonstrated 
to be a feature of cancer development and therapeutic 
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resistance in cancer [76], and in particular, a hallmark of 
stemness associated with aggressiveness in prostate can-
cer itself [5]. One prominent example of this is our data 
is an intron inclusion event in the ZWINT gene, that 
is common to all of the datasets we examined. ZWINT 
appears as a hub gene in our PPI network and encodes 
a fundamental component of the mitotic checkpoint and 
has been previously implicated in overall and disease-
free survival of lung cancer [77]. ZWINT encodes the 
ZW10 interacting protein, a known AR target gene [78] 
and component of the kinetochore at the mitotic spin-
dle checkpoint which has previously been reported as an 
independent prognostic marker for PCa [77]. Further-
more, silencing ZWINT expression leads to downregu-
lation of positive cell cycle regulators such as CCND1, 
CCNE1 and CDK4 [79]. Introns in the 3′ UTR are fre-
quently associated with the poison exons, which cause 
degradation of the transcripts containing them, and are 
a potent component of endogenous gene regulation [80]. 
Thus, the exclusion ZWINT intron in the tumour sam-
ples is predicted to lead to higher levels of total ZWINT 
expression, consequent elevation of cyclin D1 and E1 and 
cyclin dependent kinase 4 expression and promotion of 
cell proliferation.

Splice site usage is controlled by the combinational 
binding of splicing factor proteins to exon and intron 
splicing enhancer and silencer motifs around the splice 
sites [81]. A splicing factor can therefore regulate alter-
native splicing of thousands of genes. Analysing coordi-
nate changes in splicing factor expression in correlation 
with alternative splicing events may provide insights into 
the mechanistic basis of individual isoform usage. From 
our correlation network analysis between differentially 
expressed splicing factors and survival-associated alter-
native splicing events, transcripts encoding RBFOX1, 
ELAVL3, and NOVA1 emerged as the top three splicing 
factors most correlated with survival associated alter-
native splicing changes. RBFOX1 (RNA binding fox-1 
homolog 1) encodes an RNA-binding protein involved 
in post-transcriptional regulation, including AS of genes 
related to cell functions such as proliferation and apop-
tosis. It suppresses malignancy in glioma by regulat-
ing TPM1 splicing [82], linked to various cancer types, 
including breast cancer [83], lung cancer [84], and pros-
tate cancer [85]. Additionally, RBFOX1, like many splic-
ing factors, also has roles in the stabilisation of mRNA 
by binding to 3′UTR regions, and its loss correlates with 
poor glioblastoma (GBM) patient survival [86]. NOVA1 
(NOVA alternative splicing regulator 1), a well-known 
regulator of alternative splicing first identified in lung 
cancer cells [87], modulates pre-mRNA splicing in genes 
related to neuronal function and cancer progression [88, 

89]. Dysregulated NOVA1-mediated splicing is linked 
to various cancers, including colorectal [90], pancreatic 
[91], lung [92], and prostate [93]. NOVA1 has previously 
been described to be significantly up-regulated in PC-3 
PCa cell lines) and in both in  vitro and in  vivo models, 
at the levels of mRNA and protein [94]. Over-expression 
of NOVA1 has also been identified as a key SF directly 
associated with the aggressiveness of PCa [95]. ELAVL3 
(ELAV like RNA binding protein 3), an RNA-binding 
protein regulating post-transcriptional gene expression, 
is mainly expressed in neuronal cells [96] and found as a 
potential mRNA marker in small cell lung cancer patients 
[97]. Its precise role in prostate cancer (PCa) develop-
ment and progression remains uncertain, necessitating 
further research to clarify its involvement in the disease.

Through our correlation network analysis, we identified 
exon skipping events in HNRNPDL and RPS24 as the two 
most prominent events regulating the splicing of other 
splicing factors. Exon skipping in the HNRNPDL gene 
emerged as a risk event (HR > 1) and exhibited a negative 
correlation with all connected splicing factors, whereas 
a skipping event in the ribosomal protein subunit RPS24 
was the most interacted protective factor (HR < 1) and 
positively associated with the top three interacting SFs 
in the network. HNRNPDL (heterogeneous nuclear 
ribonucleoprotein D-like protein), has previously been 
implicated it in tumour development and progression, 
with studies highlighting its role in abnormal cell prolif-
eration in PCa cells [98] and regulation of transcription 
and alternative splicing of genes related to tumorigene-
sis, including cell death, proliferation, migration, and the 
JAK-STAT pathway [99]. RPS24 (ribosomal protein S24) 
encodes a ribosomal protein crucial for ribosome forma-
tion. As a potential malignancy biomarker, RPS24 is over-
expressed in malignant PCa tissues [100]. Notably, in line 
with the event identified in our study, exon 5 of RPS24, an 
ESRP2-repressed exon, is frequently skipped in prostate 
tumour tissue [101] and correlates with hypoxia in PCa 
samples [102], suggesting its AS may serve as a tumour 
hypoxia marker.

