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Abstract 

Background Periodic bioinformatics-based screening of wastewater for assessing the diversity of potential human 
viral pathogens circulating in a given community may help to identify novel or potentially emerging infectious 
diseases. Any identified contigs related to novel or emerging viruses should be confirmed with targeted wastewater 
and clinical testing.

Results During the COVID-19 pandemic, untreated wastewater samples were collected for a 1-year period 
from the Great Lakes Water Authority Wastewater Treatment Facility in Detroit, MI, USA, and viral population diver-
sity from both centralized interceptor sites and localized neighborhood sewersheds was investigated. Clinical cases 
of the diseases caused by human viruses were tabulated and compared with data from viral wastewater monitor-
ing. In addition to Betacoronavirus, comparison using assembled contigs against a custom Swiss-Prot human virus 
database indicated the potential prevalence of other pathogenic virus genera, including: Orthopoxvirus, Rhadinovi-
rus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Bocaparvovirus, Molluscipoxvirus, Parechovirus, Roseolovirus, 
Lymphocryptovirus, Alphavirus, Spumavirus, Lentivirus, Deltaretrovirus, Enterovirus, Kobuvirus, Gammaretrovirus, Cardio-
virus, Erythroparvovirus, Salivirus, Rubivirus, Orthohepevirus, Cytomegalovirus, Norovirus, and Mamastrovirus. Four nearly 
complete genomes were recovered from the Astrovirus, Enterovirus, Norovirus and Betapolyomavirus genera and viral 
species were identified.

Conclusions The presented findings in wastewater samples are primarily at the genus level and can serve as a pre-
liminary “screening” tool that may serve as indication to initiate further testing for the confirmation of the presence 
of species that may be associated with human disease. Integrating innovative environmental microbiology technolo-
gies like metagenomic sequencing with viral epidemiology offers a significant opportunity to improve the monitoring 
of, and predictive intelligence for, pathogenic viruses, using wastewater.

Keywords Wastewater surveillance, Metagenomics, Human virus, Public health, COVID-19 outbreak, Viral 
epidemiology, Predictive intelligence

Background
In combination with classic epidemiological methods, 
wastewater surveillance has been repeatedly validated as 
a useful method for predicting viral disease outbreaks in 
communities with centralized wastewater collection sys-
tems. Wastewater surveillance of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has occurred 
globally in an effort to combat the COVID-19 pandemic, 
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demonstrating the importance of applied wastewater 
surveillance in understanding virus transmission dynam-
ics and for serving as an early warning system [1–9]. 
Wastewater surveillance approaches that extend beyond 
the surveillance of confirmed viral diseases in a commu-
nity and extend to multiple reportable and non-reporta-
ble virus-related diseases are needed.

Hundreds of viral species can infect humans with novel 
species or subspecies variants continuing to be identified 
[10, 11] and enteric, respiratory, bloodborne, and vector-
borne viruses have all been confirmed to be detectable in 
wastewater samples [12–17]. Whether officially report-
able or non-reportable to public health practitioners, or 
whether, endemic, emerging, or novel, viral threats are 
circulating within communities. Wastewater surveillance 
tools that are both practical in application and capable of 
accurately and efficiently identifying a diversity of human 
viral pathogens in varied environments, are urgently 
needed.

Identifying bacterial population diversity using 
sequencing and metagenomics is relatively straightfor-
ward, as bacteria contain a shared gene, 16sRNA, that 
can be sequenced for phylogenetic analysis of bacteria. In 
contrast, viruses do not unilaterally share any conserved 
gene, making it difficult to calculate indices of viral popu-
lation genetic diversity. Random amplification and high-
throughput shotgun sequencing, followed by appropriate 
bioinformatic analysis can largely circumvent these limi-
tations, presenting an opportunity to expand the trans-
latability of wastewater surveillance methodologies. 
Nonetheless, there are significant challenges in metagen-
omic-enabled wastewater surveillance. For example, a 
relatively lower abundance of human viruses [10, 18, 
19] compared to the bacterial community in wastewater 
samples poses challenges for sequencing and bioinfor-
matic analyses; therefore, proper sample concentration is 
critical. Other challenges, like computational resources, 
human capital requirements, and bioinformatic analy-
sis training, may limit the adoption of high-throughput 
shotgun sequencing methods. In this paper, we present 
a bioinformatics-based screening tool that focuses on 
viral population diversity identification. The screening 
tool is validated in wastewater samples collected from 
the Detroit metropolitan area during the COVID-19 pan-
demic, and the results reveal that, in addition to coro-
naviruses, multiple viral genera are present in the tested 
community wastewater.

