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Abstract 

Background It is valuable to analyze the genome‑wide association studies (GWAS) data for a complex disease 
phenotype in the context of the protein–protein interaction (PPI) network, as the related pathophysiology results 
from the function of interacting polyprotein pathways. The analysis may include the design and curation of a pheno‑
type‑specific GWAS meta‑database incorporating genotypic and eQTL data linking to PPI and other biological data‑
sets, and the development of systematic workflows for PPI network‑based data integration toward protein and path‑
way prioritization. Here, we pursued this analysis for blood pressure (BP) regulation.

Methods The relational scheme of the implemented in Microsoft SQL Server BP‑GWAS meta‑database enabled 
the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl‑defined 
SNP‑transcript associations, and GTEx eQTL data. The BP‑protein interactome was reconstructed from the PICKLE 
PPI meta‑database, extending the GWAS‑deduced network with the shortest paths connecting all GWAS‑proteins 
into one component. The shortest‑path intermediates were considered as BP‑related. For protein prioritization, we 
combined a new integrated GWAS‑based scoring scheme with two network‑based criteria: one considering the pro‑
tein role in the reconstructed by shortest‑path (RbSP) interactome and one novel promoting the common neighbors 
of GWAS‑prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria.

Results The meta‑database includes 6687 variants linked with 1167 BP‑associated protein‑coding genes. The 
GWAS‑deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP inter‑
actome contains 1443 additional, network‑deduced proteins and indicated that essentially all BP‑GWAS proteins 
are at most second neighbors. The prioritized BP‑protein set was derived from the union of the most BP‑significant 
by any of the GWAS‑based or the network‑based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI 
network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, fol‑
lowed in the top‑10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis 
of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP‑associated, 
extending our understanding about BP regulation.

Conclusions The implemented workflow could be used for other multifactorial diseases.
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Background
For more than a decade now, genome-wide associa-
tions studies (GWAS) have been an important method 
in genomic analysis, furthering our knowledge of the 
genetic basis of complex phenotypes through the identifi-
cation of hundreds to thousands associated genetic vari-
ants [1]. GWAS data are usually augmented by expression 
quantitative trait loci (eQTL) measurements, which iden-
tify variant-gene associations based on changes in gene 
expression [2]. Over the years, few publicly available 
general repositories of GWAS data over various pheno-
types have been developed, with GWAS Catalog being 
the most prominent resource as a collaborative effort of 
EMBL-EBI and NHGRI [3]. However, there is a lack of 
specialized GWAS meta-databases for specific diseases 
or complex phenotypes, developed based on a system-
atic mining of the large repositories and the literature 
over the associated traits, to provide a comprehensive 
resource for exploring the currently known genetic basis 
of the particular disease or phenotype. To date, new 
GWAS publications present mainly the newly identified 
loci for a particular phenotype, and there are a limited 
number of reported meta-analyses over phenotype-asso-
ciated variants or genes reported in multiple studies. 
Comprehensive specialized GWAS data collections will 
enable the prioritization of disease-related genes based 
on an extended set of criteria, including, apart from the 
associated p-value, the number of supporting studies and 
the number of identified variants per gene locus among 
others. Furthermore, disease-specific GWAS meta-data-
bases connecting GWAS with biological data will enable 
the direct integration of the GWAS measurements into 
high-throughput molecular phenotyping analyses of the 
particular pathophysiology [4].

Collecting and analyzing the full GWAS dataset for 
a particular complex phenotype is very important, 
as the specific physiology results from the combined 
inter-regulation of multiple interacting polygenic 
pathways, rather than the isolated effect of certain 
genes [5–7]. Hence, considering the GWAS-identified 
disease-related genes individually may explain only 
a small portion of the underlying molecular mecha-
nisms of the specific pathophysiology [8]. It is of value 
to upgrade the information content of GWAS data 
through their analysis in the context of biomolecular 
interaction networks [9]. Proteins being the main func-
tional and regulatory biomolecules, usually operating 

in interacting modules, the protein–protein interac-
tion networks provide a reliable representation of the 
interconnectivity between molecular functions [10, 
11]. In this context, protein–protein interaction (PPI) 
networks have been widely used in network medicine 
for the investigation of the molecular architecture of 
diseases and pathophysiologies through the collective 
analysis of genomic data [12–14]. Reconstructing the 
disease-associated protein interactome by reflecting 
comprehensive disease-specific GWAS data collections 
over the human PPI network provides a wider perspec-
tive of the involved molecular pathways, the combined 
deregulation of which could lead to disease conditions. 
Prioritization of proteins based on their position and 
role in the reconstructed disease-associated network 
can lead to more reliable risk factor indicators [15–17]. 
Furthermore, analysis of the GWAS-based network 
could direct to the identification of newly implicated 
genes through the underlying assumption of “guilt-
by-association” principle [18, 19], according to which 
genes involved in the same biological processes are 
more likely to be associated with the same or similar 
phenotypes.

Derailment of blood pressure (BP) regulation is asso-
ciated with a vast number of pathophysiologies, includ-
ing heart failure and cardiovascular diseases, stroke and 
renal failure [20]. Elucidating its genetic basis would 
have a positive effect in the development of diagnostic 
tools, effective therapeutic treatments and new drugs in 
a spectrum of diseases that affect a large portion of the 
human population. Many GWAS focusing on BP traits 
have been performed since 2007 and have revealed a 
high number of associated genetic loci [21–24]. How-
ever, no BP-specific GWAS database currently exists, 
collecting all this information into one resource. BP-
GWAS data have been analyzed in the context of PPI 
networks [25–27], but these studies are mainly based 
on one or few GWAS. A comprehensive BP-specific 
GWAS data resource, augmented with eQTL meas-
urements and involving information of variant-gene 
associations, could be a very useful tool in systems and 
network biology investigations to understand BP regu-
lation and related dysfunctions.

To this end, we aimed at developing a systematically 
literature-curated BP-GWAS meta-database, aug-
mented with cis-eQTL and gene-variant association 
data. Using the included information in an integrated 
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way, extended GWAS-based prioritization criteria for 
disease-associated genes can be considered. A second 
major objective of the study was to reconstruct the BP-
associated PPI network considering the comprehensive 
GWAS data collection and use it to identify new BP-
related genes. The extended GWAS-based network was 
used to identify important BP-related pathways and 
prioritize the proteins based on their position accord-
ing to network interconnectivity metrics.

Methods
GWAS data
Τhe GWAS Catalog database (https:// www. ebi. ac. uk/ 
gwas/) [3] was used as the main resource to retrieve 
BP-associated GWAS data, mining the spreadsheet files 
“All Associations”, “All studies” and “All ancestry data”. It 
is noted that for each single nucleotide polymorphism 
(SNP), GWAS Catalog records mainly the most signifi-
cant (i.e., with the lowest p-value) SNP-trait association 
from a particular study. Thus, for multi-stage studies, it 
may focus on the combined stage, skipping significant 
association p-values at other stages. In the same context, 
for BP multi-trait studies, only the trait with the most sig-
nificant association p-value is usually reported for a par-
ticular SNP. Thus, we proceeded to manually curate many 
large-study publications retrieved from GWAS Catalog 
along with some not reported in this repository at the 
time of BP-GWAS data collection, to extend the collected 
information from the literature. More specifically, for the 
manually curated publications, (i) we collected all sig-
nificant SNP—BP trait associations at each of the initial, 
replication and combined stages of multi-stage studies, 
(ii) we recorded all BP traits significantly associated with 
a particular SNP at any of the study stages and the cor-
responding p-values, and (iii) we collected all significant 
SNPs for each reported independent locus. The Manhat-
tan plot for the BP-GWAS meta-dataset was visualized 
using the R package qqman [28].

SNP genotypic information
SNP genotypic information was collected from Ensembl 
using the BioMart software suite [29]. The severity of the 
SNP-transcript consequences (GWAS-transcripts) was 
recorded as defined in Sequence Ontology (http:// www. 
seque nceon tology. org/) [30] and reported in Ensembl 
Variation database. The corresponding genes of the 
GWAS-transcripts (to be called GWAS-genes) were 
retrieved from Ensembl. In the rest of the text, BP-genes 
will be referred to by their gene symbol. The chromo-
some map for the recorded BP-associated SNPs was visu-
alized using the PhenoGram software tool [31].

eQTL data
Significant tissue-specific SNP-gene associations 
(q-value ≤ 0.05) based on cis-eQTL measurements were 
collected from the Genotype-Tissue Expression Portal 
(GTEx) v.8 (https:// gtexp ortal. org) [32, 33].

Human PPI network: PICKLE meta‑database
The human PPI network was retrieved from the Protein 
InteraCtion KnowLedgebasE (PICKLE) (www. pickle. 
gr) [10, 11, 34, 35]. The unique feature of PICKLE is that 
primary datasets of experimental PPIs are integrated on 
the genetic information ontology network of the Uni-
Prot/SwissProt-defined reviewed human complete pro-
teome (RHCP) (https:// www. unipr ot. org/) [36], without 
a priori transformations to a pre-selected genetic infor-
mation level. The PICKLE ontology network includes the 
associations between the RHCP UniProt IDs and their 
encoding genes and transcripts [34]. PICKLE reports 
three versions of the human PPI network, i.e., unfiltered, 
standard, cross-checked (default), with increasing experi-
mental reliability for the involved PPIs of being direct. In 
this study, we used mainly the default version, mention-
ing the cases where investigated PPIs or UniProt IDs are 
involved only in other versions. In the rest of the text, 
proteins will be referred to by their UniProt Entry Name 
(excluding the extension _HUMAN).

Network visualization and analysis
PPI network visualization was carried out using 
Cytoscape version 3.7.2 (https:// cytos cape. org/) [37]. 
Network analysis was carried out with the relevant 
Cytoscape plugin. The role of the nodes in a PPI network 
was also evaluated based on the “Integrated Value of 
Influence (IVI)” metric [38]. IVI combines six topological 
features of a node as follows:

where DC′
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′

indexi
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′
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′
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′
i are, respectively, 

the [1–100] min–max range-normalized, degree central-
ity [39], local H index [40], neighborhood connectivity 
[41], ClusterRank [42], betweenness centrality [39] and 
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parenthesis, DC′
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https://www.ebi.ac.uk/gwas/
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http://www.sequenceontology.org/
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and ClusterRank, and may reveal semi-local hubs of the 
network too. Τhe second part, 

(
BC′

i + CI′i
)
, reveals pro-

teins important in maintaining the connectivity of the 
network.

Gene/Protein Prioritization Threshold: In all cases of 
gene/protein scores or metrics, including IVI, unless oth-
erwise specified, the used threshold of significance for 
gene/protein prioritization is as follows:

where mean
(
Scorei=1,...,N

)
 and std

(
Scorei=1,...,N

)
 are, 

respectively, the mean and standard deviation of the 
Scores orMetric values of all (N) considered genes/pro-
teins and most significant are considered the genes/proteins 
with Score orMetric value ≥ Significance_threshold.

Pathway enrichment analysis
Pathway enrichment analysis was performed using the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) version 6.8 (https:// david. ncifc rf. 
gov/) [44, 45] and the pathway maps of Kyoto Encyclope-
dia of Genes and Genomes (KEGG) release 92.0 (https:// 
www. kegg. jp/), through KEGG mapper [46–48].

Drug–protein and gene–disease associations
Antihypertensive drugs targeting BP-proteins were 
mined from UniProtKB (as curated in PICKLE) and 
DrugBank version 5.1.4 (https:// www. drugb ank. ca/) [49]. 
In the latter, we searched for drug descriptions that con-
tained at least one of the “hyperten-” or “blood pressure 
reduction” text strings. OMIM (https:// www. omim. org/) 
[50], UniProtKB and GAD (as curated in DAVID) [51] 
databases were used to retrieve gene–disease associa-
tions for the BP-proteins.

