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Abstract 

Background  The integration of transcriptomic, proteomic, druggable genetic and metabolomic association stud-
ies facilitated a comprehensive investigation of molecular features and shared pathways for cancers’ development 
and progression.

Methods  Comprehensive approaches consisting of transcriptome-wide association studies (TWAS), proteome-wide 
association studies (PWAS), summary-data-based Mendelian randomization (SMR) and MR were performed to iden-
tify genes significantly associated with cancers. The results identified in above analyzes were subsequently involved 
in phenotype scanning and enrichment analyzes to explore the possible health effects and shared pathways. Addi-
tionally, we also conducted MR analysis   to investigate metabolic pathways related to cancers.

Results  Totally 24 genes (18 transcriptomic, 1 proteomic and 5 druggable genetic) showed significant associations 
with cancers risk. All genes identified in multiple methods were mainly enriched in nuclear factor erythroid 2-related 
factor 2 (NRF2) pathway. Additionally, biosynthesis of ubiquinol and urate were found to play an important role in gas-
trointestinal tumors.

Conclusions  A set of putatively causal genes and pathways relevant to cancers were identified in this study, shed-
ding light on the shared biological processes for tumorigenesis and providing compelling genetic evidence to prior-
itize anti-cancer drugs development.
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Background
As  a prevalent chronic disease, cancer  arises from the 
uncontrolled proliferation of abnormal cells, posing a 
significant threat to human health. Statistically, there 
were nearly 19.3 million new cancer cases and almost 
10.0 million cancer-related deaths in 2020 [1]. Due to 
the complex and multifaceted mechanism underlying 
tumorigenesis, the treatment of cancers remains a chal-
lenge. Meanwhile, numerous ongoing clinical trials are 
assessing the efficacy of new drugs as cancer therapeu-
tics. Despite efforts, approximately 90% of drugs that 
progress into clinical trials ultimately fail, primarily 
due to insufficient efficacy or safety concerns. This con-
tributes to an astonishing average cost of $1.3 billion to 
complete the development and commercialization of a 
new drug [2–4].

Increasing evidence suggests that drug targets with 
genetic support usually exhibit a higher success rate 
in clinical trials and ultimately deliver more effective 
treatments to patients in need [5–7]. As a powerful 
research approach, Genome-wide association studies 
(GWAS) offer comprehensive genomic data, enabling 
researchers to investigate molecules and pathways 
involved in the development of diseases.

Some analysis methods based on GWAS data like 
transcriptome-wide association studies (TWAS), 
proteome-wide association studies (PWAS), sum-
mary-data-based Mendelian randomization (SMR) 
and colocalization have been widely used to inform 
potential drug targets, which present unprecedented 
opportunities to develop novel drugs for many complex 
diseases [7, 8]. In fact, some drugs developed based on 
genetic research, such as PCSK9 [9], CCR5 [10] and 
ACE2 [11], have already yielded successful outcomes, 
advancing the treatment of related diseases.

In this study, we sought to ascertain novel therapeutic 
targets for cancers with the multi-omics GWAS  data. 
An integrative analysis was adopted to investigate 
candidate genes for cancers at the transcriptomic and 
proteomic level. Utilizing eQTL and pQTL data, we 
performed TWAS/PWAS analysis separately to iden-
tify casual gene transcripts and proteins for cancers 
primarily. Then, SMR/MR, Bayesian colocalization 
and differential expression analysis were leveraged to 
further confirm above results. What’s more, drugga-
ble genomic and metabolic data were also included to 
enrich our research findings through MR analysis. Our 
study comprehensively prioritized candidate genes for 
cancers based on multi-omics genetic data, contribut-
ing to a better understanding of the potential mecha-
nisms and addressing challenges in the lengthy and 
costly process of novel drugs development.

Methods
Study design and ethics
The overall study design and methods are presented 
in Fig.  1. The included studies have undergone ethical 
review and obtained approval from review committees.

Outcome sources
GWAS summary statistics for cancers were extracted 
from the FinnGen R9 release. FinnGen study is a large-
scale study that combines genome information with 
digital healthcare data of 500,000 Finnish individuals, 
aiming to identify new therapeutic targets and diag-
nostics for treating numerous diseases through genetic 
research and improve human health [12]. Totally 16 
types of cancers were involved as outcomes in our 
study and details were presented in Additional file  1: 
Table S1.

