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Abstract 

Background In recent years, the mitochondria/immune system interaction has been proposed, so that variants 
of mitochondrial genome and levels of heteroplasmy might deregulate important metabolic processes in fighting 
infections, such as leprosy.

Methods We sequenced the whole mitochondrial genome to investigate variants and heteroplasmy levels, consid‑
ering patients with different clinical forms of leprosy and household contacts. After sequencing, a specific pipeline 
was used for preparation and bioinformatics analysis to select heteroplasmic variants.

Results We found 116 variants in at least two of the subtypes of the case group (Borderline Tuberculoid, Border‑
line Lepromatous, Lepromatous), suggesting a possible clinical significance to these variants. Notably, 15 variants 
were exclusively found in these three clinical forms, of which five variants stand out for being missense (m.3791T > C 
in MT-ND1, m.5317C > A in MT-ND2, m.8545G > A in MT-ATP8, m.9044T > C in MT-ATP6 and m.15837T > C in MT-CYB). In 
addition, we found 26 variants shared only by leprosy poles, of which two are characterized as missense (m.4248T > C 
in MT-ND1 and m.8027G > A in MT-CO2).

Conclusion We found a significant number of variants and heteroplasmy levels in the leprosy patients from our 
cohort, as well as six genes that may influence leprosy susceptibility, suggesting for the first time that the mitog‑
enome might be involved with the leprosy process, distinction of clinical forms and severity. Thus, future studies are 
needed to help understand the genetic consequences of these variants.
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Background
Mitochondria are cytoplasmic organelles that participate 
in several processes in cellular functioning in humans, 
including different types of cell death, control of calcium 
levels, regulation of the immune system, metabolic cell 
signaling and generation of cellular energy in the form 
of Adenosine Triphosphate (ATP) by tricarboxylic acid 
(TCA) cycle and oxidative phosphorylation (OXPHOS) 
[1–3].
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Given their evolutionary origin, mitochondria have 
their own genetic material (mtDNA), double-stranded 
circular molecules located in the mitochondrial matrix 
and associated with the inner membrane of the organelle 
[4, 5]. The human mitogenome is 16,569  bp in length, 
with 37 genes—13 of OXPHOS-associated polypep-
tides, 22 of transfer RNA (tRNA) and two of ribosomal 
RNA (rRNA)—in addition to non-coding regions, which 
include the displacement loop (D-loop) region [6–9].

Mitochondria play an extremely important part in the 
immune system, such as proliferation in the energy sup-
ply for the synthesis of signaling and effector molecules, 
as well as acting directly on signaling pathways for the 
activation of these cells through intermediary molecules 
[10]. These include mtDNA, which might act in the 
pathogenesis process by Mycobacterium genus [11], and 
mitochondrial reactive oxygen species (mtROS), which 
play a central role in the process of NLRP3 inflamma-
some regulation and activity. This molecular complex is 
crucial in the process of releasing proinflammatory oxy-
tocins, such as IL-1b and IL-18 [12, 13].

Importantly, different cells have a variable number 
of mtDNA copies that can lead to a state called mito-
chondrial heteroplasmy, which can be characterized as 
the presence of two or more mtDNA variants in vary-
ing proportions within individual organisms [8, 14, 15]. 
Heteroplasmy is a normal part of healthy human biology, 
but it is also relevant in disease processes, with the level 
of heteroplasmy being crucial for the expression of spe-
cific pathological phenotypes [2, 8, 15]. In addition, given 
the importance of mitochondria to the immune system, 
the accumulation of mutations can lead to mitochon-
drial dysfunction, which in turn might be responsible for 
cellular dysregulation, leading to the development and 
aggravation of multiple infectious diseases [16, 17] such 
as leprosy.

Leprosy, or Hansen’s disease, is a chronic granuloma-
tous bacterial infection that primarily affects skin and 
peripheral nerves. The etiological agent is the obligate 
intracellular bacteria Mycobacterium leprae, which pro-
duces a broad spectrum of the illness, while diffuse 
lepromatous leprosy may also be caused by Mycobac-
terium lepromatosis, a new species described in 2008 
[18]. Regardless, host factors that regulate susceptibility 
to the diverse clinical forms of the disease are impor-
tant, but largely unknown [19, 20]. Leprosy remains a 
serious public health problem in various parts of the 
world and, in 2021, more than 140,000 new cases were 
reported globally, a higher number compared to 127,396 
cases reported in 2020, but still a lower number com-
pared to 202,488 cases reported in 2019. However, these 
data should be observed with great caution because this 

decrease is probably due to less detection during the 
COVID-19 pandemic [21, 22].