Results
The workflow followed in this study, as shown in Fig. 1, 
includes: (1) the implementation of a systematically 
literature-curated BP-GWAS meta-database enriched 
with SNP-transcript associations and eQTL data, which 
was linked with the RHCP genetic information ontol-
ogy network of PICKLE augmented by gene–disease and 
drug–protein association data, (2) the reconstruction 
of the BP-associated PPI network using PICKLE, from 
the interactions between the proteins encoded by the 
GWAS-genes (to be called as GWAS-proteins), extended 
by the shortest interaction paths connecting all GWAS 
proteins into one component, and (3) the PPI network-
based integration of the GWAS and the functional data 
for pathway enrichment analysis and protein prioritiza-
tion. The latter was accomplished by a newly proposed 

(2)
Significance_threshold = mean

(
Scorei=1,...,N

)
+ 1.5std

(
Scorei=1,...,N

)

integration of a GWAS-based and two network-based 
criteria. The various steps of the workflow are described 
in detail below.

Implementation of the BP‑GWAS meta‑database
Relational scheme
The meta-database was designed as shown in Fig.  2, to 
systematically store BP-GWAS data and their attributes 
(GWAS-related ontology part), and include SNP-tran-
script associations and eQTL data (SNP genotypic infor-
mation part). The SNP–transcript associations link the 
GWAS data to the genetic information ontology network 
connecting genes, transcripts and proteins, and thus con-
sequently, to any type of biological, omic and functional 
data, including drug–protein associations, gene–disease 
associations and PPIs. In more detail, the two meta-data-
base parts are structured as follows:

GWAS‑related ontology part Each recorded SNP–trait 
association p-value is related to the study in which the 
association was identified and the publication report-
ing the study. In our ontology, each independent study is 
uniquely defined by a profile of attributes adapted from 
the GWAS Catalog data files, excluding thus any ambi-
guity about the study that revealed a SNP–trait associa-
tion in the case of multi-study publications. Furthermore, 
the GWAS meta-database can be queried for any com-
bination of study attributes to identify more specific BP-
GWAS data subsets. The unique study attribute profile 
comprises: (a) the analysis stage (i.e., initial, replication or 
combined); (b) the number of involved samples; (c) the 
ancestry profile of the involved individuals based on the 
GWAS Catalog-defined ancestry categories [52]; (d) the 
broader ancestry and the number of the concerned indi-
viduals; (e) the country/ies of the individuals’ recruitment; 
(f ) the country/ies of the individuals’ origin (if available); 
(g) the type of study (GWA or exome array study); (h) the 
genotyping array used; (h) the gender and age of the indi-
viduals (if any or both are specified in specialized studies), 
and (i) the statistical measure based on which the SNP–
trait association p-values are calculated.

SNP genotypic information part It is structured based 
on the relevant part of the Ensembl variation database 
scheme, and the information stored for each GWAS-iden-
tified SNP includes the chromosomal location, the minor 
allele, the global minor allele frequency and the transcript, 
regulatory and motif consequences. The transcript con-
sequences of a SNP (GWAS-transcripts) are assigned 
an Ensembl-defined severity score, using a scale from 1 
(most severe— “transcript_ablation”) to 35 (least severe—
“feature_truncation”). Intergenic SNPs, considered of the 

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.kegg.jp/
https://www.kegg.jp/
https://www.drugbank.ca/
https://www.omim.org/
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Step 3: BP-protein Functional Analysis and Integrated Prioritization

Human Protein 
Interactome

BP-GWAS Meta-database BP-GWAS Statistics

Integrated GWAS score

Human Genetic 
Information Ontology 

Network

BP-GWAS 
Data

BP-gene Prioritization

Step 1: Implementation of a Systematically Literature-curated BP-GWAS meta-database

Literature Curation

GWAS Catalog 

SNP-Gene
Data

cis-eQTL
Data
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transcript gene

protein

gene-disease
associations 

protein-drug
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defined RHCP

Step 2: Reconstruction of the BP PPI Network

GWAS-deduced
BP PPI Network

GWAS-Reconstructed by shortest path 
(GWAS-RbSP) BP PPI Network

Criterion 1

GWAS-proteins in one connected PPI 
component (BNs)
rest of GWAS-proteins in the human 
protein interactome (GNs)

Extending the GWAS-protein set by 
shortest path intermediates between BNs & GNs

Shortest-Path Intermediates (YNs)

Integrated BP-protein Prioritization
BP-prioritized protein set :

Union of Criterion 1-3 Prioritized sets 
ranked by number of satisfied criteria

The PPI Network 
of the Prioritized BP-proteins

p-value #Pubs#SNPs

Network Analysis & Metrics

Pathway Enrichment Analysis

BP-proteins as Antihypertensive 
Drug Targets

BP-proteins and their association 
with other diseases

Network-based BP-protein 
Prioritization

Criterion 3

Criterion 2

Promoting YNs if common neighbors to 
GWAS-prioritized proteins

Prioritizing BP proteins based on 
role/position in BP GWAS-RbSP PPI network

DrugBank, 
UniProtKB

OMIM, GAD 
UniProtKB

Design appropriate relational 
scheme

Fig. 1 The workflow of the integrated BP‑GWAS data and PPI network analyses
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lowest severity, are recorded separately. In this way, our 
meta-database can store all transcript consequences for 
the GWAS-identified SNPs, independently of their sever-
ity. This is a distinctive feature over other GWAS data col-
lections, usually storing only the most severe transcript 
consequence per SΝP. Recording all GWAS-transcripts 
enlarges the perspective of the BP-associated molecular 
physiology that can be extracted from GWAS. It also pro-
vides the ability for the user to only select the BP-associ-
ated transcripts above a particular severity threshold and 
investigate any potential variations in the derived infor-
mation about the investigated phenotype. Finally, our 
meta-database stores locally eQTL information for the 
GWAS-identified SNP-gene associations.

Importantly, as structured, the proposed meta-data-
base scheme is not specific to BP, but it is applicable to 
GWAS data collections of any multifactorial disease.

Populating the meta‑database with BP‑GWAS data
The GWAS-related part of the meta-database was 
populated with the SNP-BP trait associations with 
p-value <  10−5 and their attributes, as mined from: (i) 
the GWAS Catalog and (ii) manually curated BP-GWAS 
publications. GWAS Catalog “mapped” traits were 
identified as BP-related (Additional file  1: Table  S1), if 

comprising at least one BP-associated Experimental 
Factor Ontology term (EFO, https:// www. ebi. ac. uk/ 
efo/) (Additional file  1: Table  S2). Then, we mined all 
information from the 69 identified as BP-related pub-
lications as stored in GWAS Catalog, and proceeded 
to manually curate 22 more recent and larger of them 
and one additional publication not at the time curated 
by GWAS Catalog (Additional file  1: Table  S3), as 
described in Methods. In the eQTL measurement sec-
tion, we mined from GTEx any significant cis-eQTL 
association q-values, i.e. < 0.05, for the GWAS-iden-
tified SNP-gene pairs in tissues and their regions (27 
terms in total), considered to be involved in BP regula-
tion: the heart, artery, whole blood, kidney, adipose tis-
sue, brain, adrenal gland, thyroid, skeletal muscle, liver, 
and tibial nerve. The eQTL-significant genes (by any of 
the GWAS-identified SNPs) in a particular tissue or tis-
sue region will be referred to as eGenes in this tissue or 
tissue region.

The stored GWAS data were connected to the human 
genetic information ontology network via the GWAS-
transcripts (Fig.  2). The corresponding GWAS-genes 
were connected to diseases through relevant databases, 
and the PPI network reconstruction was based on 
the encoded GWAS-proteins, which were also inves-
tigated as drug targets (Fig.  1). The RHCP-included 

study publication

RHCP genetic information ontology 
network

gene

GWAS-related ontology part

SNP genotypic information (mined from Ensembl) part

transcript

SNP

transcript
consequence

UniProt ID

regulatory
consequence

eQTL 
consequence

intergenic
variation

trait

variation
feature

evidence evidence
attributes

PPI network
(mined from GTEx)

Fig. 2 The relational scheme of the BP‑GWAS meta‑database. The scheme comprises two parts: the GWAS‑related ontology part (bottom) 
and the SNP genotypic information part (top). The meta‑database is connected to the RHCP‑based genetic information ontology network 
of the PICKLE PPI meta‑database at the transcript and gene levels, through SNP–transcript consequences and eQTL measurements, respectively

https://www.ebi.ac.uk/efo/
https://www.ebi.ac.uk/efo/
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GWAS-proteins in the PICKLE PPI database ontology 
network were used to reconstruct the GWAS-deduced 
BP-protein interactome. The eQTL data were inte-
grated with the rest through the eGenes.

Statistics of the BP‑GWAS meta‑database
At the  SNP level The systematic curation of 70 BP-
GWAS research papers published since 2007 (Additional 
file 1: Table S3), involving more than 1.5 million samples 
from 14 ancestries and 212 independent studies, led to 
the collection of 7401 SNPs associated with BP trait(s) 
with p-value <  10−5 (Table 1). The collected SNP-BP trait 
association p-values sum up to 27,480, 98% of which are 
reported in the after 2016 publications (Additional file 1: 
Table S3). Notably, 95% of the p-values are from the 23 
manually curated publications. If the stricter, presently 
used, 5 ×  10−8 p-value significance threshold is consid-
ered, our dataset comprises 21,788 SNP−BP trait asso-
ciation p-values for 6687 SNPs. These data were acquired 
in 151 independent studies involving samples from 13 
ancestries, reported in 54 publications (Table  1, Addi-
tional file  1: Table  S3). In this narrower GWAS dataset, 
which will be used in the rest of the analysis as the signifi-
cantly BP-associated, 98% of the p-values were retrieved 
from the manually curated references. This indicates that 
the vast majority of the stored and analyzed BP-GWAS 
data are based on our systematic and extended mining of 
the BP-GWAS literature.

The 6687 BP-associated SNPs are distributed in all 
22 human autosomes with only two (rs141216986, 
rs6609273) in chromosome X and none in chromo-
some Y (Additional file  1: Table  S4). The vast majority 
of the SNPs are associated with at least one of the sys-
tolic or diastolic or pulse pressure measurement traits 
(6591) and are supported by at most two publications 
(5688 by one and 768 by two). Four SNPs were reported 
in 11 publications, i.e., rs17249754 (ATP2B1, 16 studies), 
rs11191548 (CNNM2, 14 studies), rs3184504 (SH2B3, 
13 studies) and rs1458038 (intergenic, 19 studies), and 
two SNPs in 10 publications, i.e., rs880315 (CASZ1, 16 
studies), rs13107325 (SLC39A8, 13 studies). The two 
SNPs supported by the maximum number (21) of inde-
pendent studies, i.e., rs167479 (RGL3) and rs16998073 

(intergenic), were reported in 6 and 9 publications, 
respectively.

About 56% (3738) of the significant SNPs have RHCP-
coding transcript consequences, while ~ 16% have only 
non-coding transcript consequence(s) and ~ 24% are 
intergenic (Additional file 1: Table S5). The 3738 SNPs are 
associated with 1167 RHCP-coding genes (Fig.  3; Addi-
tional file 1: Table S5; complete list in Additional file 2). 
The median of the minimum BP-association p-values of 
the RHCP-related SNPs is 2.2 ×  10−12 (Fig. 4). Half (585) 
of the 1167 RHCP-coding genes are associated with SNPs 
of minimum BP-association p-value smaller than the 
median (Fig. 5A, Additional file 2). This observation may 
indicate the 2.2 ×  10−12 p-value as a new stricter genome-
wide significance threshold for SNP-BP trait associations 
identified in GWAS, compared to the current generally 
considered 5 ×  10−8 value. Any further analysis will refer 
to the BP-associated RHCP-coding genes or transcripts.

