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PERSPECTIVE

What is the functional reach of wastewater 
surveillance for respiratory viruses, pathogenic 
viruses of concern, and bacterial antibiotic 
resistance genes of interest?
Kevin J. Sokoloski1,2†, Rochelle H. Holm3*†, Melissa Smith4, Easton E. Ford1, Eric C. Rouchka4,5 and Ted Smith3 

Abstract 

Background Despite a clear appreciation of the impact of human pathogens on community health, efforts to under-
stand pathogen dynamics within populations often follow a narrow-targeted approach and rely on the deployment 
of specific molecular probes for quantitative detection or rely on clinical detection and reporting.

Main text Genomic analysis of wastewater samples for the broad detection of viruses, bacteria, fungi, and antibi-
otic resistance genes of interest/concern is inherently difficult, and while deep sequencing of wastewater provides 
a wealth of information, a robust and cooperative foundation is needed to support healthier communities. In addi-
tion to furthering the capacity of high-throughput sequencing wastewater-based epidemiology to detect human 
pathogens in an unbiased and agnostic manner, it is critical that collaborative networks among public health agen-
cies, researchers, and community stakeholders be fostered to prepare communities for future public health emergen-
cies or for the next pandemic. A more inclusive public health infrastructure must be built for better data reporting 
where there is a global human health risk burden.

Conclusions As wastewater platforms continue to be developed and refined, high-throughput sequencing 
of human pathogens in wastewater samples will emerge as a gold standard for understanding community health.
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Background
Human pathogens, despite being intimately intertwined 
with our communities in terms of human health, are 
often considered separately from the standpoint of 
human health risk [8, 11, 12, 15]. Indeed, commensal 
pathogens with dysbiotic potential, pathogens of oppor-
tunity, and true pathogens circulate within developed 
and developing communities alike, negatively impacting 
human health. Furthermore, the impact of pathogens 
on health continues to outpace human interventions, as 
antimicrobial resistance among bacteria, such as Staphy-
lococcus aureus, Escherichia coli, Streptococcus pneumo-
niae, Klebsiella pneumoniae, Pseudomonas aeruginosa, 
and Neisseria gonorrheae, and fungal pathogens, such as 
Candida auris, has sharply increased over the last several 
decades, leading to the emergence of multidrug-resistant 
pathogens [3, 6, 15]. In addition to the rise of antimi-
crobial-resistant bacteria, human and zoonotic viruses 
remain a significant threat to human health and can be 
surveilled in wastewater from livestock farms, wet mar-
kets, and their surrounding areas [19].

There is growing interest in whole-genome sequenc-
ing and metagenomics for public health surveillance [1, 
7, 9]. Despite a clear appreciation of the impact of human 
pathogens on community health, efforts to understand 
pathogen dynamics within populations have tradition-
ally followed a narrow, targeted, approach and relied on 
the deployment of specific molecular probes for quan-
titative detection or on clinical detection and reporting. 
Nonetheless, as established by recent targeted waste-
water approach efforts examining Polio [14] and further 
proven by analysis of Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) [18], wastewater-based 
epidemiology (WBE), which leverages high-throughput 
sequencing, is a robust and highly adaptable platform 
where specific pathogens, antimicrobial resistance genes, 
and viral pathogens may be simultaneously monitored. 
A mounting body of evidence indicates that pathogen-
associated nucleic acids, or whole pathogens themselves, 
are secreted at highly variable rates from the body in 
urine and/or feces, and these nucleic acids can be reliably 
qualitatively and quantitatively detected using molecu-
lar biology approaches [2, 16]. Therefore, as wastewa-
ter represents a cross-section of the community served, 
for pathogens where there is evidence of urine or fecal 
shedding of pathogen-derived nucleic acids, there is an 
opportunity to use wastewater as an anonymous pooled 
sample for genomic surveillance to provide a broad-scale 
overview of circulating respiratory viruses, pathogenic 
viruses of concern, and bacterial antibiotic resistance 
genes concurrently. Despite requiring specialized equip-
ment and expertise, high-throughput sequencing of 
wastewater samples for the specific purpose of broadly 

detecting human pathogens and antimicrobial resistance 
genes is essential to a holistic understanding of pathogen 
dynamics within a community. Nevertheless, translat-
ing wastewater sequencing data and WBE findings into 
meaningful public health actions requires the establish-
ment of cooperative relationships among scientists, pub-
lic health stakeholders, and the community.