Leprosy classification is complex and may include clini-
cal, histopathological, microbiological and immunologi-
cal features. The Ridley–Jopling system classifies leprosy 
as a spectral disease: in one extreme, there is the polar 
tuberculoid form (TT), with a low bacterial load, mainly 
cell-mediated immunity and minor production of specific 
antibodies. In the other extreme, there is the polar lepro-
matous form (LL), in which patients show high bacterial 
load and respond to infection with elevated production 
of antibodies, as well as lower or absent M. leprae-spe-
cific cell-mediated immunity. Between these two polar 
forms, there is the clinically unstable borderline spec-
trum: borderline-tuberculoid (BT), borderline-borderline 
(BB) and borderline-lepromatous (BL), with BB being the 
most unstable form [23].

The complete genome sequence of the M. leprae con-
tains 3,268,210  bp  and has an average G + C content of 
57.8% [24]. By being able to absorb host cell carbon, only 
about half of the bacillus genome contains functional 
protein-coding genes [25]. For this reason, M. leprae has 
a dependence on the host’s energy production and nutri-
tional products, resulting in parasitic life adaptation, 
undoubtedly involving the main function of the mito-
chondrion, due to the cell signaling pathways in which 
this organelle participates and connects its metabolism to 
meet their nutrient demands [26, 27].

Notably, mitochondria have important functions in the 
regulation of novel immune signaling pathways exerting 
control over redox metabolism, energy flow, apoptosis, 
xenophagy and activating inflammasomes. For instance, 
it has already been shown that leprosy patients have a 
differential expression of non-coding RNAs such as piR-
NAs compared to clinically healthy people in the clinical 
form, as well as in the clinical spectrum of the disease. 
One of the differential expressions is related to the acti-
vation of anti-apoptotic pathways, evidence of the path-
ogen’s interference in the host’s mitochondria [28]. In 
addition, these organelles directly influence intracellular 
pathogens that attempt to invade their space; inhibition 
of mitochondrial energy metabolism likely emerges as a 
novel and overlooked mechanism developed by M. leprae 
to evade xenophagy and the host immune response [25].

In this scenario, mutations that affect mitochondrial 
functions might influence the host response to this 
infection, leading to multiple possibilities in leprosy 
development and outcome. These mutations might be 
present in the host’s mitochondrial genome. Therefore, 
we sequenced the whole mitochondrial genome to inves-
tigate variants and their heteroplasmy levels in the con-
text of leprosy. To the best of our knowledge, this is the 
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first study to perform such genomic approach regarding 
infection by M. leprae.

Methods
Sampling
Blood samples were obtained from patients affected by 
leprosy (n = 33, case group) and healthy household con-
tacts with leprosy patients (n = 37, control group), all res-
idents of Pará state, Brazil. The case group was composed 
of borderline lepromatous (BL) leprosy (n = 12), lepro-
matous (LL) (n = 11) and borderline tuberculoid (BT) 
leprosy (n = 10). This study adhered to the Declaration 
of Helsinki and was approved by the Ethics Committee 
of Institute of Health Sciences at the Federal University 
of Pará (CEP-ICS/UFPA n. 197/07), and all participants 
read and signed an informed consent form.

As inclusion and exclusion criteria, the samples from 
case group were selected from patients affected by lep-
rosy who had a positive clinical and laboratory diagno-
sis. The samples from control group were selected from 
healthy household contacts who had a negative clinical 
and laboratory diagnosis. All participants were recruited 
at Dr. Marcello Candia Reference Unit in Sanitary Der-
matology of the State of Pará (URE) located in Marituba, 
Pará, Brazil.

Clinical and laboratory diagnosis
The diagnosis of leprosy was conducted with the well-
accepted clinical signs and symptoms based on the 
Ridley–Jopling classification, including detection of 
hypopigmented or infiltrated skin lesions with loss of sen-
sation assessed with standard graded Semmes–Weinstein 
monofilaments and the palpation of peripheral nerves to 
identify characteristic pain associated with inflammation 
or swelling, as previously described [29, 30].

To establish laboratory parameters, antibody titers of 
three antigens (NDO-BSA, LID-1 and NDO-LID) were 
evaluated with molecular detection of RLEP by qPCR in 
leprosy patients and contacting patients [29]. The cutoff 
values of antibody titers were determined using previ-
ously described criteria, and the cutoffs for anti-NDO-
BSA and anti-LID-1 were 0.295 and, for anti-NDO-LID, 
the cutoff was 0.475 [29].

To determine qPCR positivity, a standard curve was 
prepared from purified M. leprae DNA extracted from 
nude mouse footpads, and then five standard dilution 
points were included in each plate, considering the sam-
ples as positive when the fluorescent signal crossed the 
automatically calculated threshold line [29]. Amplifica-
tions with cycle threshold (Ct) ≤ 45 were considered posi-
tive for RLEP [29].