TWAS (transcriptomics)
TWAS integrates GWAS and gene expression data 
to identify specific genes or genetic variants that con-
tribute to the observed trait or disease [13]. Functional 
Summary-based Imputation (FUSION), a widely used 
tool for TWAS analysis, establishes  precomputed pre-
dictive models from multiple studies to facilitate testing 
comprehensive associations throughout the transcrip-
tome (http://​gusev​lab.​org/​proje​cts/​fusion/) [13]. In 
this study, genes expression weights generated from 
Genotype-Tissue Expression Project version 8 (GTEx 
v8) serves as a reference framework to illustrate intri-
cate associations between Single nucleotide polymor-
phisms (SNPs) and genes expression, encompassing 
whole blood and corresponding organ tissue panels. 
1000 Genomes European samples (https://​data.​broad​
insti​tute.​org/​alkes​group/​FUSION/​LDREF.​tar.​bz2) were 
utilized to estimate the Linkage disequilibrium (LD) 
between the prediction model and the SNP at each 
locus of GWAS. Each gene experienced the permuta-
tion test for 2000 times by Z-test. Specifically, we set 
a Bonferroni-corrected threshold at P < (0.05/num-
ber of features) to mitigate the increased likelihood of 
false positive results that arises when conducting mul-
tiple statistical tests simultaneously (Additional file  1: 
Table S2).

SMR (transcriptomics)
As an extension and development of the concept of 
MR, SMR analysis tests whether the effect of SNPs on 
cancers is mediated through gene expression, prioritiz-
ing genes responsible for tumorigenesis. SMR analysis 
was conducted with the default settings through the 
command line interface (https://​yangl​ab.​westl​ake.​edu.​

http://gusevlab.org/projects/fusion/
https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2
https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2
https://yanglab.westlake.edu.cn/software/smr/#Overview
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cn/​softw​are/​smr/#​Overv​iew) [14]. The heterogene-
ity in dependent instruments (HEIDI) test was further 
employed to determine whether the identified associa-
tion between genes expression and cancers was attrib-
utable to linkage. The two-sided P < 0.01 in HEIDI test 
demonstrates that the correlation is most likely due to 
linkage [14].

Bayesian colocalization (transcriptomics)
To test whether the genetic associations with both 
identified genes and cancers shared the single causal 
variants, we employed colocalization analyzes for 
TWAS-significant and SMR-significant results [15]. 
All SNPs within 1 Mb range upstream and downstream 
of each leading SNP were included in this analysis and 
the posterior probability of H4 (PP.H4) > 0.8 indicated 
that identified genes colocalized strongly with cancers. 
We selected TWAS-significant, SMR-significant and 
PP.H4 > 0.8 genes as high confidence genes (HCG).

PWAS (proteomics)
The same FUSION workflow was applied for PWAS with 
the default settings and parameters. In this study, we 
analyzed 1348 circulating proteins from 7213 European 
American (EA) in the Atherosclerosis Risk in Communi-
ties study (http://​nilan​janch​atter​jeelab.​org/​pwas/), com-
bining the corresponding European ancestry sample LD 
reference [16].

MR (proteomics)
Two-sample MRs were performed to capture the 
causal associations between the plasma levels of pro-
teins and cancers risk refer to the study by Ferkingstad 
et  al. [17], containing 4907 different blood proteins 
measured in 35,559 Icelanders. The proteins with 
quantitative trait loci (pQTLs)− were involved in the 
MR analysis. Wald ratio was performed when a single 
pQTL was available for a given protein, and inverse 
variance weighted (IVW) was applied when multiple 
genetic instruments were accessible. Same as TWAS 

Fig. 1  Study design and flow diagrams. The transcriptomic, proteomic, druggable genetic and metabolomic association with cancers were 
recognized through comprehensive methods. 18 gene transcripts (TWAS-significant, SMR-significant and PP.H4 > 0.8), 1 protein-coding genes 
(PWAS-significant, MR-significant and PP.H4 > 0.8) and 5 druggable genes (SMR-significant and PP.H4 > 0.8) were included in phenotype scanning 
and enrichment analysis. Additionally, we conducted two-samples MR analyzes to identify 2 metabolic pathways significantly associated 
with cancers. TWAS transcriptome-wide association studies, PWAS proteome-wide association studies, MR Mendelian randomization, SMR 
summary-data-based Mendelian randomization, PP.H4 posterior probability that two traits are associated with a single causal variant, eQTL 
expression quantitative trait loci, GTEx v8 genotype-tissue expression project version 8, EA European American

https://yanglab.westlake.edu.cn/software/smr/#Overview
http://nilanjanchatterjeelab.org/pwas/
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analysis, we also performed colocalization to further 
screen the above results. PWAS-significant, MR-sig-
nificant and PP.H4 > 0.8 genes were defined as HCG.