The primary purpose of this article is to provide a 
broad overview and summary of a series of ongoing next-
generation sequencing wastewater pathogen surveil-
lance efforts at the University of Louisville and to provide 
insights into the lessons learned regarding the laboratory 
operations, transdisciplinary partnerships, and econ-
omy of scale of next-generation sequencing wastewater 
surveillance.

Main text
Laboratory operations
While wastewater sampling and analyses have been of 
interest from an environmental health standpoint for 
decades [13], recent global health events have re-estab-
lished interest in using wastewater to monitor human 
pathogens in developed and developing communities. 
Researchers have learned how to sample for SARS-CoV-2 
infection (e.g., the etiologic agent of COVID-19 disease), 
and the approach is the same for panpathogen genomics: 
a 125  ml raw influent wastewater sample with no pre-
servative collected by wastewater utility personnel from 
a piped sewer network at a treatment plant, intermediary 
pump station, or in-network neighborhood location. This 
is different from a U.S. Environmental Protection Agency 
[17] wastewater regulatory sample, but the COVID-19 
pandemic facilitated the building of relationships that 
enable wastewater for public health sampling and exist-
ing infrastructure that now universally applies to this new 
phase of wastewater genomics.

During the COVID-19 pandemic, high-throughput 
sequencing of wastewater collected from minor catch-
ments and aggregate wastewater treatment facilities was 
invaluable for understanding the genetic diversity of the 
pathogen in the community [10, 18]. Just as quantita-
tive real-time polymerase chain reaction (qRT‒PCR)-
mediated detection enabled a quantitative assessment of 
prevalence in the community, high-throughput sequenc-
ing revealed specific insights into the basal genetic 
diversity of the pathogen as it traversed the population, 
the timing and emergence of variants of interest/con-
cern, and the reemergence of strains with consequences 
to public health. Importantly, the genomic surveillance 
of the SARS-CoV-2 pandemic led to a broad interest in 
understanding the temporal-spatial dynamics of patho-
gens in a community using high-throughput sequenc-
ing platforms, as the information obtained during the 
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SARS-CoV-2-focused efforts proved vital to coordinating 
infection control responses of public health stakeholders.

As the intensity of the COVID-19 pandemic waned, 
researchers saw an interest arise in adapting the lessons 
learned from wastewater high-throughput sequenc-
ing efforts to better inform community health outside 
the pandemic context. In 2022, the University of Lou-
isville developed a list of human pathogens of interest 
for a wastewater panel (Additional file  1: Supplemen-
tal Table S1). Pathogens included as part of the analysis 
were either part of a commercially available respiratory 
panel or a result of consultation with a number of stake-
holders, including the University of Louisville Center for 
Predictive Medicine, the Louisville Metro Department of 
Public Health and Wellness, the University of Louisville 
Hospital, and the Kentucky Department of Public Health. 
Pragmatic considerations such as genome size and cross-
reactivity with nonpathogenic species were also part 
of the design process, which typically resulted in short 
gene products for bacterial species, toxin and pathoge-
netic factors for bacterial plasmids, and whole genomes 
for viral pathogens. Due to the prior establishment of 
meaningful cooperative and collaborative agreements 
between academic, private, and city government stake-
holders during the SARS-CoV-2 outbreak, the existing 
high-throughput sequencing efforts were readily able to 
qualitatively assess human pathogens using a tried-and-
true wastewater analysis pipeline (pun intended).