DNA extraction
DNA was extracted by phenol–chloroform method [31]. 
Quantification of the extracted material was performed 
with the NanoDrop 1000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, DE, USA).

Amplification and sequencing
Amplification of mtDNA from the total DNA was per-
formed by conventional PCR with specific primers, as 
described by Cavalcante et  al. [1], to cover the entire 
mitochondrial genome. To verify the quality of the ampli-
fication, the samples were applied to a 1% agarose gel and, 
later, measured in a Qubit 2.0 fluorometer for the library 
preparation (Thermo Fisher Scientific). Sequencing of the 
complete mitochondrial genome was performed using 
Nextera XT DNA Library Preparation Kit (Illumina Inc., 
Chicago, IL, USA) to prepare the libraries and MiSeq 
Reagent Kit V3 (600-cycles) (Illumina) for sequencing on 
the MiSeq System (Illumina), according to the manufac-
turer’s instructions. During the preparation of the librar-
ies, High Sensitivity D1000 ScreenTape was used on the 
Agilent 2200 TapeStation System (Agilent Technologies, 
Santa Clara, CA, USA) to assess the quality of the genetic 
material.

Bioinformatics and statistical analyses
After sequencing, we updated the pipeline for bioinfor-
matics analysis previously described [1]. The paired-
end sequencing reads (.fastq files) were trimmed with 
Trimmomatic v.0.39 [32] to remove leading low quality 
(LEADING:10), trailing low quality (TRAILING:10) and 
to scan reads with a 3-base wide sliding window, cutting 
when the average quality per base drops below 10 (SLID-
INGWINDOW:3:10) and those reads with length less 
than 36nt were discarded. After trimming, fastq files were 
aligned with the human reference mtDNA sequence—
revised Cambridge reference sequence (rCRS)—using 
Burrows-Wheeler Alignment tool (BWA, v.0.7) [33]. 
SAMtools (v.1.15.1) [34] were used for mapping and sort-
ing sequences, while Picard was used to mark the dupli-
cated reads (v.2.27.5, available at https:// github. com/ 
broad insti tute/ picard).

After preprocessing the sequences in the aforemen-
tioned steps, paired-end.bam files were submitted to 
mutserve for SNP calling, SNP annotation and hetero-
plasmy detection (https:// mitov erse. readt hedocs. io/ 
mutse rve/ mutse rve/). For SNP calling, we performed 
mutserve for each sample with the following quality 
parameters: mapping quality = 20, base quality = 20 and 
alignment quality = 30. SNP annotation was based on 
the rCRS genome annotation (available at https:// github. 
com/ seppi nho/ mutse rve). Mutserve outputs SNPs in.vcf 

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://mitoverse.readthedocs.io/mutserve/mutserve/
https://mitoverse.readthedocs.io/mutserve/mutserve/
https://github.com/seppinho/mutserve
https://github.com/seppinho/mutserve
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file format that was used as input for inferences of mito-
chondrial haplogroups by HaploGrep (v2) [35]. To rein-
force the reliability of the results in the analyses of the 
variants, only those that passed rigorous additional fil-
ters were considered (filter = PASS; coverage ≥ 545 per 
variant; presence of heteroplasmy). Then, three databases 
were used for identification of the found variants based 
on their position: dbSNP (https:// www. ncbi. nlm. nih. gov/ 
snp/) [36], ClinVar (https:// www. ncbi. nlm. nih. gov/ clinv 
ar/) [37] and gnomAD Browser (https:// gnomad. broad 
insti tute. org/) [38], in addition to literature search. R lan-
guage [39] was employed for statistical analysis and graph 
generation with the following packages: ggplot2 [40] and 
UpSetR [41]. P-value < 0.05 was considered as statistically 
significant.

Results
Characterization of the cohort
After processing, the mean sequencing coverage of all 
samples was 1489×, and two low-quality samples were 
excluded from the analyses. In the studied cohort, we 

observed similar average age for both case and control 
groups, as well as for the case subgroups (Table 1). Inter-
estingly, there were more females than males in the LL 
subgroup, in comparison with the other two analyzed 
clinical forms (BL and BT), differing from a previous 
study by our research group that reported more males 
with this clinical form [42]. However, in the case group 
considering all clinical forms, we observed more males 
than females, corroborating a meta-analysis that inves-
tigated leprosy in multiple populations, including Brazil 
[43].

By analyzing the distribution of mitochondrial macro-
haplogroups in our cohort, we found that H2, of Euro-
pean (EUR) ancestry, is the most frequent individual 
haplogroup in both case (32.35%) and control (21.62%), 
but the Native American (NAT) haplogroups together 
account for the largest share in both groups (46.88% in 
case and 43.24% in control) (Table 2). It is also notewor-
thy that NAT and African (AFR) ancestries presented 
more diversity of haplogroups than the others.