Within the Detroit metropolitan area, wastewater 
surveillance has been applied to detect multiple human 
virus occurrences [12, 16, 17, 20]. Since the onset of the 
COVID-19 epidemic in the Detroit metropolitan area, a 
wastewater surveillance program was focused on SARS-
CoV-2 detection and has since shown to be an important 

tool in (1) providing early warnings of disease surges [6, 
21], (2) dissecting the spatial distribution of SARS-CoV-2 
concentrations across a large geographic area in com-
munities with diverse demographic characteristics [7], 
and (3) developing straightforward methods designed 
to assist public health officials in mounting a timely and 
appropriate response [22]. In this study, we investigate 
human virus diversity beyond coronaviruses. We col-
lected a total of 48 untreated “grab” wastewater samples 
collected from interceptors at the wastewater treatment 
facility, and manholes in neighborhoods from the service 
area of three interceptors. Human virus compositions 
at the genus level were analyzed and discussed. Clas-
sification of four viral pathogens was performed at the 
genotype level using the nearly complete draft genomes 
recovered. Clinical case data of the diseases associated 
with the studied viruses during the sampling year were 
collected and compared with the data from wastewater 
samples. Interpretation of the human virus composition 
in wastewater at the genus level and recovery of genomes 
using bioinformatics methods contribute to our under-
standing of the infectious diseases circulating in metro-
politan Detroit community. Limitations of the untargeted 
sequencing approach and the optimization possibilities 
were discussed.

Methods
Study area and sample collection
The Water Resource Recovery Facility (WRRF) is the 
wastewater system of the Great Lakes Water Authority 
(GLWA) in Detroit, Michigan. The WRRF is the larg-
est single-site wastewater treatment facility in North 
America and serves the largest city in Michigan, as well 
as the three most populous counties in Michigan: Wayne, 
Oakland, and Macomb [23]. The facility receives waste-
water via three main interceptors, including the Detroit 
River Interceptor (DRI), the North Interceptor-East Arm 
(NI-EA), and the Oakwood-Northwest-Wayne County 
Interceptor (O-NWI). Combined, the three interceptors 
serve approximately 492,000 (DRI), 1,482,000 (NI-EA), 
and 840,600 (O-NWI) individuals, based on 2020 popu-
lation estimates provided by the Southeast Michigan 
Council of Governments. The WRRF system collects 
and treats stormwater  along with residential, industrial, 
and commercial waste, depending on service area. There 
were seven sample collection events across the three 
interceptors, for a total of 21 interceptor samples. Three 
sampling events were occurred from Wayne, Oakland, 
and Macomb Counties at the neighborhood sewershed 
level, resulting in a total of 27 neighborhood samples. 
Sampling locations in these three counties were selected 
to ensure that data collectively represented community 
demographics [7]. Sampling site locations and the service 
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area of the three interceptors are shown in Fig. 1. Catch-
ment area population characteristics and sampling dates 
are shown in Table 1.

Collection and virus concentration analysis of wastewater 
sample
Viruses were collected and isolated from wastewater 
using electropositive NanoCeram column filters (Argo-
nide, Sanford, FL, USA) based on an US Environmental 
Protection Agency (EPA) protocol [20, 21, 24]. Depend-
ing on the quantity of suspended solids in the wastewater 
sample, approximately 20 to 50 L of raw wastewater was 
passed through NanoCeram electropositive cartridge 
filters at a rate not more than 11 L/min. Flow meter 
readings were recorded at the commencement and ter-
mination of each sampling event, so as to measure the 
total volume of raw wastewater that passed through the 
filter. The filters containing viruses were placed in sepa-
rated, sealed plastic bags on ice, and transported to the 
Environmental Virology Laboratory at Michigan State 
University in East Lansing, MI, for analysis within 48 h.

Electropositive NanoCeram column filters were eluted 
with 1 L beef extract (MilliporeSigma, Massachusetts, 
USA) solution (prepared before elution) for 2 min. After, 
pH of the beef solution was adjusted to 3.5 ± 0.1, then 
flocculated for 30 min before centrifugation at 2500g (at 
4  °C) for 15  min. The supernatant was discarded, and 
pellets were then resuspended in 30 mL of sodium phos-
phate (at 0.15  M). The pH of the resuspended solution 
was adjusted to a range of 9.0–9.5. A second round of 
centrifugation was then carried out at 7000g (at 4 °C) for 
10 min. The supernatant was collected and adjusted to a 
pH of approximately 7.25. Filtration was performed on 
the samples with 0.45 μm and 0.22 μm syringe filters to 
eliminate the contamination of bacteria with large sizes. 
The final filtered solution was then aliquoted into mul-
tiple 2.0 mL cryogenic vials (Corning®, New York, USA) 
and stored at −  80  °C until nucleic acid extraction was 
performed.