The adaptation of high-throughput sequencing to qual-
itatively assess nucleic acid signatures of other human 
pathogens in wastewater samples has both solved and 
created new challenges. Foremost, sample concentration 
and enrichment through either PEG-assisted precipita-
tion or aerogel capture is still necessary to assess anything 
other than the highly abundant wastewater-associated 
bacterial species. As high-throughput sequencing seeks 
to identify and compare nucleic acid sequences to whole 
reference genomes or cassettes of interest, the molecu-
lar target size for the detection of a given pathogen is 
much greater than that afforded by PCR-based detection 
modalities. In addition, as next-generation sequencing-
based detection does not strictly rely on the use of target-
specific primers and probes, the potential that a given 
pathogen remains undetected due to nucleic acid frag-
mentation or loss of integrity or the presence of sequence 
polymorphisms that interfere with primer or probe 
annealing is eliminated. Thus, high-throughput sequenc-
ing has a substantial advantage regarding the number of 
chances at detecting any given pathogen in a complex 
mixture. Nonetheless, challenges remain in the detection 
of a broad panel of pathogens in wastewater using a “one 
size fits all” or “one pot” approach that does not focus on 
specific pathogens of interest or consider the potential 

consequences of including (or rather failing to exclude) 
sequences known to be at excessive abundances.

During the establishment of the panpathogen waste-
water surveillance early experiences at the University of 
Louisville, it became readily apparent that fecal shedding 
bacterial pathogens and associated antimicrobial resist-
ance cassettes/genes were easier to detect than viral res-
piratory pathogens. A review of our collected wastewater 
data in conjunction with information provided by the 
local public health department revealed biases in detec-
tion arising from (i) the likelihood of incidence in the 
community and (ii) the fact that respiratory viruses are 
not shed in feces/urine at the same rates as gut bacteria 
carrying targeted toxins or antimicrobial content or other 
enteric viruses [2, 4]. For example, gut-associated bacteria 
such as Pseudomonas, Enterococcus, and Acinetobacter 
spp. were often among the highest detected sequences in 
terms of percent sequence coverage and depth of cover-
age. The overabundance of these sequences led us to clas-
sify these signals as “high-expected,” as they were highly 
represented in the dataset and reasonably anticipated, a 
priori, to be present in any given wastewater sample. A 
negative impact of including high-expected pathogens in 
wastewater surveillance efforts is that pathogens known 
to be in relatively high clinical prevalence in the com-
munity but not necessarily shed at high concentrations 
into community wastewater (such as respiratory syn-
cytial virus, as per the available clinical data for the city 
of Louisville) were underrepresented in our sequencing 
efforts due to the overconsumption of available sequenc-
ing capacity by the high-expected pathogens. Pathogens 
such as these were classified as “low-expected.” As such, 
in future work, it may be advantageous to split the sam-
ples into groups of pathogens that are anticipated to have 
high- or low-expected signals (in terms of sequence cov-
erage and depth) to enhance the limit of detection.