Regarding the leprosy subtypes present in our case 
group (BT, BL and LL), we found three ancestries based 
on mitochondrial haplogroups, with different distribu-
tions among the subtypes (Fig. 1A). Notably, the Native 
American ancestry was as frequent as the European 
ancestry in LL and different in BT, while it was four times 
more frequent than the other ancestries in BL. Then, an 
analysis unifying the subtypes into poles was carried out, 
considering tuberculoid pole (T, with BT, n = 10) and 
lepromatous pole (L, with BL + LL, n = 23), to assess the 
mitochondrial ancestry of these individuals considering 
both poles (Fig. 1B). NAT remained four times more fre-
quent in L than in T, and nearly two times more frequent 

Table 1 Demographic characteristics for case and control 
groups after processing

Groups Clinical forms Sex Age

Male (%) Female (%)

Case Total 19 (57.58%) 14 (42.42%) 41.5 ± 15.4

BT 6 (60%) 4 (40%) 41.5 ± 10.3

BL 8 (66.67%) 4 (33.33%) 43.8 ± 17.2

LL 5 (45.45%) 6 (54.55%) 39.2 ± 18.2

Control 18 (48.65%) 19 (51.35%) 40.4 ± 16.6

Table 2 Distribution of macro‑haplogroups in case and control groups

Mitochondrial ancestry Macro-haplogroups General (%) Case (%) Control (%)

Native American A 10.14 17.65 5.41

B 11.59 11.76 10.81

C 18.84 14.71 21.62

D 4.35 2.94 5.41

Subtotal 44.93 46.88 43.24

European H2 27.54 32.35 21.62

U 1.45 0 2.7

Subtotal 28.99 34.38 24.32

African L0 1.45 0 2.7

L1 4.35 5.88 5.41

L2 13.04 8.82 16.22

L3 5.80 5.88 5.41

Subtotal 24.64 18.75 29.73

Asian M 1.45 0 2.7

Subtotal 1.45 0 2.7

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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than EUR and AFR within L pole; in T pole, EUR was 
nearly two times more frequent than the other two 
ancestries.

Distribution of mitochondrial variants
Furthermore, we investigated the distribution of the gen-
eral mitochondrial heteroplasmic variants present in the 
study cohort, to assess the variants that were exclusive or 

shared among the different groups and subgroups, that 
is, the intersection between groups, as seen in Fig. 2. We 
found 116 variants to be present in at least two of the 
subtypes of the case group, but not in the control group. 
In addition, 1332 variants were found exclusively in one 
leprosy subtype.

Particularly, 15 mitochondrial variants were 
exclusively found in all three case subgroups, 

Fig. 1 A Number of individuals with different leprosy subtypes according to the three mitochondrial ancestries (Native American—NAT, 
European—EUR and African—AFR) found in the case group. B Number of individuals in different leprosy poles (L and T) according to the three 
mitochondrial ancestries (Native American—NAT, European—EUR and African—AFR) found in the case group

Fig. 2 Distribution of found mitochondrial variants in the healthy control group and the leprosy case subgroups (LL, BT and BL). Each dark dot 
indicates the group with the respective number of variants, and each line represents the intersection between groups. The set size is the overall 
number of variants
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suggesting they might play a role in the leprosy pro-
cess: m.3791T > C (MT-ND1, no dbSNP identification 
found), m.5317C > A (MT-ND2, no dbSNP identifica-
tion found), m.8455C > T (MT-ATP8, rs1603221490), 
m.8503T > C (MT-ATP8, rs1556423476), m.8545G > A 
(MT-ATP8, rs1603221578), m.9044T > C (MT-ATP6, 
no dbSNP identification found), m.9103T > C (MT-
ATP6, rs1603222077), m.12879T > C (MT-ND5, 
rs1556424182), m.13512A > G (MT-ND5, rs878930809), 
m.14721G > A (MT-TE, rs1603224843), m.14860C > T 
(MT-CYB, no dbSNP identification found), 
m.14905G > A (MT-CYB, rs193302983), m.14941A > G 
(MT-CYB, rs1603224969), m.15019T > C (MT-CYB, no 
dbSNP identification found) and m.15837T > C (MT-
CYB, no dbSNP identification found). Thus, four are 
in Complex I genes, five in Complex III, five in Com-
plex V and one in tRNA. Out of these, some vari-
ants in the protein-coding genes stand out for being 
missense and presenting a relevant pathogenicity 
prediction: m.3791T > C in MT-ND1 (probably dam-
aging), m.5317C > A in MT-ND2 (possibly damaging), 
m.8545G > A in MT-ATP8 (benign), m.9044T > C in 
MT-ATP6 (probably damaging) and m.15837T > C in 
MT-CYB (benign). It is noteworthy that, although most 
of the variants found in the cohort were detected at low 
levels of heteroplasmy, recent single-cell analyses have 

shown that even low-level heteroplasmy (< 5%) can 
alter transcription levels of nuclear genes involved in 
ATP synthesis and important cellular processes [44].