Druggable SMR (genomics)
The druggable genome was defined as a collection of 
genes that encoded targetable proteins, including com-
pounds in clinical trials, approved medications and 
small compounds validated in preclinical experiments 
[18]. Focusing on this subset of genes, we aimed to 
identify further potential repurposing opportunities to 
inform trials of cancer patients. In this study, the cis-
eQTLs extracted from the eQTLGen Consortium were 
utilized to generate genetic instruments for druggable 
genome. Within 1  Mb on either side of the encoded 
gene, common (minor allele frequency [MAF] > 1%) 
cis-eQTLs that demonstrated a significant association 
(P < 5.0 × 10−8) with the expression of druggable genes 
were selected. Moreover, HEIDI tests and colocaliza-
tion were applicated in this section. We described the 
genes meeting the criteria of Druggable SMR-signifi-
cant and PP.H4 > 0.8 as HCG.

Metabolome‑wide MR (metabolomics)
In order to elucidate metabolic mechanisms underly-
ing tumorigenesis, we conducted metabolome-wide MR 
analyzes for 205 metabolic pathways on outcomes (Addi-
tional file 1: Table S18). Genetic data of metabolic path-
way was obtained from a genome-wide association study 
called Dutch Microbiome Project, aiming to demon-
strate the interaction between host genetics and micro-
bial composition and function [19]. To begin with, we 
employed a rigorous criterion (P < 1 × 10−5) to ensure a 
comprehensive outcome. All instrumental variables (IVs) 
subsequently underwent Linkage disequilibrium (LD) 
clumping (r2 = 0.001; distance = 10,000  kb) to mitigate 
the potential influence of SNP correlations. SNPs located 
outside the major histocompatibility complex (MHC) 
region (chr6, 26–34 Mb) were excluded. The F-statistic of 
the selected SNPs should exceed a threshold of 10.

Differential expression analysis
We further performed a differential expression analy-
sis to verify the role therapeutic targets plays in specific 
tumor. The transcriptome RNA-seq and clinical data for 
above genes were extracted from the Cancer Genome 
Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/) 
and GTEx (https://​gtexp​ortal.​org/​home/).

Phenotype scanning
Aiming to investigate possible health effects of HCG, 
we conducted phenotype scanning in MR analyzes with 
publicly available electronic health record data corre-
sponding to 1293 health-related endpoints (number of 
cases > 1000) in FinnGen Release 5. The Bonferroni cor-
rection is a common method designed to control the 
increased risk of a type I error when making multiple 
statistical tests. According to Bonferroni correction, the 
results with a P values less than 0.05/number of health-
related endpoints were considered to be significant. 
Hence, we reported all gene-trait associations significant 
under a Bonferroni-corrected threshold of P < 3.87 × 10−5 
(0.05/1293).

Enrichment analysis
Enrichment analysis were conducted to explore the 
shared mechanism contributing to cancers in the Metas-
cape database (http://​www.​metas​cape.​org/) [20], limiting 
the species to “Homo sapiens”, and setting the cut-off P 
value as 0.01 and min overlap as three.

Results
Transcriptomic association studies (TWAS, SMR, 
colocalization)
This study employed TWAS, SMR, and colocalization to 
impute robust gene expression signatures associated with 
cancers. TWAS analysis revealed significant associa-
tions between the expression of 151 genes and cancers in 
whole blood and specific organ tissues. Meanwhile,  SMR 
anaysis identified 52 genes whose expression in whole 
blood and specific organs tissue were associated with 
cancers. To test whether these genes and cancers shared 
the single causal variants, the TWAS-significant, SMR-
significant results were subsequently refined through 
colocalization analyzes. A total of 18 genes’ expression 
colocalized strongly with the cancers (PP.H4 > 0.80), 
which was recognized as HCG. HCG and detailed results 
were presented in Table  1 and Additional file  1: Tables 
S4–S8.