Sequencing
Extraction of nucleic acids and random amplification
Viral nucleic acids were extracted using QIAGEN 
QIAamp Viral RNA kits (QIAGEN, Hilden, Germany), 
following the manufacturer’s protocol with the volume 
of final eluting reagent (buffer AVE) modified from 60 
to 140 µL [6, 7, 16]. To ensure enough sample for the 
final metagenomic library, extracts of duplicate sam-
ples were pooled together. A random-primer protocol 
developed to identify viral pathogens was applied to 
perform the amplification [25, 26]. Primer-A (5′-GTT 
TCC CAG TCA CGATCNNNNNNNNN) was used to 
do the RNA reverse-transcription, and second-strand 

DNA synthesis was carried out using Sequenase (ver-
sion 2.0 DNA Polymerase, Thermo Fisher Scientific). 
The subsequent PCR amplification of 40 cycles was fin-
ished with primer-B (5′-GTT TCC CAG TCA CGATC) 
[12, 25, 26].

Next generation sequencing
Viral cDNA from the wastewater samples (n = 48) was 
sent to the Michigan State University’s Research Tech-
nology Support Facility’s Genomics Core for library 
preparation and sequencing. Details of library prepara-
tion and sequencing are provided in Additional file  1: 
S1. Quality of the raw reads was assessed using FastQC 
[27] analysis. Quality scores for more than 88% of both 
R1 and R2 reads in every sample were better than 30. A 
total of 5.91 billion reads were obtained for the 48 sam-
ples and the average number of reads for each sample 
was 104 million. The 48 samples had an average yield of 
31.1 gigabytes (GB).

Bioinformatic analysis
Trimming, assembling, and taxonomic alignment
Adapters and low-quality reads were trimmed using 
Trimmomatic (v. 0.39, parameters: phred33 TruSeq3-
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEG:35) [28]. Trimmed reads 
were then aligned against the National Center for Bio-
technology Information’s (NCBI) BLAST non-redun-
dant database using Kaiju (v. 1.9.0), to determine the 
proportions of viral reads in the samples. A sensitive 
run mode, “Greedy” was used, and the cutoff for E 
value was set to  10–3 [29].

To achieve substantial gains in taxonomic mapping, 
long contiguous sequences (contigs) generated by the 
assembly process were used to identify viral and human 
viral composition [30]. To identify the virus composi-
tion in wastewater samples, the assembled contigs 
were aligned against the NCBI’s RefSeq virus database 
(retrieved on December 1, 2022) with DIAMOND 
BLASTx, using a maximum E value of  10–3 [12, 31, 32]. 
In order to improve the discovery of human viruses, 
reduce ambiguity, and decrease the chance of false neg-
ative hits [12], the assembled contigs were also aligned 
against a custom Swiss-Prot human virus protein data-
base using BLASTx, using a maximum E value of  10–5. 
Details on how we customized the Swiss-Prot human 
virus protein database are provided in Additional file 1: 
S2. Virus compositions at the family level and human 
viruses at the genus level were further obtained using 
MEGAN software, Community Edition (v. 6.22.2) [33].
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Fig. 1 Service area of the three interceptors of the Water Resource Recovery Facility (WRRF). The yellow stars indicate the nine neighborhood 
locations from three counties that WRRF serves
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Quality check for human virus contigs and phylogenetic 
analysis of near‑complete contigs
Quality and completeness of the human virus-related 
contigs identified in the wastewater samples were esti-
mated using CheckV [34], a command-line pipeline used 
to identify closest genomes and host contamination for 
integrated proviruses, and ultimately, estimate complete-
ness of genome fragments. All of the human virus-related 
contigs were assigned to one of the quality tiers (High-
quality, Medium-quality, Low-quality) or were deter-
mined to be of Undetermined quality, based on genome 
completeness, host contamination, and the predicted 
closest genomes. Four representative, near-complete 
contigs were found, with high genome-wide sequence 
similarities to their reference genomes, according to ViP-
Tree (v. 3.3) [35]. Genes and their positions were pre-
dicted with GeneMarkS [36]. Genome structures of the 
four near-complete draft genomes and their closest refer-
ence genomes were visualized using the Proksee platform 
[37].