At the protein‑coding gene level Among the RHCP-cod-
ing BP genes, ~ 41% are related with at least two significant 
SNPs, ~ 9% (101) with at least five and nine genes with 
more than fifty SNPs (Fig.  5B, Additional file  2). These 
9 genes are: ULK4 (Chromosome 3, 276 SNPs), ZNF831 
(Chromosome 20, 124 SNPs), FTO (Chromosome 16, 103 
SNPs), SLC4A7 (Chromosome 3, 85 SNPs), MSRA (Chro-
mosome 8, 82 SNPs), CLCN6 (Chromosome 1, 79 SNPs), 
PINX1 (Chromosome 8, 68 SNPs), CNNM2 (Chromo-
some 10, 59 SNPs) and CABCOCO1 (Chromosome 10, 58 
SNPs). For 9% (105) of the genes, the minimum BP-asso-
ciation p-value is smaller than  10−30, and for 18 genes it is 
smaller than  10−80 (Fig. 5A, Additional file 2). The smallest 
p-values encountered in our dataset correspond to SNPs 
associated with Ataxin 2 (ATXN2, p-value = 4.8 ×  10−180) 
and SH2B adapter protein 3 (SH2B3, p-value = 8 ×  10−180), 
both mapped on chromosome 12 (Fig. 4, Additional file 2). 
The association of ~ 45% of the RHCP-coding BP-genes is 
supported by at least two publications, for 13% (155) by 
at least four and for eight genes by more than ten inde-
pendent GWAS publications (Fig. 5C, Additional file 2). 
These genes are: ATP2B1 (Chromosome 12, 18 publica-
tions), CNNM2 (14 publications), CASZ1 (Chromosome 
1, 13 publications), ULK4 (13 publications), ARHGAP42 
(Chromosome 11, 12 publications), SH2B3 (11 publi-
cations), FES (Chromosome 15, 11 publications) and 
ZNF831 (11 publications). These observations indicate 
that while the vast majority of the BP-associated SNPs 
have been reported in a single publication, considering all 
significant SNPs per gene increases the reliability of the 
BP-association at the gene level as this is now supported 
by multiple publications and multiple SNPs.

Overall, 56 RHCP-coding genes can be considered as 
the most BP-significant set based on the GWAS data, as 

Table 1 The size of the curated BP‑GWAS dataset at two significant 
SNP–trait association p‑value thresholds

p‑value <  10−5 p‑value <  10−8

SNPs 7401 6687

SNP–trait associations 27,480 21,788

Publications 70 54

Independent studies 212 151



Page 8 of 34Tsare et al. Human Genomics           (2024) 18:15 

(20/-) (39/1) (55/6) (48/5) (67/2) (21/1) (46/3) (26/2) (12/-) (16/1)

NPR3

FBN2

ZFAT
TRAPPC9

MSRA
PINX1

CCN3
XKR6

MYH6

SLC14A2

ARVCF

INSR
DOT1L

RGL3

CFDP1
CDH13

FTO

ULK4

MECOM

SLC4A7

FGD5

ARHGAP2

GUCY1A1

SLC39A8

UGT

FGF5

HFE

COL21A

PLEKHG
ESR1

ZNF31 SUGCT

CDK6

NOS3

SLC24A3

ZNF831

AGT

CASZ1
MTHFR

NPPA
C1orf167
CLCN6

WNT2B
ST7L

CAPZA1

SDCCAG8

FN1

ANK2

CACNA1D

PRDM6

DBHEBF1

PHACTR1

VARS
EBF2

BORCS7

PFKM

JCAD

ABHD17C

PDILT

NMT1

VAC14

KCNK3

PDE1A

MBD5

CACNB21

CABCOCO
CTNNA3

ADRB1

PAX2
CYP17A1

PLCE1

NT5C2

AS3MT
CNNM2

NOX

ARHGAP42

CEP16

ADAMTS

SIPA1
LRRC10B

SBF2
SWAP70

TNNT3
LSP1

SOX6
PLEKHA

ATP2B1

HOXC6
HOXC4

SH2B3
ATXN2

PTPN11
NAA25

CUX2

COX14
CERS5

CSK
SCAMP2
LMAN1L

FURIN
FES

GOSR2

13 14 15 16 17 18 19 20 21 22 X Y

(112/10) (86/4) (69/5) (46/6) (47/4) (76/7) (63/3) (53/7) (34/1) (72/12) (83/12) (76/11)1 2 3 4 5 6 7 8 9 10 11 12
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they are in the top 10% with respect to all three GWAS 
attributes, i.e., they are related to at least five SNPs with 
a minimum p-value <  10−30 as reported in at least two 
publications. Chromosomes 1, 2 and 11 are the most 
enriched in BP-associated genes (Additional file  1: 
Table S4). Only 2% of the BP-associated genes are related 
to other BP-traits than the systolic (710), or diastolic 
(472), or pulse (418) pressure (Fig.  6, Additional file  2). 
Sixty-seven genes are associated with all three of these 
three traits. It needs to be noted, however, that the num-
ber of GWAS publications investigating pulse pressure is 
much smaller compared to those for systolic or diastolic 
pressure (Additional file 2).

eQTL measurements and  tissue specificity We discov-
ered that 665 (57%) out of the 1167 RHCP-coding genes in 
the BP-GWAS dataset were detected as eGenes in at least 
one of the 27 selected as BP-related tissues (Additional 
file 3). Thirty-eight of them are eGenes in more than 14 
tissues and one (AMH; Anti-Mullerian hormone) in all 27 
tissues. Οn the other hand, the tissues with more than 200 
eGenes are the artery tibial, the nerve tibial, the thyroid, 
the adipose subcutaneous, the artery aorta, the muscle 
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skeletal and the whole blood (Fig. 7). Finally, after flagging 
an eGene as significant in a tissue when exhibiting in this 
tissue its minimum q-value over the 27 tissues, the tissues 
observed with the highest number of significant eGenes 
were the whole blood, the artery tibial, the nerve tibial, the 
thyroid and the skeletal muscle (Fig. 7, Additional file 3).

Gene prioritization by integrated GWAS‑based criterion
Integrated GWAS‑based gene scoring scheme
The proposed gene scoring scheme is based on the com-
bined consideration of three GWAS data attributes: the 
gene association p-value with the GWAS-investigated 
phenotype, the number of significant SNPs per gene and 
the number of supporting GWAS publications. Thus, 
we propose an integrated score for gene i, si , defined as 
the weighted sum of these three GWAS-attribute values, 
p− valuei, #SNPsi, #Pubsi, [1–100] min–max range-nor-
malized (denoted by the symbol ̂ in Eq. 3):

wp−value , wSNP and wPub are the respective % weights of 
the three GWAS attributes.

(3)

si =wp−value ×

∣∣∣log( ̂p− valuei)
∣∣∣+ wSNP × #̂SNPsi

+ wPub × #̂Pubsi

Among the three GWAS attributes in Eq.  3, we con-
sider the p-value as being the most indicative for the 
association of a gene with the GWAS-investigated phe-
notype. While the number of significant SNPs per gene 
is also important, we consider it of lower weight for gene 
prioritization, because of the current, still consider-
ate, bias in these data. To our knowledge, until recently 
(2016) the researchers tended to report only the char-
acteristic SNP per locus [21], independently of which 
SNP(s) had been identified as significant. The weight for 
the number of independent publications supporting the 
association of a gene/locus with the investigated pheno-
type may be the lowest among the three factors in the 
integrated score, because GWAS publications usually 
report only the newly identified loci and skip information 
about confirmed loci that have already been reported in 
previous publications. As observed in the BP-GWAS data 
too, a vast number of GWAS-identified loci/genes tend 
still to be supported by a single publication. In this con-
text, our present suggestion is for the wp−value , wSNP and 
wPub to be, respectively, 45%, 35% and 20%. These rela-
tive weights may be re-evaluated in the near future, as the 
contribution of the above-mentioned biases diminishes 
with the progress of GWAS and genomic analyses.
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For the prioritization of genes based on their integrated 
GWAS-based score, we opted for the normal distribu-
tion-based lenient significance threshold of Eq. 4:

where mean
(
si=1,...,N

)
 and std

(
si=1,...,N

)
  are, respectively, 

the mean and standard deviation of all gene scores. Sig-
nificantly associated with the GWAS-investigated phe-
notype are considered the genes with scores equal to or 
greater than the cut-off value (Criterion 1).

The prioritized BP‑associated gene set by the integrated 
GWAS‑based score
The integrated GWAS-based scores for all 1167 RHCP-
coding BP-associated genes are shown in Additional 
file  2. Based on Eq.  4 significance threshold, the Crite-
rion 1-prioritized set includes 103 genes (~ 9%) (Table 2, 
Additional file 2), comprising all but one of the 56 genes 
identified in the top 10% for all three GWAS attributes 
combined in the integrated score. Namely, ULK4 (Unc-51 
Like Kinase 4,  sULK4 = 100) and ATP2B1 (ATPase Plasma 
Membrane  Ca2+ Transporting 1,  sATP2B1 = 99.5) exhibit 
the highest scores. Thirteen (13) genes have a score 
greater than 50.

The prioritized gene set is mapped on all human 
autosomes but chromosomes 13 and 21 (Fig.  3). Nota-
bly ~ 45% of the genes are mapped on chromosomes 1 
(10 genes), 10 (12 genes), 11 (12 genes) and 12 (11 genes) 
(Additional file 1: Table S4). Regarding the BP-traits, 47 
of the prioritized genes, including the highest scored 
ULK4 and ATP2B1, are associated with all three of the 

(4)scut−off = mean
(
si=1,...,N

)
+ std

(
si=1,...,N

)

systolic, diastolic and pulse pressure (Fig.  6, Additional 
file 2). Finally, 69 of the prioritized genes are also eGenes 
in at least one of the 27 BP-related tissues (Table  2, 
Additional file 3), with ULK4 supported by eQTLs in 25 
tissues.

The BP‑associated PPI network reconstruction
The GWAS‑deduced PPI network
In general, the GWAS-deduced PPI network comprises 
the PPIs between the GWAS-proteins. In our BP-GWAS 
meta-dataset, 1065 of the 1170 RHCP-proteins have at 
least one PPI of high-confidence of being direct (Addi-
tional file  4). Extracting their PPI subnetwork from the 
human protein interactome revealed one large compo-
nent of 672 GWAS-proteins connected through 1700 
PPIs (excluding self-interactions) (Additional file  1: Fig. 
S1A), with most of the rest 393 proteins as 1-mers or 
homo-dimers and very few in heterodimers (Fig. 8A). The 
BP-GWAS proteins in the connected component will be 
referred to as “blue” nodes (BNs) and the rest as “green” 
nodes (GNs) of the BP-PPI network (Additional file  4). 
The BN set comprises 372 eGene proteins (55%) and 55 
proteins (8%) encoded by GWAS-prioritized genes. The 
respective numbers in the GN set are 231 (59%) and 34 
(~ 9%) (Additional files 3 and 4).