Regardless, to analyze the distribution of heteroplasmic 
mutations in leprosy poles and the intersection between 
groups, and to exclude variants with low levels of het-
eroplasmy, we filtered the same variants for those with 
heteroplasmy levels > 5% and < 95%, to control possible 
artifacts and false positives (Fig. 3). After this filter, it is 
possible to notice that 26 variants stand out as shared by 
both T and L poles.

Of these 26 variants, it is noteworthy that most of them 
were concentrated in rRNA genes (MT- RNR2) and genes 
encoding OXPHOS complexes, particularly in complexes 
I (MT-ND1, MT-ND5), III (MT-CYB) and IV (MT- CO2 
and MT- CO3), illustrated in Table  3. This distribution 
could suggest that at the poles of leprosy there may be 
a dysregulation of mitochondrial gene expression, as 
well as in the oxidative environment and energy produc-
tion, and that these genes may develop roles in disease 
processes.

Analysis of heteroplasmy levels
To investigate mitochondrial heteroplasmy in our cohort, 
we assessed the levels in which this state was presented in 
each region of the mitogenome, according to the filtering 

Fig. 3 Distribution of found mitochondrial variants in the healthy control group and the leprosy poles (Pole T, and Pole L). Each dark dot indicates 
the group with the respective number of variants, and each line represents the intersection between groups. The set size is the overall number 
of variants
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of > 5% and < 95% (Fig.  4). Interestingly, it seems that 
tRNAs and control regions (CR) display higher hetero-
plasmy levels in healthy controls than in leprosy patients, 
while protein-coding genes have a prominent hetero-
plasmy variation in the BT subgroup with a widespread 
pattern in comparison with BL and LL in all OXPHOS 
protein-coding genes (MT-ND1, MT-ND2, MT-ND3, 
MT-ND4, MT-ND4L, MT-ND5, MT-ND6, MT-CYB, 
MT-CO1, MT-CO2, MT-CO3, MT-ATP6 and MT-ATP8).

Moreover, Fig. 5 shows that T pole and L pole present 
a different pattern of heteroplasmy levels, with L pole 
being more like healthy controls and T pole being more 
distant than these states. D-loop presents increased lev-
els of heteroplasmy in T pole when compared to L pole 
and HC, suggesting that the regulation of mitochondria 
might be altered in this unstable state.

Strikingly, MT-DLOOP1, MT-ND1 and MT-CYB have 
a much higher mean of heteroplasmy levels in the con-
trol group in comparison with the leprosy clinical forms; 
not as high, but the heteroplasmy mean levels of MT-
CO1 and MT-TG are also elevated when compared to 
the other groups. In T pole, it should be noted that the 

MT- DLOOP2, MT-TC, MT-ND3, MT-ND4L and MT-
TS2 also present a higher mean level than the other ana-
lyzed groups. Considering that T pole, represented by the 
BT subtype, is clinically more unstable than the L pole, it 
is not surprising to see multiple regions with increased 
heteroplasmy levels in this subgroup, indicating an active 
inflammatory process with different immune responses 
[45, 46].

Furthermore, by analyzing the overall presence of vari-
ants and their respective heteroplasmy levels in case and 
control groups, we found statistical significance in seven 
regions: one control region, one rRNA and five genes that 
encode Complexes I, III and IV (Fig. 6). In most of these 
scenarios, there were more heteroplasmic variants in 
leprosy patients than in healthy controls, reinforcing the 
idea that these variants may contribute to the process of 
susceptibility to leprosy.

When we considered only the category of mitochon-
drial regions (coding genes, CR, rRNA and tRNA), we 
found that all categories still presented statistical signif-
icance regarding the presence of heteroplasmic variants 
(Fig.  7). Notably, there are more variants in the case 

Table 3 In silico pathogenicity characterization of the variants found only in the leprosy poles