A bioinformatic workflow schematic for identifying 
human virus occurrence in wastewater samples with a 
metagenomics-enabled surveillance approach is shown 
in Fig. 2. Parameters applied in the bioinformatic process 
are the same as indicated in our previous work [38] and 
are elaborated in Additional file 1: Table S1.

Statistical analysis and data visualization
After comparing against the NCBI non-redundant 
database using kaiju, percentages of reads affiliated 
with viruses, bacteria, archaea, and unknown reads 

were calculated by using the number of viral, bacterial, 
archaeal, and unknown reads divided by the total reads 
in the sample. As for the proportions of each human viral 
family and genus, data were normalized to the human 
viral community. Data were organized and the propor-
tions of each human virus were calculated using Excel 
(Microsoft, Redmond, WA). Statistical analyses including 
the Wilcoxon mean value test and non-metric multidi-
mensional scaling (NMDS) were performed using RStu-
dio [39]. Illustrations including pie charts, violin plots, 
bubble plots, heatmaps, and plots for NMDS were cre-
ated using RStudio. Packages including “dplyr,” “ggplot2,” 
“scatterpie,” “vegan,” “BiodiversityR,” and “tidyverse” were 
used in the statistical analyses and data visualization pro-
cess. Genome visualizations generated by the Proksee 
platform were organized and customized using the vec-
tor graphics editor, Inkscape (v. 1.2.2).

Results
Outputs from the sequencing of 21 interceptor and 27 
neighborhood wastewater samples
A total of 1568.20 GB of sequencing data were obtained 
from the 48 samples with an average yield of 30.72 GB 
per sample. There were 4.82 billion clean reads after trim-
ming. The count of clean reads in the wastewater sam-
ples ranged from 17.58 million to 123.19 million, with an 
average count of 95.58 million. Results of the compari-
son between the clean reads and the NCBI non-redun-
dant database showed that 45.0–80.7% of the reads were 
unclassified (Fig.  3) and 16.2–54.3% of reads were clas-
sified as bacteria. The proportion of the reads that were 

Table 1 Catchment area population characteristics and sampling dates

Interceptor sites

Sample site Corresponding population Sampling dates

O-NWI 840,600 8/11/20, 2/2/21, 2/22/21, 6/28/21, 10/4/21, 12/27/21, 1/17/22

NI-EA 1,482,000

DRI 492,000

Neighborhood sites

County Sample site Area  (km2) Corresponding population Sampling dates

Macomb Eastpointe (EP) 1.13 2400 2/4/21, 3/18/21, 10/7/21

Macomb Township (MT) 90.1 99,970

Sterling Heights (SH) 25.3 37,560

Wayne Detroit 1 (D1) 0.55 1690

Detroit 2 (D2) 1.50 5190

Detroit 3 (D3) 0.51 1300

Oakland Southfield (SF) 2.90 3080

West Bloomfield (WB) 4.93 5800

Oak Park (OP) 1.16 2270
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Fig. 2 A schematic workflow for identifying human virus occurrence in wastewater using metagenomics-enabled surveillance

Fig. 3 Proportion of viral reads sequenced in study samples. Pie charts indicate the proportion of archaea, bacteria, and viruses in the interceptor 
(A) and neighborhood (B) samples. Violin plots show the mean value and data distributions of viral proportions in the interceptor 
and neighborhood samples (C)
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from viruses ranged from 0.63 to 10.0% (Fig.  3). Devia-
tions of these proportions might be associated with both 
the variations of wastewater quality characteristics and 
biases generated in the sample preparation and sequenc-
ing steps (e.g., uneven amplification). To improve taxon-
omy mapping, clean reads were assembled into a total of 
90.73 million contigs for the 48 samples using MEGAHIT 
software [40]. The number of contigs obtained for each 
sample ranged from 0.24 million to 2.85 million, with an 
average contig count of 1.79 million.

Contigs were compared against the NCBI’s RefSeq 
virus database. In total, 3.77 million viral contigs were 
obtained from the 48 samples. The number of viral con-
tigs per sample ranged from 6593 to 133,335, with an 
average of 74,163. The proportion of contigs within the 
sample that were viral ranged from 1.74 to 5.80%. To 
improve identification of human viruses, assembled con-
tigs were compared with a custom Swiss-Prot human 
virus protein database. For the 48 samples, the number of 
human viral contigs per sample ranged from 954 to 9416, 
with the average number being 5464. The proportion of 
human viral contigs across the samples ranged from 0.25 
to 0.46%, with an average of 0.31%.