The BN PPI network has a scale-free structure with a 
very good fit (R2 =  ~ 91%) (Additional file  1: Figs. S1B, 
C). P53 is the protein with the highest number of inter-
actions (68), followed by UBC9 (58), ESR1 (56) and 
FYN (43). The scale-free structure implies that BNs 
cover a wide range of protein degrees in the human PPI 

Fig. 8 The GWAS‑deduced (A), and the GWAS‑RbSP (B) BP PPI networks. Protein‑nodes are shown at their position in the force‑directed 
representation of the PICKLE human protein interactome. Nodes are colored based on their type: blue for GWAS‑proteins connected in one 
component (“blue” nodes, BNs); green for the rest of the GWAS‑proteins (“green” nodes, GNs) and yellow for the shortest‑path intermediates 
between GNs and BNs (“yellow” nodes, YNs)
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network, in a similar relative representation. Indeed, 
only seven BNs (1%), i.e., P53, ESR1, UBC9, FYN, TF65, 
KDM1A and SMAD3, are among the 65 protein-hubs of 
the human network with > 300 PPIs. The rest of BNs are 
from all degree zones of the human protein interactome, 
with ~ 24% having fewer than 11 PPIs (Additional file 4). 
The particular BN network structure supports the com-
plexity of BP regulation, which is connected to a variety 
of biological processes.

Extending the GWAS‑deduced PPI network 
by the shortest‑path approach
Starting from the hypothesis that BNs and GNs should be 
biologically associated, participating in related molecular 
processes in the context of BP regulation, we proceeded 
to investigate their relationship through the identifica-
tion of the shortest PPI paths that connect GNs to BNs 
into one connected network. Based on the BN-GN asso-
ciation rationale, there is a high probability for the inter-
mediates of these shortest paths to be BP-associated too 
(“guilt-by-association”) [18]. The shortest-path interme-
diates will be referred to as “yellow” nodes, YNs, of the 
BP PPI network. Hence, we can exploit the human PPI 
network to enrich the set of the GWAS-identified as BP-
associated proteins with the YNs and extend the GWAS-
deduced protein interactome with the YN–BN, YN–GN 
and YN–YN interactions, upgrading and expanding the 
information that can be derived from GWAS. Thus, the 
final protein set considered as BP-associated will con-
sist of the GWAS-proteins and the YNs. The extended 
PPI network, to be referred to as “GWAS-reconstructed 
by the shortest-path approach” (GWAS-RbSP), will be 
the corresponding subnetwork of the human protein 
interactome.

Following our proposed algorithm for the reconstruc-
tion of the BP-associated GWAS-RbSP PPI network, we 
identified 1443 shortest-path intermediates (YNs) (Addi-
tional file 4) and observed that almost all GNs are at most 
second neighbors of a BN, having a common YN neigh-
bor. This result validates our initial hypothesis of a close 
BN–GN relationship. Finally, the BP-associated GWAS-
RbSP PPI network comprises 2505 protein-nodes with 
31,439 PPIs (Fig. 8B), providing a considerable extension 
over the GWAS-deduced network of 672 BNs and 390 
GNs with 1700 BN–BN and 7 GN–GN PPIs. The GWAS-
RbSP interactome contains 15% and 17%, respectively, of 
the protein-nodes and PPIs of the human protein inter-
actome, including 62 (7 BNs and 55 YNs) of its 65 hubs 
(i.e., with > 300 PPIs), further supporting the BP-asso-
ciation with core biological processes (Additional file  1: 
Fig. S2A). The rest of the proteins cover all degree zones, 
with 22% (553) having fewer than eleven interactors in 
the human network (Additional file 4). Network analysis 

showed that the GWAS-RbSP PPI network follows a 
scale-free structure with a good fit (R2 = 83%) (Additional 
file 1: Figs. S2B, C), even though this had not been nec-
essarily expected due to the specialized way of this net-
work reconstruction. The observed scale-free form may 
be explained from the fact that the GWAS-RbSP PPI 
network is reconstructed “around” the scale-free BN 
network. The amyloid beta A4 protein (ΥΝ; APP) is the 
node with the highest number of interactions (376) in the 
GWAS-RbSP PPI network, while five more proteins have 
more than 200 interactors: UBC (YN), P53 (BN, BN net-
work hub), EGFR (YN), ESR1 (BN, GWAS-prioritized, 
BN network hub) and EP300 (YN) (Additional file 4). All 
six proteins are hubs (> 300 interactions) of the human 
protein interactome.

Prioritizing BP proteins based on their role in the extended BP 
PPI network
The role and position of the nodes in the GWAS-RbSP 
network were evaluated based on their IVI (Eq. 1). Using 
the cut-off of (Eq.  2), we IVI-prioritized (Criterion 2) 
106 proteins (22 BNs, 84YNs) (Table 3, Additional file 4). 
The most influential nodes of the GWAS-RbSP network 
were P53 (BN), UBC (YN), ESR1 (BN) and EP300 (YN); 
all other proteins have IVI lower than 60. Notably, ESR1 
is the only common protein with the GWAS-prioritized 
set; thus, combination of Criteria 1 and 2 extends the BP-
prioritized set to 208 proteins in total.

By the IVI definition (Eq.  1), the set of the IVI-pri-
oritized proteins of the BP PPI network was indeed 
expected to be mainly populated with the top-scored in 
the “hubness” feature of the IVI (Additional file 4). How-
ever, it is of value to mention the protein-nodes with the 
highest scores in the first and second part of the “spread-
ing” index (Eq. 1), as they may reveal specialized players 
in BP regulation, which are not directly apparent when 
only the comprehensive IVI of a protein-node is consid-
ered (Additional file  4). The four top-scored in the first 
“spreading” part, which reveals semi-local hubs too, are: 
SP1 (YN), MINY4 (BN), AKT1 (YN) and HIF1A (YN); all 
but MINY4 are in the IVI-prioritized set. The top-scored 
in the second part of the “spreading” index, which reveals 
proteins important in maintaining the connectivity of the 
network, are: A4 (YN), AQP6 (YN, not IVI-prioritized), 
F209A (YN, not IVI-prioritized) and GP152 (YN, not 
IVI-prioritized).

Prioritizing YNs through their association 
with GWAS‑prioritized proteins
The novel, second network-based prioritization criterion 
that we proposed promotes the YNs that are common 
neighbors of GWAS-prioritized proteins. More specifi-
cally, we identified the YNs that are common interactors 
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of any two of the 88 (55 BNs, 33 GNs) GWAS-prior-
itized proteins included in the GWAS-RbSP BP PPI net-
work, and then, we isolated the subnetwork of these 
YNs and their GWAS-prioritized neighbors (Additional 
file  1: Fig. S3). The protein-nodes of this final subnet-
work were considered prioritized according to Criterion 
3. They included 175 YNs and 78 (50 BNs, 28 GNs) 

GWAS-prioritized proteins (Additional file 5); 48 of the 
YNs were also IVI-prioritized (Criterion 2). The IVI-
ranking of the 253 proteins in this interactome is shown 
in Table 4. ESR1 (BN) is the protein with the highest IVI, 
followed by three YNs (AKT1, EGFR and CTNB1) with 
an IVI higher than 50. In total, only 15 proteins (ESR1 
and 14 YNs) had an IVI higher than the significance 

Table 3 The prioritized BP‑proteins according to their IVI in the GWAS‑RbSP BP PPI network (Criterion 2)

The Protein Entry Name by UniProt is shown without the _HUMAN extension; BN: “Βlue Node” denotes a BP GWAS-protein among those connected in one large PPI 
component; GN: “Green Node” denotes any other BP GWAS-protein of the human protein interactome, and YN: “Yellow Node” denotes a shortest-path intermediate 
between GNs and BNs

ESR1 is shown in bold as the only protein in this set that was also GWAS-prioritized (Table 2)

Rank Entry Name Node Type IVI Rank Entry Name Node Type IVI Rank Entry Name Node Type IVI

1 P53 BN 100.0 37 TRAF2 YN 21.9 73 HS90B YN 14.5

2 UBC YN 85.6 38 MK01 BN 20.5 74 1433G YN 14.4

3 ESR1 BN 63.9 39 PML YN 20.5 75 GSK3B YN 14.4

4 EP300 YN 60.6 40 HDAC2 YN 20.5 76 TIF1B YN 14.2

5 A4 YN 57.0 41 SMAD2 YN 20.2 77 KRA59 YN 14.2

6 EGFR YN 52.9 42 HDAC5 YN 20.2 78 FBW1A BN 13.8

7 AKT1 YN 47.8 43 ERBB2 YN 19.6 79 IKBA BN 13.7

8 BRCA1 YN 45.4 44 STAT3 BN 19.4 80 TRI27 YN 13.7

9 CBP YN 43.9 45 ARF YN 19.4 81 TAU BN 13.6

10 HS90A YN 42.5 46 SQSTM YN 19.0 82 PPARG YN 13.6

11 MDM2 YN 41.2 47 HXA1 YN 18.7 83 DISC1 YN 13.2

12 TF65 BN 41.0 48 TLE5 YN 18.7 84 ACTB YN 13.1

13 ANDR YN 40.2 49 P85A YN 18.6 85 LATS2 BN 13.1

14 1433Z YN 36.7 50 HSP74 BN 18.5 86 SYUA YN 13.1

15 MYC YN 34.8 51 KR108 YN 18.2 87 HDAC6 YN 13.0

16 SRC YN 34.2 52 1433 T YN 18.0 88 TNR1A YN 13.0

17 HIF1A YN 34.1 53 CALM1 YN 18.0 89 NCOR2 BN 12.8

18 CTNB1 YN 34.1 54 CALM2 YN 18.0 90 KDM1A BN 12.8

19 TRAF6 YN 31.7 55 CALM3 YN 18.0 91 UBE3A YN 12.7

20 UBC9 BN 30.5 56 RAF1 BN 17.9 92 NEDD4 YN 12.5

21 SP1 YN 29.1 57 IKKB YN 17.5 93 SIN3A YN 12.5

22 UBB YN 27.4 58 H31 YN 16.9 94 PTEN BN 12.3

23 HSP7C YN 27.0 59 KAT2B YN 16.8 95 LNX1 YN 12.1

24 ABL1 YN 26.0 60 H31T YN 16.6 96 XRCC6 BN 12.0

25 PARP1 YN 25.7 61 HDAC4 BN 16.5 97 LRRK2 YN 12.0

26 RL40 YN 25.0 62 NT2NA YN 16.2 98 M3K3 YN 12.0

27 GRB2 YN 23.4 63 NPM YN 16.1 99 UB2D1 YN 11.9

28 CHIP YN 23.1 64 FYN BN 15.9 100 DDB1 YN 11.8

29 GCR YN 23.0 65 CUL1 YN 15.8 101 SCNM1 YN 11.7

30 JUN YN 22.8 66 H4 BN 15.6 102 UB2D2 YN 11.6

31 SMAD3 BN 22.6 67 CDN1A BN 15.5 103 SUMO1 YN 11.6

32 CSK21 YN 22.3 68 CDK1 YN 15.4 104 TERA YN 11.5

33 NEMO YN 22.3 69 RB YN 15.3 105 PCNA YN 11.5

34 RS27A YN 22.3 70 1433E YN 15.2 106 ATL4 YN 11.5

35 SMCA4 YN 22.0 71 KAT5 BN 14.7

36 CRTP1 YN 21.9 72 H2AX YN 14.7
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cutoff of Eq. 2 (i.e., > 25), all of which were also IVI-pri-
oritized in the GWAS-RbSP PPI network. The next two 
highest ranked BNs are INSR and PTN11, in the 24th and 
25th positions, respectively.