Genes Mutation Consequence dbSNP ClinVar

MT-RNR2 m.1786C > T Non‑coding transcript exon variant · ·

m.1752T > A Non‑coding transcript exon variant · ·

m.2008G > A Non‑coding transcript exon variant · ·

m.1986A > T Non‑coding transcript exon variant · ·

m.2001C > T Non‑coding transcript exon variant · ·

m.1981G > A Non‑coding transcript exon variant · ·

m.1992C > T Non‑coding transcript exon variant · ·

m.1773A > G Non‑coding transcript exon variant · ·

m.1779A > G Non‑coding transcript exon variant · ·

m.1980A > G Non‑coding transcript exon variant rs1556422588 ·

MT-ND1 m.4158A > G Synonymous variant rs1603219327 Benign

m.4248T > C Missense variant rs9326618 Benign

MT-ND5 m.13650C > A Synonymous variant · ·

m.13674T > C Synonymous variant rs1603224299 ·

m.12705C > T Synonymous variant rs193302956 ·

m.13263A > G Synonymous variant rs28359175 ·

MT-CO2 m.8027G > A Missense variant rs1116904 Benign

MT-CO3 m.9540T > C Synonymous variant rs2248727 ·

m.9950T > C Synonymous variant rs3134801 ·

m.9221A > G Synonymous variant rs367578507 ·

m.9545A > G Synonymous variant rs878853022 Benign

MT-CYB m.14783T > C Synonymous variant rs193302982 Likely pathogenic

m.14905G > A Synonymous variant rs193302983 Likely pathogenic

DLOOP1 m.16189T > C Upstream variant rs28693675 ·

m.16390G > A Upstream variant rs41378955 ·

m.16362T > C Upstream variant rs62581341 ·
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than in the control, and these variants have diverse het-
eroplasmy levels, particularly in the rRNA genes. This 
might reflect the relevant presence of heteroplasmic 
variants in Complexes I, III, IV, as well as in 16S rRNA, 
as shown in Fig. 6.

Discussion
Although leprosy is an important public health prob-
lem, it is still neglected and overlooked in research 
studies, in particular the mechanisms by which the host 
mitogenome can influence the profile of susceptibility 

Fig. 4 Heteroplasmy levels throughout the mitochondrial genome in healthy controls (HC) and case subgroups (BT, BL and LL). Each region 
category is color‑coded as indicated. The more to the center the boxplot points are, the lower the heteroplasmy rate, as well as the more external 
the points, the higher the heteroplasmy rate
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Fig. 5 Heatmap displaying heteroplasmy levels of different mitochondrial regions among the healthy control (HC) group and the case subgroups 
(BT, BL and LL). Similar patterns are clustered together
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to the disease, especially in the northern region of Bra-
zil [47].

Regarding the results of the analysis of the ancestry pro-
file of the individuals in the cohort, they were expected 
given the formation process of the Brazilian population 
and the fact that our cohort is from the North region of 
the country, in which the Native American ancestry is 
particularly frequent [48, 49]. Furthermore, the results in 
Fig. 1 suggest that Native American ancestry could have 
an influence on the development of different types of lep-
rosy subtypes, particularly BL, upon M. leprae infection 

and reinforced the analysis that mitochondrial ancestry 
might influence the developed pole.

As for the general distribution of variants illustrated in 
Fig.  2, no previous studies were found in the global lit-
erature with most of these. However, m.15837T > C has 
been identified in breast nipple aspirate fluid in breast 
cancer [50]. In addition, we only found a few variants 
with dbSNP identification, suggesting the remaining vari-
ants to be unreported in different databases. Consider-
ing three of these variants have been predicted to have 
a damaging potential, we recommend more studies to 

Fig. 6 Presence of heteroplasmic variants in control/unaffected (0) and case/affected (1) groups by region of the mitochondrial genome

Fig. 7 Presence of heteroplasmic variants in control/unaffected (0) and case/affected (1) groups by category of mitochondrial regions



Page 11 of 15de Souza et al. Human Genomics          (2023) 17:110  

clarify their impact in OXPHOS (Complexes I and V) 
that might affect disease processes such as leprosy.

It is important to emphasize that these exclusive muta-
tions are divided into five differential groups: MT-ND 
(MT-ND1, MT-ND2 and MT-ND5), MT-ATP6, MT-
ATP8, MT-CYB and MT-TE genes (Fig.  8). The MT-ND 
genes codify NADH dehydrogenase proteins, compos-
ing Complex I. This protein complex transfers the energy 
generated from the oxidation of NADH to NAD+ and 
the transfer of protons from the mitochondrial matrix to 
the intermembrane space through flavin mononucleotide 
(FMN) and seven to nine iron-sulfur (Fe-S) clusters for 
the reduction of ubiquinone, the first electron acceptor 
[51–54].

The NAD + generated by Complex I is used in numer-
ous metabolic reactions by NADH-linked dehydroge-
nases, including components of the fatty acid oxidation 
cycle. NADPH is a crucial reductant used in lipid anabo-
lism including synthesis of important components of the 
mycobacterial cell wall [54] and represents a major elec-
tron donor feeding the respiratory chain. Therefore, the 
NADH molecules generated by 3b-HSD activity could 
supply, at least in part, electrons to the respiratory chain 
contributing to M. leprae ATP synthesis [54].