Virus and human virus composition in wastewater samples
Viruses belonging to Uroviricota phylum, Nucleocyto-
viricota phylum, and Phixviricota phylum were identi-
fied in the wastewater samples. Ranges of the proportion 
of these three phyla in the samples were 66.6–93.6%, 
1.40–21.0%, and 0.94–5.59%. Taxonomic composi-
tion of viruses at the family level was normalized to the 
virus population in the wastewater samples and visual-
ized (Additional file 1: Fig. S1). Viral families with a nor-
malized proportion less than 1.00% were categorized as 
“Other.” As shown in Additional file  1: Fig. S1, contigs 
affiliated with bacteriophage families Myoviridae, Sipho-
viridae, and Podoviridae comprised a large proportion 
of the virus community in wastewater and they belong 
to the Uroviricota phylum. Consistent findings have 
been reported in previous work [41, 42]. Ranges of the 
proportion of the viral community for the Myoviridae, 
Siphoviridae, and Podoviridae families were 31.0–40.1%, 
22.1–32.8%, and 7.21–14.8% (Additional file  1: Fig. S1), 
respectively, and their average proportions were 35.2%, 
28.2%, and 11.7%, respectively, across the 48 samples. 
In addition, notable proportions of viruses belonging to 
Nucleocytoviricota phylum were observed. They were 
Mimiviridae (0.30–5.06%), Pandoravirus (0.07–1.79%), 
Pithoviridae (0.04–1.21%), and Phycodnaviridae (0.90–
11.8%). Viruses in Mimiviridae, Pandoravirus, and 
Pithoviridae families are the eukaryotic giant viruses 
that infect the amoebozoan species Acanthamoeba, 
which is one of the most common protozoa in a variety 

of environments including the wastewater treatment 
systems [43]. Members of the Phycodnaviridae family 
can infect a range of protists and algae [44, 45]. Viruses 
that infect mammals were identified in relatively small 
proportions. For example, contigs related to the dsDNA 
poxvirus family were found across the 48 samples with 
a proportion ranging from only 0.18 to 1.78%, with an 
average of 0.48%. Contigs related to viruses belonging to 
the Parvoviridae, Herpesviridae, and Astroviridae fami-
lies were also found at relatively low proportion, all less 
than 0.1%, and were thus classified as “Other” (Additional 
file 1: Fig. S1).

As previously mentioned, to improve human virus dis-
covery, assembled contigs were compared with a custom 
Swiss-Prot human virus database. Contigs related to a 
diverse human virus group were identified and classified 
at the genus level (Additional file 1: Fig. S2). Values were 
normalized to the human virus population for each sam-
ple. Contigs related to viruses belonging to the Orthopox-
virus genus were dominant among the 48 samples, with a 
normalized proportion ranging from 55.9 to 75.1% of the 
total human virus-related contigs. Further compositional 
analysis at the species level indicated that approximately 
88.5% of Orthopoxviruses were unable to be assigned 
(Fig. 4A). Vaccinia virus (VACV) was the primary genus 
assigned to Orthopoxivirus, with an averaging proportion 
of 9.17% among only Orthopoxviruses, across the 48 sam-
ples (Fig.  4A). Following Orthopoxviruses, other human 
viral genera identified by contig as representing a rela-
tively large proportion were Rhadinovirus, Parapoxvirus, 
Varicellovirus, Hepatovirus, Simplexvirus, and Mullusci-
poxvirus (Additional file 1: Fig. S2).

The occurrence frequency of each human virus across 
the 48 samples was calculated (Fig. 4B). Contigs related 
to Orthopoxvirus, Varicellovirus, Bocaparvovirus, Pare-
chovirus, Roseolovirus, Betacoronavirus, Rubivirus, 
Rhadinovirus, Lymphocryptovirus, Lentivirus, Hepato-
virus, Enterovirus, Kobuvirus, Parapoxvirus, Simplexvi-
rus, Molluscipoxvirus, Deltaretrovirus, Spumavirus, and 
Alphavirus genera were detected in all 48 samples. For 
the Salivirus, Orthohepevirus, Gammaretrovirus, Car-
diovirus, Erythroparvovirus, Cytomegalovirus, Cosavirus, 
Alphacoronavirus, Norovirus, and Mastadenovirus gen-
era, the occurrence frequency was greater than 80%.