Ranking the complete set of prioritized BP‑associated 
proteins
Overall, 335 BP-proteins were prioritized based on any of 
the three prioritization criteria (Fig. 1, Additional file 1: 
Fig. S4, Additional file 5), i.e., 103 proteins according to 
the GWAS-based Criterion 1, 106 proteins according to 
the network-based Criterion 2 and 253 proteins accord-
ing to the network-based Criterion 3. We proposed to 
rank the prioritized protein-set based on the number of 
satisfied prioritization criteria. ESR1 (BN) was ranked at 
the top as the only protein prioritized based on all three 
criteria, underlining its high ranking in the network-
based Criterion 2 (3rd) and Criterion 3 (1st) (Tables  2, 
3 and 4). Additional 77 (49 BNs, 28 GNs) GWAS-prior-
itized proteins (Criterion 1) had common YN interac-
tors (Criterion 3) and 48 YNs were prioritized by both 
network-based Criteria 2 and 3 (Table  4, Additional 
file  5). The rest 209 BP-proteins were prioritized based 
on a single criterion. In the protein group with two sat-
isfied prioritization criteria, we proposed to rank higher 
the 77 GWAS-prioritized proteins with common YN 
interactors compared to the 48 YNs prioritized by both 
network-based criteria. In both subgroups, the inter-
nal ranking was made according to the network-based 
Criterion 3. Finally, in the single criterion group, the 26 
GWAS-prioritized proteins (Criterion 1) were ranked 
higher than the 127 YNs of Criterion 3, leaving last the 
57 BP-proteins (BNs and YNs) of Criterion 2. Based on 
this ranking scheme, the nine proteins following ESR1 in 

the BP-associated top-10 are all GWAS-prioritized BNs: 
INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES 
and FINC (Table 5, Additional file 5). Interestingly, INSR, 
PTN11, CDK6, NOS3, FES and FINC emerged among 
the most BP-significant due to the network-based Crite-
rion 3, while in the GWAS-prioritized list ranked from 
position 14 (for FES), to position 91 (for FINC). INSR and 
FES are also supported by eQTLs in 5 and 10 BP-related 
tissues, respectively.

We observed that 93% (313; 74 BNs, 28 GNs, 243 YNs) 
of the 335 prioritized BP-proteins are connected through 

Table 5 The top‑10 BP‑prioritized proteins

The Protein Entry Name by UniProt is shown without the _HUMAN extension
BN denotes a Blue Node (BN) as described in the Notes of Table 3

✓ denotes a satisfied criterion

Protein Entry Name Gene Symbol Criterion 1 Criterion 2 Criterion 3 Overall 
Ranking

ESR1BN ESR1 ✓ ✓ ✓ 1

INSRBN INSR ✓ ✓ 2

PTN11BN PTPN11 ✓ ✓ 3

CDK6BN CDK6 ✓ ✓ 4

CSKBN CSK ✓ ✓ 5

NOS3BN NOS3 ✓ ✓ 6

SH2B3BN SH2B3 ✓ ✓ 7

ATP2B1BN ATP2B1 ✓ ✓ 8

FESBN FES ✓ ✓ 9

FINCBN FN1 ✓ ✓ 10

Fig. 9 The prioritized BP‑protein PPI network. Nodes are color‑coded 
as explained in Fig. 8. Node size corresponds to the IVI of the protein 
in the GWAS‑RbSP PPI network. The UniProt Entry Names (excluding 
the _HUMAN extension) of the protein nodes with the highest IVI are 
shown
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a network of 3868 PPIs (excluding self-loops), as shown 
in Fig. 9. From the 126 BP-proteins prioritized by at least 
two criteria, 111 (88%, 46 BNs, 17 GNs, 48 YNs) form a 
connected network of 642 interactions (excluding self-
loops). The genes of the 335 prioritized BP-associated 
proteins map on all chromosomes but Y, revealing chro-
mosomes 1, 12, 17 and 11 as the most enriched, with 33, 
25, 25 and 24 prioritized genes, respectively. In the group 
of the 126 BP-proteins backed by two prioritization cri-
teria, all chromosomes but Y are represented, with most 
enriched chromosomes 12, 1 and 11 with 13, 11, and 9 
genes, respectively. These observations further support 
the higher enrichment of chromosomes 1, 11 and 12 
in BP-associated genes, which was indicated from the 
GWAS-genes too.

Pathway enrichment analysis
Pathway and functional analyses were performed on 
the full set of the 2613 BP-associated proteins. KEGG 
pathway enrichment analysis indicated that about half 
of the BP-proteins belong to at least one of 314 KEGG-
defined pathways. Eighty-seven (28%) of these pathways 
are significantly enriched in BP-proteins according to 
DAVID (i.e., q < 0.05) (Table  6). The BP-enriched path-
ways include the dilated (DCM), hypertrophic (HCM) 
and arrhythmogenic right ventricular cardiomyopathy 
(ARVC) pathways, thirty (30) signaling pathways, among 
which the adrenergic signaling in cardiomyocytes and 
the PI3K-Akt, the Rap1, the cGMP-PKG, the cAMP, 
the HIF-1 (hypoxia-inducible factor 1) and the calcium 
signaling pathways, four (4) focal adhesion/axon guid-
ance-related pathways, the vascular smooth muscle con-
traction and the regulation of actin cytoskeleton pathway. 
The BP-associated ‘aldosterone synthesis and secretion’, 
‘renin secretion’, ‘insulin resistance’, ‘insulin secretion’ and 
‘thyroid hormone synthesis’ pathways were also identi-
fied among the significantly BP-enriched. Notably, the 
87-pathway list includes thirty (30) cancer or viral/bacte-
rial infection-associated pathways.

To investigate and validate the significance of the 
PPI network-deduced YN proteins in BP regulation 
and connect the protein interactome to BP functional 
information, we selected four of the significantly BP-
enriched KEGG-defined pathways, i.e., adrenergic 
signaling in cardiomyocytes (Fig.  10), HIF-1 signal-
ing (Fig.  11), cGMP-PKG signaling (Additional file  1: 
Fig. S5) and DCM (Additional file  1: Fig. S6), which 
have been directly associated with hypertension and/
or heart pathophysiology, e.g., [53–59]. The selected 
pathways integrate also parts of the PI3K-Akt, cal-
cium and cAMP signaling, the vascular smooth muscle 

contraction, insulin resistance, insulin secretion and 
renin secretion pathways. To investigate any BP-asso-
ciated metabolic mechanisms, we also considered 
the KEGG-defined “Metabolic Pathways” (Additional 
file  1: Fig. S7). In general, in 31 (~ 36%) of the 87 BP-
enriched KEGG pathways, YNs constitute more than 
65% of the involved proteins. In all cases, YNs enhance 
the statistical significance of the BP-association of the 
pathways, while pathways such as the HIF-1 signaling 
would not have been revealed as BP-enriched if only 
the GWAS-proteins had been considered. Moreover, 
there are numerous YNs, which are proteins of crucial 
role in BP-associated functional pathways, validating 
thus their BP-association and supporting the pursued 
network-based analysis of the GWAS data that revealed 
this association. Some characteristic ΥΝ examples are: 
HIF1A (central protein of the HIF-1 signaling pathway 
(Fig.  11)), ADRB2, GNAI1, GNAI3, GNAQ, ADΑ1A 
(proteins involved in the adrenergic signaling in cardio-
myocytes pathway (Fig.  10)), KAPCA, PPLA, TNNI3, 
TPM3, ACTC (proteins involved both in the adrener-
gic signaling in cardiomyocytes (Fig. 10) and the DCM 
(Additional file  1: Fig. S6) pathways), and LMNA and 
ACTB (proteins involved in the DCM pathway (Addi-
tional file 1: Fig. S6)). Furthermore, 39% of the proteins 
in the “Metabolic Pathways” are YNs, contributing to 
the elucidation of the steroid hormone synthesis, the 
biosynthesis of unsaturated fatty acids, the fatty acid 
elongation in mitochondria and the purine metabolism 
as BP-associated based on the GWAS data (Additional 
file 1: Fig. S7B). Not significant conclusions could have 
been made about these pathways if only the GWAS 
proteins had been mapped on the KEGG Metabolic 
Pathways (Additional file 1: Fig. S7A).

Pathway enrichment analysis of the 335 BP-prioritized 
protein group indicated similar enrichment as in the over-
all BP-protein set for the PI3K-AKT signaling, MAPK 
signaling, Ras signaling, focal adhesion, estrogen signal-
ing and regulation of actin cytoskeleton pathways. On the 
other hand, the BP-prioritized set showed higher enrich-
ment over the full BP-protein set in the thyroid hormone 
and neurotrophin signaling pathways.

BP‑proteins as antihypertensive drug targets
A total of 61 antihypertensive drugs were identified in 
DrugBank, targeting 34 BP proteins (13 BNs, 10 GNs, 
11 YNs) (Additional file 4), 8 of which belong to the pri-
oritized set (Additional file  5): PDE1A (BN), ADRB1 
(GN), CACB2 (BN), CAC1D (GN), JUN (YN), MTHR 
(GN), ADRB2 (YN), PPARG (YN). For the 11 YNs, which 
are antihypertensive drug targets, this is an additional 
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validation of their association with BP. Twenty-five out 
of the 34 proteins are involved in 47 BP-enriched KEGG 
pathways and seven (four uniquely) in “Metabolic Path-
ways”. Three antihypertensive drug targets, two in the 
prioritized set, are involved in at least 17 BP-enriched 
pathways: JUN (24), CAC1C (BN; 18) and CAC1D (17). 
On the other hand, the calcium and cGMP-PKG sign-
aling pathways are the most enriched with antihyper-
tensive drug BP-protein targets (i.e., 10 targets). ‘Renin 
secretion’, ‘cAMP signaling’, ‘Adrenergic signaling in 
cardiomyocytes’, ‘Vascular smooth muscle contraction’, 
‘Insulin secretion’ and ‘Oxytocin signaling pathway’ com-
plete the set of BP-enriched KEGG pathways involving at 
least 6 antihypertensive drug targets (Table 7).

Eleven BP-proteins are targeted by at least 8 drugs each, 
fifteen being the maximum number of drugs targeting 
one protein, ACE (BN) (Fig. 12A). The rest of the proteins 
(23) are targeted by at most 3 drugs and thirteen of them 
are targets of only one drug. At the pathway level, 20 BP-
enriched KEGG pathways and the “Metabolic Pathways” 
are targeted by at least 9 antihypertensive drugs (Table 7). 
Four pathways involve protein targets of at least 30 drugs: 

Renin secretion (45), cGMP-PKG signaling (39), calcium 
signaling (32) and cAMP signaling (30). The vast major-
ity (41) of the 61 antihypertensive drugs target at most 
two BP-proteins (Fig. 12B). Nicardipine, a calcium chan-
nel blocker (DrugBank ID:DB00622), has the maximum 
number of BP-protein targets (9), followed by clonidine, 
“an agonist of alpha-2 adrenoceptors” (DB00575) and two 
other calcium channel blockers, felodipine (DB01023) and 
nilvadipine (DB06712), which target five BP proteins each.