Conclusions
In conclusion, we have defined alternative splicing events 
that are shared between multiple prostate cancer data-
sets and carried out a systematic and thorough analysis of 
these in relation to BCRFS. We have developed a unique 
six-event-based signature and a nomogram, incorporat-
ing the event signature, pathological T stage, and Glea-
son score, which demonstrated satisfactory predictive 
ability for BCRFS in PCa patients which was superior 
to the predictive capabilities of commonly employed 
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clinicopathological factors at the 5-year time point. More 
research is necessary to validate the clinical significance 
of the observed AS events and understand their under-
lying molecular mechanisms. This knowledge may facili-
tate the identification of potential prognostic AS event 
candidates and the development of more precise and per-
sonalised therapeutic targets for PCa.
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Circle plot represents the number of parent genes involved in each event 
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Additional file 10: Figure S2. Overview of DEAS events identified 
between tumour and matched normal prostate samples: PRJEB2449 
cohort. (a) Circle plot illustrates the count and proportion of the differen-
tially expressed alternative splicing (DEAS) events across each event type. 
(b) Circle plot represents the number of parent genes involved in each 
event type among the DEAS events. (c) UpSet plot elucidates the DEAS 
event parent genes, indicating the number of genes engaged in distinct 
event types (illustrated by horizontal bars) and their involvement in vari-
ous event type combinations (represented by vertical bars and connected 
red dots). A3SS: Alternative 3′ splice site; A5SS: Alternative 5′ splice site; SE: 
Skipped exon; MXE: mutually exclusive exons; RI: retained intron.

Additional file 11: Figure S3. LASSO regression for the selection and 
identification of biochemical recurrence-free survival (BCRFS)-associated 
events. (a) Determination of optimal Lambda values. (b) Coefficient pro-
files for all evaluated genes. LASSO: least absolute shrinkage and selection 
operator.

Additional file 12: Figure S4. Overview of the six events from the 
prognostic signature. Sashimi and box plots of the six retained intron (RI) 
events in (a) CYP4F12, (b) NFATC4, (c) PIGO, (d) CYP3A5, (e) ALS2CL, and 
(f) FXYD3. Sashimi plots (left panel) were derived from the PRJEB2449 
dataset, with their explanations as in Fig. 4. The box plots demonstrate the 
differences in percent-spliced-in (PSI) values between normal and tumour 
prostate samples in the TCGA-PRAD set (right upper panel), and between 
matched normal and tumour samples in the PRJEB2449 set (right lower 
panel). The Benjamini-Hochberg (BH) false discovery rate (FDR) values 
on the box plots were derived from the results of the corresponding dif-
ferential splicing analyses conducted using the respective tools. TCGA: The 
Cancer Genome Atlas; PRAD: prostate adenocarcinoma.

Additional file 13: Figure S5. Clinical impact of the splicing event signa-
ture. Box plots of the alternative splicing event-based risk score in relation 
to (a) patient age at diagnosis (< 60 vs. ≥ 60), (b) Gleason score (≤ 7 vs. > 7), 
(c) pathological T stage (T2 vs. T3-T4), and (d) pathological N stage (N0 vs. 
N1). These plots are provided for the TCGA-PRAD training set (left panel), 
the testing set (middle panel) and the complete set (right panel). The sig-
nificance of the risk score difference between the two groups is denoted 
with asterisks (ns, no significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001). Pathological T stage: tumour stage; Pathological N stage: 
lymph node status (N0 = without lymph node metastasis; N1 = with 
lymph node metastasis).

Additional file 14: Figure S6. Assessment of the potential independent 
prognostic factors. Univariate and multivariate Cox regression analyses 
of alternative splicing event-based signature risk score and various clin-
icopathological variables, including age of the patient at diagnosis with 
prostate cancer (< 60 vs. ≥ 60), pathological T stage (tumour stage; T2 vs. 
T3-T4), pathological N stage (Lymph node status; N0 vs. N1) and Gleason 
score (≤ 7 vs. > 7). Forest plots of the respective univariate Cox and multi-
variate Cox in the TCGA-PRAD training set (a, b), the testing set (c, d), and 
the complete set (e, f). TCGA: The Cancer Genome Atlas; PRAD: prostate 
adenocarcinoma.

Additional file 15: Figure S7. Risk score distribution (upper) and bio-
chemical recurrence classification (recurred or not) in PCa patients (lower).
These classifications are presented for the TCGA-PRAD training set (a), the 
testing set (b), and the complete set (c). PCa: prostate cancer; TCGA: The 
Cancer Genome Atlas; PRAD: prostate adenocarcinoma.
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