Proteomic association studies (PWAS, MR, colocalization)
Same as above analysis, a set of methods containing 
PWAS, MR, colocalization were employed to establish 
reliable protein-coding gene expression signatures asso-
ciated with cancers. Totally 17 protein-coding genes were 
identified through PWAS analysis in this study. Moreo-
ver, there were 6 protein-coding genes showing signifi-
cant results in MR analysis. Those that are significant in 
both two methods were selected to perform a colocaliza-
tion. Finally, only one protein-coding genes, PDCD6IP, 

https://portal.gdc.cancer.gov/
https://gtexportal.org/home/
http://www.metascape.org/
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colocalized strongly with the cancers (PP.H4 > 0.80) and 
was identified as HCG. Additional file  1: Table  S9–S11 
summarized the detailed information generated from the 
above analysis.

Druggable genome‑wide genetic association studies (SMR, 
colocalization)
Totally 2511 druggable genes’ cis-eQTLs were selected 
for drug-target SMR analyzes with a Bonferroni-cor-
rected threshold of P < 1.99 × 10−5 (P < 0.05/2511). Totally 
10 druggable genes was identified to have association sig-
nals with cancers through SMR analysis but only half of 
them had high support for colocalization with cancers, 
demonstrated by Table 2 and Additional file 1: Table S13 
and S14. Decreased expression of “APOBEC3A” (OR 0.85; 
95% CI 0.80–0.89; P = 1.51 × 10−9) and “NEK10” gene (OR 
0.21; 95% CI 0.11–0.40; P = 1.69 × 10−6) were observed to 
be associated with the lower risk of   breast cancer. How-
ever, decreased expression of “GPX1” (OR 2.35; 95% CI 
1.63–3.39; P = 5.42 × 10−6) and “THBS3” (OR 1.50; 95% 
CI 1.30–1.73; P = 3.30 × 10−8) were found to be associ-
ated with the higher risk of lung cancer and gastric can-
cer. Significant associations between the expression of 
“CASP9” (OR 0.66; 95% CI 0.54–0.79; P = 1.32 × 10−5) 
with kidney cancer were also mentioned.

Metabolomics association studies (MR)
As shown in Table 3, the result showed a significant asso-
ciation between urate biosynthesis and biliary cancer 
(OR 2.77, 95% CI 1.80–4.26, P = 3.30 × 10−6) at a Bonfer-
roni-corrected threshold of P < 2.44 × 10−4 (P < 0.05/205). 
Notably, the ubiquinol biosynthesis was found to be 
significantly associated with multiple gastrointestinal 
tumors like pancreatic cancer (OR 1.49, 95% CI 1.31–
1.70; P = 1.26 × 10−9), liver cancer (OR 0.51, 95% CI 0.41–
0.65; P = 2.10 × 10−8) and biliary cancer (OR 0.72, 95% CI 
0.62–0.84, P = 2.37 × 10−5). The information of instru-
mental variable and results were illustrated Additional 
file 1: Tables S19 and S20.

Differential expression analysis
The results suggested that investigated genes have sig-
nificant differential expression in specific tumors com-
pared with normal tissues except for “APOBEC3A” and 
“NEK10”. However, the analysis conducted solely based 
on TCGA has yielded a reverse result, with these two 
genes marked as strongly significant genes to induce the 
breast cancer. The box plots of differential expression 
were illustrated in Additional file 2: Figs. S4–S7.

Phenotype scanning
To investigate the potential impacts of pharmacologi-
cally targeting on our genetically identified genes, we 
carried out MR analyzes with a Bonferroni-corrected 
threshold of P < 3.87 × 10−5 in FinnGen Release 5 data-
bse. SNPs located near genes, EEFSEC and TPCN2, 
were found to be associated with increased risk of 
asthma, autoimmune and inflammatory diseases. Con-
versely, SNPs located near gene, GPX, were associated 
with decreased risk of gastrointestinal-related diseases, 
such as inflammatory bowel disease and ulcerative 
colitis (Additional file  1: Table  S15).  Figure  2 summa-
ries the workflow of phenotype scanning on candidate 
genes. 

Enrichment analysis
Functional enrichment analysis contributes to sum-
marizing the common mechanisms underlying cancers 
development. Identified genes were mainly enriched in 
nuclear erythroid factor 2-related factor 2 (NRF2) path-
way, regulating the cellular antioxidant response (Addi-
tional file 1: Tables S16 and S17, Additional file 2: Fig. 
S8).