BP‑proteins and their association with diseases
Twenty-two of the 34 antihypertensive drug protein-
targets, i.e., nine BNs (one prioritized), 6 GNs (three 
prioritized) and seven YNs (two prioritized), have been 
associated with complex diseases by OMIM, including 
diabetes mellitus, insulin resistance, obesity, myocardial 
infarction, vascular abnormalities, heart failure associ-
ated syndromes, ischemic stroke and Alzheimer’s dis-
ease (Additional file 4). The proteins associated with the 
highest number of OMIM disease IDs are ΑCE (BN; 8), 
PPARG (YN; 8), MTHR (GN; 7) and KCJ11 (BN; 6).
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CREB1, CREB3
CREB3L1, CREB3L2
CREB5, ATF4
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PPP2CA*, PPP2R1A
PPP2R2A, PPP2R5E
PPP2R5A, PPP2R2D
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Fig. 10 The BP‑proteins in the KEGG‑defined adrenergic signaling in cardiomyocytes pathway and their PPI network. The BP‑proteins are shown 
(A) in the context of the KEGG pathway map, (B) with their gene symbols in respect to the numbered pathway map node symbols, and (C) in their 
subnetwork in the GWAS‑RbSP protein interactome. BP‑proteins in (C) are denoted by the number of the associated pathway map node. The 
color code in (A–C) indicates the protein‑type (BN, GN, YN) as explained in Fig. 8. The prioritized BP‑proteins are denoted with an asterisk in (B). 
Τhe proteins that are antihypertensive drug targets are indicated with a red eclipse in (A) and by their UniProt entry name in (C); the number 
of the targeting drugs is shown in parenthesis (Additional file 4)
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1 IL-6 IL6 7 RTK EGFR*, IGF1R*
ERBB2*, INSR* 13 PKC PRKCA, 

PRKCB* 19 CUL2 CUL2 25 ANGPT ANGPT2 31 ENO1 ENO1

2 IL-6R IL6R 8 MEK MAP2K1 14 PLCγ PLCG1* 20 CamK CAMK2B 26 EDN1 EDN1 32 Bcl-2 BCL2

3 TLR4 TLR4 9 ERK MAPK1*,MAPK3* 15 HIF-1a HIF1A* 21 p300CBP CREBBP*,
EP300* 27 eNOS NOS3* 33 p21/p27 CDKN1A*,

CDKN1B

4 STAT3 STAT3* 10 PI3K PIK3R1*, PIK3CA*,
PIK3R3 16 ElonginC ELOC 22 CD18 LTBR 28 ANP NPPA*

5 NF-κΒ RELA* 11 AKT AKT1*, AKT2 17 ElonginB ELOB 23 TF TF 29 PFKL PFKM*
6 GF IGF1 12 mTOR MTOR 18 Rbx1 RBX1 24 TFRC TFRC 30 GAPDH GAPDH

(B) 58% YNs

(C)(A)

Fig. 11 The BP‑proteins in the KEGG‑defined HIF‑1 signaling pathway and their PPI network. The BP proteins are shown (A) in the context 
of the KEGG pathway map, (B) with their gene symbols in respect to the numbered pathway map node symbols, and (C) in their subnetwork 
of the GWAS‑RbSP protein interactome. BP‑proteins in (C) are denoted by the number of the associated pathway map node. The figure 
is color‑coded and structured as described in the legend of Fig. 10

Table 7 The BP‑enriched KEGG pathways involving protein targets of at least nine antihypertensive drugs

BP‑enriched KEGG pathway Number of Antihypertensive drugs 
targeting pathway proteins

Number of Antihypertensive 
BP‑protein targets

hsa04924 Renin secretion 45 9

hsa04022 cGMP‑PKG signaling pathway 39 10

hsa04020 Calcium signaling pathway 32 10

hsa04024 cAMP signaling pathway 30 9

hsa04261 Adrenergic signaling in cardiomyocytes 29 8

hsa04270 Vascular smooth muscle contraction 25 6

hsa05410 Hypertrophic cardiomyopathy (HCM) 24 5

hsa01100 Metabolic pathways 23 7

hsa05414 Dilated cardiomyopathy (DCM) 21 5

hsa05142 Chagas disease (American trypanosomiasis) 16 2

hsa04911 Insulin secretion 13 6

hsa04540 Gap junction 12 1

hsa04921 Oxytocin signaling pathway 12 6

hsa04925 Aldosterone synthesis and secretion 12 4

hsa04010 MAPK signaling pathway 10 5

hsa04725 Cholinergic synapse 10 5

hsa04728 Dopaminergic synapse 10 3

hsa04912 GnRH signaling pathway 10 3

hsa04713 Circadian entrainment 9 2

hsa04720 Long‑term potentiation 9 1

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 9 4
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According to the Genetic Association Database (GAD) 
Resource (DAVID version), 78% of all the identified as 
BP-associated proteins have been related to diseases. 
About 80% of the disease-related BP-proteins have statis-
tically significant association (q-value < 0.05) with at least 
one of 100 GAD terms in total (Additional file 4), includ-
ing five terms directly associated with BP, i.e., “hyperten-
sion”, “blood pressure”, “blood pressure arterial”, “diastolic 
blood pressure” and “systolic blood pressure”. These five 
GAD terms are linked to 251 identified as BP-proteins  
from our analysis, i.e., 101 BNs (27 prioritized), 51 GNs 
(15 prioritized), 87 YNs (16 prioritized), 10 proteins (3 

prioritized) with PPIs of low experimental confidence of 
being direct and 2 proteins (1 prioritized) with no known 
PPIs (Additional files 4, 5). These observations further 
support the validity of the YNs and the proposed BP-pro-
tein prioritization scheme.

Six KEGG-defined pathways involve more than 20 
proteins related with the five BP-associated GAD terms: 
cGMP-PKG signaling pathway (28), Pathways in Cancer 
(26), Metabolic Pathways (23), calcium signaling pathway 
(21), cAMP signaling pathway (21), PI3K-Akt signaling 
pathway (21). Searching for potential comorbidities, we 
grouped the rest 95 BP-protein-enriched GAD terms in 
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12 wider phenotype clusters and found that 89% of the 
251 proteins linked to the five BP-related GAD term 
group have also been associated with at least one other 
phenotype than BP (Fig.  13, Additional file  4). Ninety-
four (42%) are linked to at least four other phenotype 
clusters up to a maximum of 11 for five BP-proteins, i.e., 
TNFA (YN), APOE (BN), IGF1 (BN), ACE (BN), MTHR 
(GN, prioritized). The phenotype clusters that involve at 
least 100 BP-proteins linked to the five BP-related GAD 
terms are ‘tobacco or alcohol use’ (136), ‘diabetes, meta-
bolic syndrome related’ (133), ‘neurological and mood 
disorders’ (103) and ‘heart failure related, cardiovascular, 
stroke’ (102).

Discussion
Introducing a BP‑GWAS meta‑database
In the present study, we implemented a BP-GWAS meta-
database comprehensively collecting BP-associated data 
from both the GWAS Catalog database and by manual 
curation of the literature, with the latter subset constitut-
ing the majority of the retrieved GWAS data. The design 
of our meta-database (Fig. 2) enables for a GWAS study 
to be uniquely defined by a set of attributes. In this way, 
it is possible to distinctly store data from various stud-
ies reported in the same publication. Moreover, from the 
manually curated publications, we collected all significant 
variants associated with a particular gene locus. Similarly, 
if multiple BP-traits had been investigated in a GWAS, 
we collected all significant association p-values of a vari-
ant with any of the traits. In this way, our meta-database 
provides a comprehensive collection of all BP-associated 
GWAS data, enabling the querying of the dataset based 
on any combination of stored parameters. Thus, we can 
evaluate the significance of the BP-association of SNPs or 
gene loci based on a combination of attributes, strength-
ening the reliability of the suggested information and of 
relevant SNP or gene prioritization schemes.

Through the SNP genotypic information part of our 
meta-database, the recorded SNPs are linked to all their 
transcript consequences along with their Ensembl-
defined severity score, widening the perspective of the 
BP-associated molecular physiology that can be extracted 
from GWAS. Our meta-database is designed to store 
locally eQTL measurement information, adding a sup-
porting feature for the BP-association of the GWAS-
identified SNPs and genes. At present, we have collected 
eQTL data from GTEx for 27 tissues considered to be 
involved in BP regulation. Through the human genetic 
information ontology network, one can now link the 
GWAS and the supporting eQTL data with any type of 
functional or omic data at various genetic information 
levels, including gene-disease and drug–protein asso-
ciations, and collectively analyze the GWAS information 

based on combinations of GWAS attributes and biologi-
cal criteria in the context of the associated biomolecular 
networks.

Among the main observations about GWAS-identified 
as BP-associated SNPs and genes enabled by the analy-
sis of our comprehensive BP-GWAS data collection, we 
note: (i) the suggestion of a new stricter genome-wide 
significance threshold for SNP-BP trait associations iden-
tified in GWAS, i.e., 2.2 ×  10−12, compared to the cur-
rent generally considered 5 ×  10−8 value, (ii) ~ 56% of the 
BP-SNPs are related to 1167 RHCP-coding genes, while 
24% are intergenic, (iii) 665 of the 1167 RHCP-coding 
BP-GWAS genes are also supported by eQTLs in any of 
the 27 selected as BP-related tissues, and (iv) the most 
enriched in BP-GWAS genes human chromosomes are 
1, 2 and 11. The genes ATXN2 and SH2B3, which are at 
the core of the 12q24 chromosomal region, have been 
identified with the lowest BP-association p-value. The 
particular locus has been GWAS-associated with many 
diseases, including hypertension and cardiovascular 
infarction, along with autoimmune diseases, like diabetes 
1 and hypothyroidism [60]. Loss of ATΧN2 function can 
lead to insulin resistance and obesity [61], while SH2B3, 
the SH2B adapter protein 3, has been causally associated 
with BP regulation [62].

Introducing a new gene prioritization criterion based 
on an integrated GWAS score
Having all this information collected in a meta-database, 
we possess a valuable tool that enables the creation of 
BP-gene prioritization schemes based on integrated 
GWAS scores, taking into consideration more GWAS 
data attributes in addition to the minimum SNP/gene-
trait association p-value, which has traditionally been the 
main prioritization criterion. These additional attributes 
include the number of significant SNPs per gene and the 
number of independent GWAS publications supporting 
the BP-association of a gene. In our newly proposed inte-
grated BP-gene association score equaling the weighted 
sum of these three GWAS attributes, we still allocate the 
maximum significance to the p-value, assigning a cor-
responding weight of 45%, followed by a 35% weight for 
the number of SNPs per gene and a 20% weight for the 
number of independent publications, as the vast major-
ity of the BP-genes are currently supported by at most 
two publications (Fig.  5). As GWAS evolve, the relative 
weight of the publication criterion could be increased 
and/or other criteria, including number of ancestries or 
eQTL measurements may also be considered in the com-
bined score to enhance the validity of the prioritization 
scheme.