The 3b-HSD activity generates the electron donors 
NADH and NADPH that, respectively, fuel the M. lep-
rae respiratory chain and provide reductive power for 
the biosynthesis of the dominant bacterial cell wall lipids 

and phenolic glycolipid (PGL)-I [55], the M. leprae-spe-
cific antigen first reported in 1980 [56], initially tested as 
a tool for leprosy serodiagnosis [57, 58], but also helping 
the diagnosis and prediction of relapses [59].

Unfortunately, PGL-I shows low ability to detect true 
positives, so it is now a well-known biomarker of M. lep-
rae exposition and has been used to recognize hidden 
leprosy cases [60]. Its association with molecular tools or 
spatial epidemiology is a strong tool to give direction to 
public policies that lead to an increase in the detection 
of cases among students and contacts of patients and 
that, if timely diagnosed, prevent the physical disability 
of patients, while also breaking the chain of transmission.

Mutations in the MT-ATP8 gene (a component of 
Complex V) have been described in reactive oxygen spe-
cies (ROS) generation [61]. The relationship between M. 
leprae and the increased damage caused by ROS remains 
unclear, but previous studies have suggested a correlation 
between bacillary load and oxidative stress [62]. Under 
chronic inflammatory conditions, ROS reduce activa-
tion signals to the T cell and impair the immune response 
against the pathogen [63]. However, the delicately main-
tained physiological balance of oxidative stress is changed 
in favor of ROS from phagocyte and by the treatment 
(multidrug therapy—MDT), both increasing produc-
tion of ROS [64, 65] and decreasing antioxidants [63, 66]. 
Recently, a study verified that elderly patients with lep-
rosy have higher ROS than younger patients [67].

Fig. 8 Impact of altered mitochondrial groups of genes in leprosy and their influences on the pathophysiological process of the disease, 
the viability of the pathogen in the organism, host homeostasis to the immune response and to the therapeutic response
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The MT-ATP6 gene encodes the ATP6 subunit of mito-
chondrial ATP synthase (Complex V), which catalyzes 
the last stage of the electron transport chain (ETC), a key 
molecular process for the normal axonal function of the 
central and peripheral nervous system [68, 69]. Muta-
tions in MT-ATP6 have been linked to episodic muscle 
weakness [70] and Charcot-Marie-Tooth axonal disease 
[71]. This disorder damages peripheral nerves and affects 
both sensory and motor nerves (nerves that trigger an 
impulse from contraction in muscles) in the arms, hands, 
legs and feet. Peripheral neuropathies form an inte-
gral part of the symptomatology of leprosy and include 
numbness, painlessness, anesthesia, hypoesthesia and 
patchy motor deficits, paresthesias (pins and needles), 
pain (allodynia and dysesthesias), impairment of tem-
perature perception followed by touch and pain; sensory 
loss, wasting and weakness gradually occur in involved 
nerve territories and partial involvement [72].

The MT-CYB gene codifies a subunit of cytochrome b 
oxidase (Complex III), involved in oxidative phosphoryla-
tion [73], and it has been described as less expressed in 
leprosy patients when compared to non-leprosy popu-
lation [74]. The M. leprae, like M. ulcerans, lost genes 
encoding cytochrome b oxidase [24] during reductive 
evolution, making M. leprae extremely sensitive to QcrB 
inhibitors, such as the drug Telacebec [75]. In this con-
text, it should be noted that the established MDT for 
leprosy was efficient in reducing most cases worldwide, 
but after 50  years of the same treatment regimen, the 
increase in resistant cases is the most critical problem 
[76]. Hence, QcrB inhibitors could represent a new class 
of bactericidal drugs for leprosy [77], due to their high 
potency against M. ulcerans [78].

The MT-TE gene belongs to the set of tRNAs encoded 
by mtDNA, being important for the biosynthesis of 
mitochondrial proteins and one of the major causes of 
disorders in the genome [6, 79, 80]. Pathogenic variants 
on mitochondrial tRNAs cause a wide range of disease 
phenotypes, with energy-intensive tissues such as neu-
romuscular and nervous tissues being particularly vul-
nerable, with progressive neurological deficits being the 
most prominent and often the most disabling feature of 
the disease [79, 81]. Mutations in the MT-TE gene have 
already been associated with the development of dia-
betes and myopathies, as well as early-onset cataracts, 
ataxia and progressive paraparesis [81, 82], but there are 
no reports in the literature about the variant found in our 
study.