Discussion
In this study, we are committed to leveraging genetic 
data to picture the molecular characteristics and path-
ways associated with cancers. Through a variety of 
analytical methods, we jointly target 24 genes (18 tran-
scriptomic, 1 proteomic and 5 druggable genome-wide 
genetic) and NRF2 pathway significantly associated 
with tumorigenesis. Furthermore, two metabolic path-
ways  (PWY.5695..urate.biosynthesis.inosine.5..phos-
phate.degradation and UBISYN.PWY..superpathway.
of.ubiquinol.8.biosynthesis..prokaryotic) were high-
lighted to be associated with the increased risk of gastro-
intestinal cancers.

In gene transcripts analysis, some results were con-
firmed by previous studies. As a glycosylphosphatidylin-
ositol-anchored cell surface protein, PSCA is known to 
play a key role in intracellular signaling and tumor pro-
liferation [21]. Indeed, the application of CAR NK cells 
targeting PSCA has exhibited extraordinary effectiveness 
in treating metastatic pancreatic cancer [22]. Nonethe-
less, there remains few studies regarding the association 
between gastric cancer and PSCA, warranting further 
investigation. Additionally, Iroquois-class homeodomain 
protein (IRX4) isoforms was identified to induce dis-
tinct functional programming, thereby contributing to 
suppressing the progression of prostate cancer [23, 24]. 
Meanwhile, a bioinformatic study indicated a significant 
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correlation between the protein phosphatase 1 regula-
tory inhibitor subunit 14A (PPP1R14A) expression and 
the prognosis of patients of diverse tumor types across 
TCGA cohort, adding to the understanding of our results 
[25].

Among druggable genes identified in our study, 
APOBEC3A has received more attention. APOBEC3-
associated mutations play an important role in the devel-
opment of breast cancer and APOBEC3A was recently 
reported to be the main driver of these mutations [26–
28]. Despite the conflict in the above analysis regarding 
the expression of APOBEC3A, we still encourage more 
explorations for  APOBEC3A based on  previous stud-
ies. Meanwhile, targeted therapy-induced APOBEC3A 
increases genomic instability and drives evolution of 
drug-tolerant persisters, suggesting that inhibition of 
APOBEC3A expression or activity may be an effective 
therapeutic strategies to reverse drug resistance [29]. 
What’s more, GPX1, ubiquitously expressing in many tis-
sues, has been reported to have an aberrant expression in 
multiple cancers and be closely associated with oncogen-
esis and cancer progression [30]. However, there is some 

controversy regarding its impact on cancer susceptibility 
[31–35]. Its dichotomous roles as both a tumor suppres-
sor and promoter in the specific cancer type should be 
noticed.

NRF2, a crucial regulator of the cellular antioxidant 
response, has been increasingly recognized as a driver 
of cancer progression, metastasis, and therapy resistance 
[21, 22, 36]. It is reported that NRF2 has played a direct 
role through upregulation of its target genes and an indi-
rect role through redox modulation  in  tumorigenesis.   
[23, 24]. Similarly, our results provide genetic evidence to 
further confirm an important role NRF2 pathway played 
in the tumor-related physiological. These promising dis-
coveries indicated that NRF2 pathway warranted further 
investigation as a prognostic biomarker and a therapeutic 
target.

As one of the major hallmarks of malignancy, metabolic 
reprogramming plays a crucial role in tumor growth, pro-
gression and metastasis. To meet the enhanced require-
ments for biological processes essential for proliferation 
and survival, cancer cells undergo intrinsic modifications 
of the metabolic properties and preferences by regulating 

Table 2  Druggable genes significantly associated with cancers (SMR significant and coloc > 0.8)

We perform SMR analysis and colocalization analysis to identify druggable genes significantly associated with cancers. The cis-eQTLs within 1 Mb on either side of 
the encoded gene extracted from the eQTLGen Consortium were used in SMR analysis. HEIDI tests and Bayesian colocalization were further conducted to assess the 
impact of pleiotropy. SMR analysis and colocalization analysis, eQTL expression quantitative trait loci, OR odds ratio, PP.H4 posterior probability that two traits are 
associated with a single causal variant, SNP single nucleotide polymorphism