As reasonably anticipated from the fields’ experience 
with assessing SARS-CoV-2 prevalence using wastewa-
ter analysis, the depth of coverage and, in general, the 
sequence representation of a specific pathogen is likely 
to be dependent on the relative burden of that pathogen 
in the wastewater sample [10, 18]. For a given pathogen, 
the detection of contiguous sequences enables a degree 
of confidence in the detection of the pathogen,  the 
overall coverage and depth of coverage correlate with 
prevalence in the community, allowing for semiquan-
titative inferences to be made on a week-to-week basis 
within an individual community sampled area with-
out accompanying PCR or RT‒PCR quantification. 
With next-generation sequencing approaches, there is 
a concern regarding off-target hits arising from closely 
related pathogens or evolutionarily conserved sequences 
within pathogen families; however, a major strength of 
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high-throughput sequencing-based approaches is the 
capacity to review the resulting genomic data to gain 
confidence in, or refute, the detection event by compar-
ing the sequence information to databases of known 
sequence data, such as those curated by the National 
Library of Medicine National Center for Biotechnology 
Information (NCBI). However, the precise relationship 
between sequence coverage and incidence in the popu-
lation remains to be fully understood and likely varies 
across individual pathogens based on relative presence/
concentration, the molecular nature of the pathogen 
itself and how the rest of the targeted pathogens flux 
considering we have a total maximum sequencing depth 
(100 M reads) per run, so if one signal goes up, another 
signal must invariably go down. It is a balance between 
budgetary restrictions and the detection limit. This gen-
eral concept of how many infected individuals is needed 
to derive a threshold for genuine detection, or more spe-
cifically how many individual excretion contributors are 
needed to impact the signal-to-noise ratio within waste-
water genomics, remains at the forefront of many waste-
water analysis efforts and is an area of ongoing interest 
for many similar efforts worldwide. It is likely that empir-
ical observations for each pathogen will be needed to 
define specific limits of detection; however, as the rate 
and extent (e.g., number of particles/amounts of nucleic 
acid) of shedding undoubtedly differ from person to per-
son and shedding rates vary with respect to time, as evi-
denced by SARS-CoV-2 [2], highly accurate estimates of 
incidence and prevalence are likely to be unattainable in 
the short term.

Public health partnership and reporting
The benefit of the broad-spectrum perspective is to 
change from a narrow vision of notifiable diseases 
and  instead to utilize wastewater as an early disease 
warning for a community. For deep sequencing of 
wastewater to be impactful data for real-time public 
health action, there is a need to prioritize a detailed 
understanding of the wastewater data to hospitaliza-
tion burden in the local health care system; this may 
additionally vary based on regional environmental 
health factors as triggers. In the United States, the 
National Notifiable Disease Surveillance System tracks 
select infectious diseases using health professional 
reporting [5] but excludes many respiratory viruses, 
pathogenic viruses of concern, and bacterial antibiotic 
resistance genes of interest. For wastewater monitor-
ing to support public health, ground truth clinical data 
will always be required for reference and calibration. 
A more inclusive public health infrastructure must be 
built for better data reporting across a global human 
health risk burden. Reporting methods for respiratory 

viruses, bacterial pathogens and bacterial antimicro-
bial resistance genes are also not well standardized, and 
whether the relative presence and absence of qualitative 
information is strong enough to elicit a public health 
response warrants further debate. Advocacy to stand-
ardize the reported quantification of antibiotic resist-
ance genes in environmental samples  has just recently 
started [20]. Furthermore, the Centers for Disease Con-
trol and Prevention National Wastewater Surveillance 
System (NWSS) plans to expand to other targets on 
the PCR platform, but national panpathogen reporting 
methods for wastewater should be discussed in parallel. 
To date, we have reported sequencing data on presence 
and absence to public health stakeholders in a short 
PowerPoint presentation weekly.

Another variable constraint is the frequency of sam-
pling and the time-to-data required for meaningful 
impact on public health. While sampling frequency has 
been shown, for SARS-CoV-2 at least, to not significantly 
contribute to detection [18], other pathogens or emer-
gence events may be impacted by sample timing. Sec-
ond, data availability is a major factor influencing public 
health stakeholder decisions. The availability of wastewa-
ter sequencing data is dependent on the existence of the 
necessary instrumentation and personnel. With limitless 
resources, the minimal time from sample collection to 
data analysis and reporting could be within 3 days. None-
theless, as the instrumentation required for wastewater 
surveillance via next-generation sequencing constitutes 
a considerable investment, it is often shared with other 
academic or research endeavors, resulting in longer time-
lines. With the resources currently available to our group, 
we assess and interpret wastewater data within 2 weeks. 
Our rate-limiting factors are molecular enrichment and 
sequencing run times. Regardless, whether an increased 
frequency of sample collection, preparation, and has-
tened analyses will lead to healthier communities has 
yet to be demonstrated, and building a comprehensive 
network of pathogen surveillance is more meaningful at 
present.