Our proposed GWAS data-based metric prioritized 
103 RHCP-coding BP genes, of which 45 are mapped 
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on chromosomes 1, 10, 11 and 12, and 69 are sup-
ported by eQTLs (Table  2, Additional file  1: Table  S4, 
Additional file  3). The top-10 genes in decreasing 
score order are: ULK4, ATP2B1, SH2B3, ATXN2, 
ZNF831, CNNM2, CLCN6, MTHFR, CABCOCO1 and 
CSK (Table  2). Among these, seven (ULK4, ATP2B1, 
CNNM2, CLCN6, MTHFR, CABCOCO1, CSK) are also 
supported by eQTLs in at least two of the BP-related 
tissues (Additional file  3). Notably, ULK4 (unc-51 like 
kinase 4), ZNF831 (zinc finger protein 831), CNNM2 
(cyclin and CBS domain divalent metal cation trans-
port mediator 2) and CABCOCO1 (ciliary-associated 
calcium binding coiled-coil 1), would not have been 
in the top-10 if only the BP-association p-value had 
been considered, but emerge as prioritized based on 
the number of significant SNPs and/or the number of 
independent publications (Table  2). We underline the 
BP-association of ULK4, which is supported by a very 
high number of SNPs, independent publications and 
eQTL measurements in 25 of the 27 BP-related tissues, 
and was first identified by early GWAS studies [63, 64]. 
Even though ULK4 has been traditionally considered as 
BP-associated based on GWAS, as also documented by 
its inclusion in the BP-associated protein set of GAD, 
its biological role remains unclear. There has been evi-
dence that ULK4, a serine/threonine kinase, is respon-
sible for over 90% of total Ser/Thr dephosphorylation 
in eukaryotes [65]. Through its interaction with the two 
most abundant phosphatases PP2A and PP1α, ULK4 
regulates the expression of p-Akt and p-GSK-3α/β 
and may be involved in the remodeling of cytoskeletal 
components, participating in the regulation of neurite 
elongation and cell motility. ULK4 has been proposed 
to be a rare susceptibility gene for psychiatric disor-
ders, especially schizophrenia [65, 66]. The plasma 
membrane calcium-transporting ATPases as ATP2B1 
play a major role in maintaining intracellular calcium 
homeostasis [67], being thus directly associated with 
BP regulation. Deficiency of the divalent cation metal 
transporter CNNM2 has been causally associated with 
hypomagnesemia and BP deregulation [68]. CLCN6, 
the transmembrane chloride transport protein 6, has 
been for long associated with BP through GWAS, but 
the actual mechanism has been recently elucidated as 
its inactivation is associated with arterial stiffness and 
alterations of vascular smooth muscle contractility by 
changing calcium concentration in the Golgi apparatus 
[69]. Methylenetetrahydrofolate reductase, encoded by 
MTHFR, is the enzyme catalyzing the biosynthesis of 
folate, the homocysteine co-substrate in its conversion 
to methionine, essential in keeping the homocysteine-
methionine balance [70]. Its loss leads to increase in 
serum homocysteine, which has been associated with 

premature coronary disease [71] and cardiovascular 
risks in general [70]. MTHFR is an antihypertensive 
drug target. CSK suppresses the activity of Src-family 
kinases (SRKs) [72], and has been indicated as a key 
modulator of BP by influencing aldosterone production 
in adrenal gland [73] and vascular remodeling [74].

Reconstructing a protein interactome of BP regulation 
through a newly proposed method
Α major objective of our study was to upgrade the infor-
mation content of the BP-GWAS data by investigating 
their relationship and interconnectivity in the context of 
the human protein interactome. To this end, we mapped 
the protein products of the GWAS-identified as BP-
related genes on the human PPI network and observed 
that 91% are nodes of the network (Fig.  8A; Additional 
file 4). About two-thirds of the network proteins form a 
large interconnected component and were color-coded 
and named “blue nodes” (BNs), with the rest called 
“green nodes” (GNs). The top 1% BN protein nodes with 
respect to their degree in the BN network are P53, UBC9, 
ESR1 (GWAS-prioritized), FYN, HDAC4, SMAD3 and 
STAT3 (Additional file  4). Cellular tumor antigen p53 
(P53), along with HIF-1A/2A, have been associated with 
pulmonary hypertension [75] and demonstrated to have 
a regulatory role in cardiovascular pathophysiology [76, 
77]. UBC9-mediated sumoylation has been associated 
with good cardiac function and efficient protein quality 
control in cardiomyocytes [78, 79]. The role of estrogen 
receptor (ESR1) in BP and cardiac pathophysiology has 
been largely acknowledged in recent years through com-
bination of available evidence in various studies [80–82]. 
In cardiomyocytes, the SFK FYN has been identified as 
a negative feedback regulator of the GWAS-prioritized 
NADPH oxidase 4, NOX4 (GN), which produces ROS, 
with FYN expression being substantially decreased in 
failing human hearts [83]. The network-based elucida-
tion of both FYN and STAT3 as BP-significant proteins 
is functionally supported, as the SFKs inhibit the STAT3 
signaling, playing thus a significant role in vascular 
remodeling and pulmonary arterial vasoconstriction [84]. 
STAT3 has been largely discussed for its cardioprotective 
role [85, 86]. Histone deacetylase 4, HDAC4, has been 
identified as a crucial regulator of cardiac function [87], 
mediating vascular inflammation involved in the patho-
physiology of hypertension [88], and has been recognized 
to play a pivotal role in myocardial ischemia–reperfusion 
injury [89]. Finally, SMAD3, an intracellular signal trans-
ducer and transcriptional modulator, has been implicated 
in pulmonary arterial hypertension through vascular 
remodeling [90], cardiac fibrosis [91] and renal inflam-
mation and fibrosis [92].
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Considering that the GNs should be closely related to 
the BNs as both protein-sets are BP-associated based 
on GWAS, we proposed a new method of extending the 
GWAS-identified BP PPI network through the short-
est interaction paths bridging GNs to BNs into one con-
nected component. The “reconstructed by shortest path” 
(RbSP) BP PPI network (Fig.  8B, Additional file  1: Fig. 
S2A; Additional file  4) comprises 15% and 17%, respec-
tively, of the protein nodes and the interactions of the 
human interactome, including 62 of its 65 proteins with 
more than 300 interactions, underlying that BP regu-
lation involves a large number of pathways of human 
physiology. Indeed, the BP-related network confirms the 
close relationship between BNs and GNs as 98% of GNs 
are second neighbors to a BN. Furthermore, this observa-
tion strongly supports the BP-association of the “in sil-
ico” identified as BP-related shortest-path intermediates, 
named “yellow nodes” (YNs), as the vast majority of YNs 
are common neighbors of the experimentally identified 
as BP-related BNs and GNs (Fig. 8B).

Pathway‑enrichment analysis and the role 
of the network‑identified as BP‑related proteins (YNs)
The in silico identified ΥΝs extend the knowledge about 
BP regulation beyond the experimentally identified by 
GWAS. Any functional validation of the BP-association 
of YNs could further support our shortest-path approach 
to extend the BP PPI network beyond the GWAS data. 
First, YNs enhance the acquired information about BP-
related pathways as their presence substantially increases 
the number of functional KEGG-defined pathways 
that are identified as significantly BP-protein enriched; 
87 compared to 26 pathways when only GWAS pro-
teins are considered. Most of the 87 pathways (Table 6) 
have been strongly associated with BP regulation and/
or heart pathophysiology through functional studies, 
including the three cardiomyopathy-associated path-
ways, i.e., dilated cardiomyopathy (DCM) (Additional 
file  1: Fig. S6), hypertrophic cardiomyopathy (HCM), 
and arrhythmogenic right ventricular cardiomyopa-
thy (ARVC), the adrenergic signaling in cardiomyo-
cytes (Fig. 10) [55, 93, 94], the hypoxia-induced factor-1 
(HIF-1) pathway (Fig. 11) [95–99], the calcium signaling 
[100–102], the thyroid hormone signaling [103–105], the 
renin–angiotensin–aldosterone system/RAAS [106, 107], 
the insulin secretion and resistance [108–111] and the 
vascular smooth muscle contraction [112–114]. Notably, 
the main protein of the HIF-1 pathway, HIF-1A, is itself 
a YN and the pathway would not have been identified as 
significant, if the BP PPI network had not been accord-
ingly extended by the shortest-path approach.

Other functionally BP-associated signaling path-
ways that emerged as significantly BP-enriched based 

on the RbSP PPI network node-set, include: the phos-
phoinositide-3-kinase (PI3K)–protein kinase B (PKB/
Akt) signaling pathway [115–118], the cyclic adenosine 
monophosphate (cAMP) signaling pathway [119, 120] 
and the guanosine monophosphate (cGMP)-protein 
kinase G (PKG) signaling pathway (Additional file 1: Fig. 
S5) [54, 121]. These pathways encompass or intercon-
nect with pathways that have been directly associated 
with BP, such as the adrenergic signaling in cardiomyo-
cytes (Fig.  10), the calcium signaling pathway, the vas-
cular smooth muscle contraction and the DCM pathway 
(Additional file 1: Fig. S6). Notably, the cGMP-PKG sign-
aling, the calcium signaling, the cAMP signaling and the 
renin secretion pathways contain the highest number of 
antihypertensive drug targets (Table 7).

Crucial proteins in the aforementioned BP-related 
pathways are network-identified YNs. This observa-
tion adds to the validity of the PPI network analysis and 
our proposed way of extending the GWAS-deduced PPI 
network of BP and identifying the YNs. To support this 
last argument, we point out some characteristic exam-
ples of YNs with key role in BP-associated pathways. In 
the PI3K/AKT pathway, PI3K can be activated by mul-
tiple signals, including receptor tyrosine kinases e.g., 
EGFR (ΥΝ), INSR (BN), ERBB2 (YN), ERBB3 (YN) and 
IGF1R (YN) and cellular matrix components, leading to 
the activation of serine/threonine kinase AKT, including 
the isoforms AKT1 (YN) and AKT2 (BN). AKT regu-
lates the activation of downstream targets, such as mTOR 
(YN), GSK-3 (isoform GSK3B is a YN) and NOS (isoform 
NOS3 is a BN) [117]. m-TOR [122], GSK-3 [123] and 
NOS [124, 125] play a major role in cardiovascular home-
ostasis and any deregulation could lead to heart failure.

Regarding the cAMP and cGMP signaling, both cAMP 
and cGMP are major regulators of cardiac function, con-
tractility, and integrity [126]. cAMP, as the main sec-
ond messenger of beta-adrenergic receptor signaling, 
is formed in response to G protein-coupled receptors 
as ADRB1 (GN) and ADRB2 (YN) [119, 120]. Notably, 
ADRB1 and ADRB2, along with the ADRAs, ADA1A 
(YN) and ADA2A (YN), are targets of a large number 
of antihypertensive drugs (Fig.  12A; Fig.  10C; Addi-
tional file 1: Figs. S5C, S6C; Additional file 4). The cAMP 
response element-binding (CREB)-binding protein (CBP; 
YN) and its closely related paralog EP300 (YN) have been 
indicated to participate in vascular smooth muscle con-
traction [127] and skeletal muscle homeostasis [128]. 
CBP and EP300 interact with many proteins, including, 
P53 (BN; GWAS-prioritized), HIF-1A (YN), JUN (YN), 
FOS (YN), TYY1 (BN), TF65 (BN) and steroid receptors, 
including ESR1 (BN; GWAS-prioritized), glucocorticoid 
receptor (GCR; YN) and androgen receptor (ANDR; YN) 
[129]. JUN is an antihypertensive drug target (Additional 
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file  4). cGMP is formed in response to NO and natriu-
retic peptides, including the atrial natriuretic factor ANF 
(NPPA) (BN) and the brain natriuretic factor ANFB 
(NPPB) (BN), and has been shown to modulate hyperten-
sion via different mechanisms, as vasorelaxation or renin 
reduction [54].

Pathway enrichment analysis underlined the asso-
ciation of BP regulation with well-functioning cell–cell 
junctions, including adherens junctions, gap junctions 
and focal adhesions, along with the strongly related to 
cell junctions Hippo signaling pathway. Deregulation of 
intercellular interactions have been implicated in vascu-
lar and cardiac-related diseases, as discussed in detail in 
relevant reviews, e.g., [130–134]. CTNB1, the catenin-
beta 1 protein (YN), plays an important role in cell–cell 
junctions and is a key component of WNT signaling 
pathway [135]. Changes in the activity of the WNT/β-
catenin signaling pathway [136–138] and Hippo pathway 
[139, 140] have been associated with heart diseases and 
hypertension. Suppression of the Hippo and WΝΤ sign-
aling pathways mediated by the activation of EP300/p53 
pathway has been associated with severe deregulation 
of the apical junction in ARVC [141]. From the lipid-
modified WNT proteins, we encounter WNT3A (YN), 
WNT2B (GN; GWAS-prioritized) and WNT9A (GN) in 
the GWAS-RbSP PPI network. A recent review summa-
rizes the interplay between the WNT/β-catenin signaling 
pathway and the renin-angiontensin system (RAS) with 
PPARG (YN), a crucial member of lipid metabolism and 
antihypertensive drug target [142]. The functionally asso-
ciated with BP and/or cardiovascular physiology lipid 
metabolism was indeed revealed as BP-protein enriched 
based on the extended BP-protein set, with respect to 
the biosynthesis of unsaturated fatty acids [143–145], 
the elongation of fatty acids in mitochondria and the 
β-oxidation of fatty acids [146], along with the steroid 
hormone synthesis [147], and the purine/pyrimidine 
biosynthesis [148, 149] metabolic pathways (Additional 
file 1: Fig. S7B).