Furthermore, when analyzing the distribution of vari-
ants after filtering, 26 variants stand out to be shared 
in both leprosy poles (Fig.  3). Overall, 16 variants pre-
sented identification in dbSNP (Table 3), but only three 
variants have already been described in the ClinVar as 

being associated with diseases, such as Leigh syndrome 
(m.8027G > A) and familial breast cancer (m.14783T > C, 
m.14905G > A). Two variants were characterized as mis-
sense, belonging to MT-ND1 (m.4248T > C) and MT-CO2 
(m.8027G > A) genes, both being OXPHOS regulators. 
Interestingly, no previous studies were found in the 
global literature on most of these variants.

The heteroplasmy analyses suggest that heteroplasmy 
across the mitochondrial genome can occur differently 
in each region depending on the affected or unaffected 
state and the clinical form that leprosy presents (Fig. 4). 
Therefore, heteroplasmy seems to influence the oxida-
tive environment in the development of this disease. This 
corroborates previous studies that suggested that the 
heterogeneity of mtDNA copies might increase during 
pathophysiological processes and might even be a poten-
tial target for therapies of different inflammatory diseases 
[6, 7, 14]. In leprosy, mitochondrial activity impairment 
and mtDNA content decrease have been reported, par-
ticularly in OXPHOS proteins [25]. This could be related 
to the observed widespread state of heteroplasmy, espe-
cially in the unstable BT clinical form.

The different profile of heteroplasmy between mito-
chondrial genes at the L, T and HC poles, demonstrated 
in Fig.  5, suggests that heteroplasmy may influence the 
type of host immune response to M. leprae. The response 
to leprosy can be classified into two main types: type 1 
reaction (T1R) or reverse reaction that occurs mainly 
in the unstable forms of the disease (BT, BB, BL) and in 
the TT form and the type 2 reaction (T2R) or erythema 
leprosy nodosis (ENL) that occurs mainly in BL and LL 
patients with high bacillary burdens [83, 84].

The different clinical manifestations of leprosy and the 
histopathology of the two polar forms of leprosy are also 
determined by the adaptive immune response, the clas-
sic paradigm being that the L pole is associated with a 
Th2 immune response and the T pole with a Th1 immune 
response [83, 84]. Our findings demonstrate that the het-
eroplasmic profile of the HC group is more like individu-
als belonging to the L pole, which suggests that this group 
tends to be associated with a Th2-type humoral response.

Recent studies have demonstrated that intact mito-
chondria from human plasma cells harbor immunologi-
cally active membrane-associated proteins, including 
CD270 and programmed cell death ligand 1 (PD-L1) 
[85]. In addition, intact human plasma mitochondria and 
immunologically active surface proteins have been asso-
ciated with upregulation of activated CD4 + T cells and 
CD8 + T cells and reduced concentrations of pro-inflam-
matory cytokines [85].

In this perspective, these results suggest that the rate 
of differential heteroplasmic mutations between genes 
may be influencing the dysregulation of mitochondrial 
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functions, which may induce a distinct immune response 
among individuals, dividing them in the clinical forms of 
leprosy. Importantly, it should be noted that, for many 
infectious diseases, host genetic factors have long been 
considered a major contributor to variations in individual 
susceptibility and immune response [84].

Conclusion
Here, we reported the whole mitochondrial genome 
sequencing of leprosy patients and healthy unrelated 
household controls from a Brazilian population. Impor-
tantly, this is likely to be the first study to report a clear 
association between mitochondrial heteroplasmy and 
leprosy. This unprecedented approach showed that a 
higher number of mitochondrial variants and diverse 
heteroplasmy levels are significantly found in the leprosy 
patients from our cohort, suggesting for the first time 
that the mitochondrial genome, and particularly hetero-
plasmy, may be involved in the inflammatory response 
observed in the peripheral nerve trunks and in the skin 
of leprosy cases, as well as in defining the immunologi-
cal response that determines the clinical polarization of 
leprosy.

Furthermore, we identified 26 heteroplasmic variants 
shared between the T and L poles that are present in the 
MT-RNR2, MT-ND1, MT-ND5, MT-CYB, MT-CO2 and 
MT-CO3 genes, suggesting that these genes may be cor-
related with the susceptibility and severity of leprosy. The 
infectious process of leprosy has a direct impact on mito-
chondrial functions, and their dysregulation is objectively 
involved in the pathophysiological process of the disease, 
in the viability of the pathogen in the organism, in the 
host’s homeostasis to the immune response and in the 
therapeutic response. Thus, further clinical studies with 
larger cohorts with sequencing of other tissues and/or 
functional studies regarding the found variants must be 
carried out to expand knowledge about the pathogenesis 
of M. leprae and its possible impacts on the mitochon-
drial genetic profile of affected individuals and, thus, sug-
gest potential biomarkers for leprosy.
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