Throughout the COVID-19 pandemic, stakehold-
ers have included health care providers, local health 
departments, and state and federal agencies, spanning 
disciplines from government to academia. Insights for 
public health action can be drawn from COVID-19 in 
that wastewater elicited a multidisciplinary team requir-
ing partnership at a local level with a sewer utility pro-
vider, an analysis laboratory, and subject matter experts 
for data interpretation across these stakeholders. For 
other infectious diseases, this framework might need to 
be adapted; the opportunity for human and animal health 
experts remains [19]. Where there are multiple targets 
for wastewater screening focus, the process of defining 
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stakeholders may be more complex than what has previ-
ously worked.

Economics of scale
Individual testing provides individuals with information 
about their own health that cannot be achieved through 
WBE. Additionally, the public health surveillance sys-
tem is often comprised of many pathogen-specific plat-
forms that operate without interconnectivity; these have 
included testing drinking water, swimming pools, foods, 
sentinel animal species, and field-collected insects, 
alongside a robust clinical reporting channel such as 
the National Notifiable Disease Surveillance System [5]. 
Using the wastewater matrix as a platform to deploy 
broad screening tools such as genomic sequencing intro-
duces significant economies of scale to the extent that a 
few microliters of nucleic acid from raw wastewater sam-
ples collected from a portion of the community can yield 
insights across many pathogen targets with geospatial 
and temporal context. We now have abundant evidence 
that a single wastewater sample can reflect a multitude 
of disease risks and passively capture many individuals’ 
health in the community with one sample. It is difficult 
to estimate the true economic value of this kind of broad-
spectrum screening testing because it is unlikely that 
clinical testing of communities would ever be conducted 
at the scale witnessed for COVID-19 for each individual 
target—yet genomic analysis of wastewater samples can 
deliver this scale of testing at a marginal cost over the 
testing for a single pathogen. With the proper resources, 
including automation, a goal for the future of this field 
would be to have a cost-effective sequencing platform on 
a chip that could rapidly and robustly detect and char-
acterize pathogens within 2–3 days, with easily custom-
izable targets and standardized reporting. While this 
goal will take considerable effort and time to realize, the 
importance of wastewater pathogen surveillance to local 
and global public health demands that resources be allo-
cated to meet this challenge.

During the COVID-19 pandemic, public health 
responses and scientific research received large invest-
ments from private and federal sources. As this robust 
support comes to an end, the Bipartisan Infrastructure 
Law (BIL), which includes $43.4 billion through the 
State Revolving Funds for the USA, may continue to 
help communities improve their water and wastewater 
infrastructure. However, how the resources afforded 
by the BIL apply to WBE is still undetermined. It may 
be beneficial to use the BIL to include planned infra-
structure improvements to also allow for future public 
health monitoring, such as convenient system compos-
ite sampling access points, which might be done during 
construction. Largely, this funding is provided as grants 

or principal forgiveness loans to disadvantaged com-
munities through Clean Water State Revolving Funds 
and Drinking Water State Revolving Funds. It would 
be advantageous to include WBE as a transdisciplinary 
component of the BIL to support the health of disad-
vantaged communities.

Conclusion
Wastewater sequencing efforts continue to be a leading 
approach toward understanding pathogen incidence and 
diversity within a population. This strategy enables the 
qualitative and semiquantitative assessment of patho-
gens of interest across kingdoms. As development and 
refinement of the platform continues, high-throughput 
sequencing of human pathogens in wastewater samples 
will emerge as a gold-standard diagnostic of community 
health. Future directions include the need to overcome 
the challenges posed by diversity in microbial communi-
ties and how shifting of the panopoly of diverse organ-
isms influences pathogen detection limits, defining 
transdisciplinary public health partnerships across mul-
tiple targets and working with public health and clinical 
partners to develop case studies of wastewater genomic 
sequencing leading to a public health outbreak response.
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