Introducing two network‑based criteria for BP‑protein 
prioritization
As the pathway analysis of the RbSP PPI network 
revealed processes that are indeed functionally supported 
as BP-related, with many of their crucial nodes being in 
silico identified YNs, we could trust the BP-association 
of the extended network and search for BP-protein pri-
oritization criteria in the network metrics. Regarding the 
BP-relation of A4 (YN), the most connected node of the 
GWAS-RbSP PPI network, recent studies have estab-
lished association between the progression of Alzheimer-
like pathology and hypertension [150, 151]. EGFR (YN) 
and EP300 (YN), which are among the RbSP PPI network 

hubs with more than 200 interactions are documented as 
BP-related by their involvement in the PI3K-Akt, cAMP, 
HIF-1A, and the calcium, thyroid hormone, Hippo, and 
WNT signaling pathways (Additional file 4).

In this study, we opted to analyze the role of each pro-
tein-node in the RbSP BP interactome and use this infor-
mation to develop a prioritization criterion, based on an 
integrated network metric, IVI, taking into considera-
tion additional node characteristics beyond the number 
of interactions (degree). The top-10 of the 106 IVI-pri-
oritized proteins are P53 (BN, BN network hub), UBC 
(YN), ESR1 (BN, GWAS-prioritized, BN network hub), 
EP300 (YN), A4 (YN), EGFR (YN), AKT1 (YN), BRCA1 
(YN), CBP (YN) and heat shock protein HSP 90-alpha 
(HS90A, YN) (Table 3). As mainly expected from the IVI 
metric definition, all but CBP belong to the top-21 of the 
degree distribution. It is the high IVI-spreading index of 
CBP that contributes to its IVI being in the top-10. We 
have already discussed that CBP, a protein-lysine acetyl-
transferase, interacts with many proteins as a major com-
ponent of the cAMP pathway. The role of the heat shock 
proteins in general, and the HSA90 molecular chaperone 
family, in particular, in cardiac homeostasis has been 
demonstrated through multiple studies, e.g., [152–157]. 
HSP90A interacts with many proteins including AKT1 
(YN), AKT2 (BN), ANDR (YN), NOS3 (BN, GWAS-pri-
oritized), GSK3B (YN), STAT3 (ΒN, ΒΝ network hub), 
P53 (BN) and HIF1A (YN), which have already been 
discussed as associated with cardiovascular pathophysi-
ologies and/or as members of BP-related pathways. The 
role of BRCA1 in BP has been argued in the context of 
the high cardiovascular disease risk of BRCA1/2 muta-
tion carriers [158] and the comorbidity of hypertension 
and breast cancer [159]. Other prioritized proteins that 
rank high in the IVI score distribution because of high 
spreading indices include SP1 (YN), HIF1A (YN) and 
TF65 (BN). SP1, a general transcription factor, is involved 
in the regulation of sarcoplasmic reticulum  Ca2+-ATPase 
(SERCA) pump in cardiomyocytes [160, 161].

Interestingly, most of the BNs, including TF65 (alter-
natively, NF-kappa B p65 subunit) and the BN network 
hubs UBC9, SMAD3 and MAPK1 (or ERK2), which are 
prioritized based on the IVI metric (19 of 22 in total), 
have a low ranking in the integrated GWAS score list, 
an observation further supporting the value of the net-
work-based analysis of the GWAS data. ESR1 is the only 
prioritized based on both criteria (Table  3, Additional 
file 5), while the IVI-prioritized BNs, P53 and IKBA rank 
slightly below the significance threshold of the GWAS-
based prioritization criterion. The NF-κB signaling path-
way has been linked to several heart pathologic processes 
[162]. TF65, in particular, promotes apoptosis in heart 
failure [163] and is required for the pressure overload 
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compensation by cardiomyocytes; in its absence, cardio-
myocytes fail to increase the expression of HIF1A (YN), 
the TF65 target protein [164]. Finally, the role of MAPKs 
in heart failure has been long known, e.g., [165–167].

Apart from the overall network metrics, as the degree 
or the IVI, we propose a novel network-based method 
to prioritize the in silico identified YNs, while still taking 
advantage of the information derived from the integrated 
GWAS-based prioritization scheme. Specifically, we 
assigned higher BP-relevance to the YNs that are common 
neighbors of GWAS-prioritized BNs and GNs, while the 
GWAS proteins gain additional credit from their involve-
ment in this network. The 253 protein nodes identified in 
this connected subnetwork of the RbSP BP interactome 
were IVI-ranked (Table  4; Additional file  1: Fig. S3) and 
the top ten (all IVI-prioritized) proteins are: ESR1 (BN, 
GWAS- and IVI- prioritized, BN and RbSP PPI network 
hub), AKT1 (YN), EGFR (YN, RbSP PPI network hub), 
CTNB1 (YN), UBC (YN, RbSP PPI network hub), BRCA1 
(YN), GRB2 (YN), A4 (YN, RbSP PPI network hub), SRC 
(YN) and EP300 (YN, RbSP PPI network hub). From the 
two proteins not in the top-10 of the IVI-prioritized, GRB2 
is essential for cardiac hypertrophy upon pressure over-
load [168] and atherosclerotic cell formation [169], while 
it ,also, induces cardiorenal syndrome type 3 [170]. SRC 
is required for mechanical stress (MS)-induced cardio-
myocyte hypertrophy [171] and activates various signaling 
pathways involved in cardiovascular diseases [172, 173].

Introducing an integrated BP‑protein prioritization scheme
In summary, the analysis of the collected BP-GWAS 
meta-dataset in the context of the human PPI network 
extended by the YNs enabled us to define one GWAS-
based and two network-based criteria for gene/protein 
prioritization with respect to their association with BP 
and determine three respective BP-significant protein 
sets (Fig. 1). The union of the three sets is proposed as the 
complete set of prioritized BP-proteins (Additional file 1: 
Fig. S4), ranked based on the number of the satisfied pri-
oritization criteria, formulating thus, an integrated BP-
protein prioritization scheme (Additional file 5).

Notably, the only protein satisfying all three criteria is 
ESR1, strongly supporting its BP-association, with this 
observation emerging as a major result of our study. ESR1 
has a very influential role in the BP RbSP PPI network, as 
it ranks very high in the network-based criteria (Tables 3 
and 4), while it is only in position 51 in the GWAS-prior-
itized list. ESR1 is one of the three predominant estrogen 
receptors, and has been long known to protect against 
hypertension [174, 175]. Nine GWAS-prioritized BNs 
(INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, 
FES and FINC) complete the top-10 BP-significant pro-
tein-set (Table  5, Additional file  5). The significant role 

of insulin receptors in cardioprotection has been dem-
onstrated through the activation of the PI3K-AKT and 
the Ras-MAPK signaling pathways [176], while the first 
genetic variation associated with essential hypertension 
was in INSR [177]. Deletion of PTPN11 has been shown 
to cause DCM, through loss of MAPK signaling pathway 
activation [178], while mutations of this gene have been 
associated with cardiac defects and insulin resistance 
[179]. CDK6, mainly discussed as an anti-cancer drug 
target, has been implicated in pulmonary arterial hyper-
tension [180], loss of its activity can lead to heart failure 
[181] and is a major regulator of atherosclerosis [182]. 
FES has been shown to play a protective role against ath-
erosclerosis [183]. Fibronectin (FINC, encoded by FN1) 
has a cardioprotective role, potentially through its con-
tribution to the formation of a functional vascular wall 
extracellular matrix [184].

Overall, the integrated BP-prioritized protein set pro-
vides a valuable resource of proteins suggested as BP-sig-
nificant according to quantitative criteria, which combine 
GWAS-based importance with the influential role of a 
protein in the topology of the PPI network, increasing 
thus the confidence in the validity of the prioritization. 
Interestingly, thyroid hormone and neurotrophin signal-
ing pathways have been identified of higher enrichment 
in the BP-prioritized compared to the overall BP-protein 
set, further supporting the association of these path-
ways with BP. Thyroid hormones regulate mechanisms 
underlying hypertension [103, 185]. Neurotrophins, as 
the brain-derived neurotrophic factor (BDNF; BN), have 
been directly linked to hypertension through the regula-
tion of angiotensin signaling [186, 187]. Recent studies 
causally implicate neurotrophins with Alzheimer’s and 
Huntington’s diseases [188]. Comorbidity analysis based 
on the BP-associated GAD ontology terms indicated 
higher comorbidity of BP deregulation with alcohol and 
tobacco use, diabetes and metabolic syndrome, neurolog-
ical and mood disorders, cardiovascular diseases, cancer, 
and renal failure, e.g., [189–192].

Conclusions
In this study, we introduced an integrated workflow for 
upgrading the information content of ΒP-GWAS data 
through PPI network analysis, starting from the develop-
ment of a systematically curated BP-GWAS meta-data-
base, combining GWAS data with their transcript effects 
and eQTL measurements, leading to their projection on 
the human PPI network. The information stored in the 
meta-database lead to the definition of an integrated 
GWAS-based prioritization criterion for BP-associated 
genes, considering not only the minimum SNP-trait 
p-value per gene, but also the number of BP-associated 
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SNPs per gene and the number of independent support-
ing publications. The projection of the GWAS data on 
the human protein interaction network revealed con-
nected and non-connected components, which we pro-
posed to link through shortest paths (GWAS-RbSP PPI 
network). Thus, we introduced a novel extension method 
for GWAS-based disease-related PPI networks, consid-
ering the intermediate nodes of the shortest paths (YNs) 
as also related to the investigated phenotype. Pathway 
enrichment analysis of the RbSP PPI network revealed 
BP-enriched pathways, indicating underlying mecha-
nisms and targets for drugs and therapeutic treatments, 
which were interpreted in the context of available func-
tional information. The role of each protein-node in the 
RbSP PPI network based on network metrics provided a 
second BP-protein prioritization criterion. A third pri-
oritization criterion proposed in this study revealed the 
YNs that are common neighbors of GWAS-prioritized 
proteins. The integrated BP-prioritization set was topped 
by the proteins satisfying at least two of the prioritiza-
tion criteria, ESR1 emerging as the most BP-significant. 
This analysis extends our knowledge about BP regula-
tion and could be effectively applied to GWAS datasets 
of any multifactorial disease. In the limitations of our 
study, we note that our results were obtained without 
making any distinction between the origin/ancestry pro-
file of the cohorts to which the combined GWAS data 
referred. At the moment, such distinction is expected to 
be biased toward the European origin, as this represents 
the vast majority of the GWAS cohorts. As GWAS data 
from other ancestries increase, such distinction, which 
is accommodated by the structure of our meta-database 
could lead to useful ancestry-specific results about BP. 
Furthermore, there may be a bias in the significance of 
the number of SNPs per gene criterion for certain genes 
in the integrated GWAS score, due to dependencies in 
the reported SNPs. Finally, the selection of the weights of 
the three gene attributes in the integrated GWAS score 
has been carried out based on the current relevant dis-
tributions of the GWAS genes. The relative weights may 
be modified in the future as more GWAS publications 
and/or information about independent SNPs becomes 
available.
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