Type Gene SMR Coloc

topSNP eQTL beta SMR beta OR (95% CI) P val PP.H4

Breast cancer APOBEC3A rs12628403 − 0.74 − 0.17 0.85 (0.80–0.89) 1.51E−09 1.00

Breast cancer NEK10 rs62255653 − 0.06 − 1.55 0.21 (0.11–0.40) 1.69E−06 0.87

Lung cancer GPX1 rs11130203 − 0.11 0.85 2.35 (1.63–3.39) 5.42E−06 0.92

Kidney cancer CASP9 rs4233533 0.33 − 0.42 0.66 (0.54–0.79) 1.32E−05 0.94

Gastric cancer THBS3 rs760077 − 0.56 0.41 1.50 (1.30–1.73) 3.30E−08 0.99

Table 3  The results of metabolome-wide MR on cancers

NSNP number of single nucleotide polymorphism, OR odds ratio

Type Path Method NSNP OR (95% CI) P val

Intrahepatic 
ducts, biliary tract 
and gallbladder 
cancer

PWY.5695..urate.biosynthesis.inosine.5..phosphate.degradation Inverse variance weighted 8 2.77 (1.80–4.26) 3.30E−06

Intrahepatic 
ducts, biliary tract 
and gallbladder 
cancer

UBISYN.PWY..superpathway.of.ubiquinol.8.biosynthesis..prokary-
otic

Inverse variance weighted 15 0.72 (0.62–0.84) 2.37E−05

Liver cancer UBISYN.PWY..superpathway.of.ubiquinol.8.biosynthesis..prokary-
otic

Inverse variance weighted 15 0.51 (0.41–0.65) 2.10E−08

Pancreatic cancer UBISYN.PWY..superpathway.of.ubiquinol.8.biosynthesis..prokary-
otic

Inverse variance weighted 15 1.49 (1.31–1.70) 1.26E−09
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the flow of metabolic pathways [25, 37]. Notably, the bio-
synthesis of ubiquinol was highlighted as specific path-
ways for the risk of various gastrointestinal tumors. It’s 
reported that ubiquinol drives the oxidative tricarboxylic 
acid cycle and dihydroorotate dehydrogenase activity in 
mitochondrial electron transport chain, which is neces-
sary for tumor growth [38–40]. However, the association 
between ubiquinol with gastrointestinal tumors has not 
been reported, requiring further studies.

While clinical trials are usually regarded as the gold 
standard for  evaluating  treatment efficacy and safety, it 
is important to recognize that bioinformatics analysis 
serves a different purpose and complements the find-
ings from clinical trials. It allows for the exploration of 
large-scale genomic and molecular data, providing a 
comprehensive understanding of biological processes 
and disease mechanisms. Using computational tools 
and algorithms, bioinformatics can uncover complex 
relationships between genetic variations, gene expres-
sion patterns, and disease phenotypes, which can help 
researchers to  identify relevant biomarkers  and poten-
tial drug targets. Moreover, by aggregating and analyzing 
data from various studies, bioinformatics can provide a 
broader perspective and increase statistical power, which 
may not be feasible within the confines of a single clini-
cal trial. However, it is important to acknowledge the 

limitations of bioinformatics analysis. The reliability of 
the results depends on the quality and accuracy of the 
input data, as well as the robustness of the analytical 
methods employed. Hence, the results generated from 
bioinformatics analysis may require a validation through 
experimental studies and clinical trials.

Some limitations need to be acknowledged. Firstly, due 
to the limited availability of multi-omics datasets, the 
reference data in our study predominantly consist of par-
ticipants of European ancestry, demonstrating that the 
findings cannot be directly generalized to other ethnic 
groups. Secondly,  despite the exclusion of potential bias 
arising from linkage disequilibrium through colocaliza-
tion analysis and HEIDI test, it is  not possible to com-
pletely eliminated the impact of horizontal pleiotropy. 
Finally, it is noteworthy that the results generated from 
bioinformatics analysis may be considered less reliable 
compared to those derived from rigorous clinical trials. 
Therefore, additional clinical trials are needed to further 
assess the efficacy and safety of these findings.

In conclusion, our study successfully integrated tran-
scriptomic, proteomic, druggable genetic and metabo-
lomics association studies to explore molecular features 
and shared pathways underlying cancers’ incidence  and 
progression, advancing the development of new drugs.

Fig. 2  Phenotype scanning of the genes identified in the above analysis. Phenotype scanning was peroformed to investigate possible health 
effects of the genes identified in the previous analysis, using the publicly available electronic health record data corresponding to 1293 
health-related endpoints (number of cases > 1000) in FinnGen Release 5
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