Analysis of NMDS was performed based on human 
virus composition, to investigate potential spatial or tem-
poral patterns of human virus occurrence. When inves-
tigating the wastewater samples collected from the three 
WRRF interceptors, plots of the NMDS analysis showed 
a potential spatial pattern (Fig.  5A). A similar pattern 
was found when neighborhood samples were included 
and grouped according to the interceptor that they dis-
charge into (Fig.  5B). These results are reasonable since 
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the samples were collected in close proximity and at simi-
lar time points.

Species classification within the Astrovirus, Enterovirus, 
Norovirus and Betapolyomavirus genera
To verify the completeness (A ratio between the contigs 
length and the length of matched reference in CheckV 
genome database) [34] of the draft genomes recovered, 
a quality checking process using the CheckV platform 
[34] was performed. Percentages of assembled human 
viral-related contigs assigned to different quality tiers 
are shown in Fig. 6. High-quality contigs were screened 
further manually to find the nearly complete human 
viral genomes. Four contigs affiliated with the Astrovi-
rus, Enterovirus, Norovirus, and Betapolyomavirus gen-
era were determined to be recovered with a high level of 
completeness (Table 2). Genomic structures of these four 
draft genomes and their closest reference genomes are 
visually represented in Fig.  7. One contig affiliated with 
the Mamastrovirus genera recovered from samples from 

the MT neighborhood site (collected on 03/18/2021) 
was identified as being structurally similar to Astrovirus 
VA1, with genome similarity to Astrovirus VA1 genome 
as 0.9280 (Table 2). One contig affiliated with the Enter-
ovirus genera recovered from sample D1 (collected on 
03/18/2021) was identified as being structurally similar 
to Human coxsackievirus A1, with genome similarity to 
Human coxsackievirus A1 genome as 0.9644 (Table  2). 
The closest genome to one of the Norovirus contigs 
recovered from a D1 sample (collected on 10/07/2021) 
was found to be Norovirus GII.2, with genome similar-
ity to Norovirus GII.2 genome as 0.8635 (Table 2). Simi-
larly, a contig affiliated with genus Betapolyomavirus 
was recovered in a sample collected from the EP neigh-
borhood site and determined to be structurally similar 
to Betapolyomavirus hominis, with genome similarity to 
Betapolyomavirus hominis genome as 0.9003 (Table 2).

Astroviruses are a well-known causative agent of gas-
troenteritis in many hosts, including humans. There are 
eight types of human astroviruses reported in previous 

Fig. 4 Proportion of Orthopoxvirus species (A) and human virus occurrence (B) in wastewater in the metropolitan Detroit Area, Michigan. 
Proportion of species identified in the Orthopoxvirus genus, with values normalized to the Orthopoxvirus population (A). Occurrence frequency (%) 
of each human virus, at the genus level, in the wastewater samples (B)
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studies, among them Astrovirus VA1, the genotype com-
monly discovered from human cases of encephalitis [46, 
47]. Genomes of astroviruses range in size from 6.1 to 
7.9  kb and contain two nonstructural polyproteins and 
one capsid protein (Fig. 7A). The high degree of similarity 
between the Astrovirus contig recovered in our study and 
Astrovirus VA1 (NC_013060) indicates the possible pres-
ence of genotype VA1 in wastewater, and its circulation 
in the community.

The second nearly complete draft genome was from the 
Enterovirus genus. Enterovirus C consists of more than 
20 serotypes and its genome is a single-stranded RNA 
consisting of a long, single open reading frame (ORF) 
[48]. Length of Enterovirus genomes is approximately 
7.4  kb. The Enterovirus contig recovered in this study 
was found to be similar to Human coxsackievirus A1 

Fig. 5 Non-metric multidimensional scaling (NMDS) analysis of human viruses at the genus level. Non-metric multidimensional scaling analysis 
using the Bray–Curtis dissimilarity method for distance calculation for human viruses in interceptor samples collected from the O-NWI, NI-EA, 
and DRI interceptors (A), and interceptor and neighborhood samples (B)

Fig. 6 Percentages of quality tiers of the human viral contigs 
assessed with CheckV. Percentages (%) of human viral contigs 
assigned to different quality tiers (High-quality, Medium-quality, 
Low-quality, and Undetermined quality) by assessing 
the completeness of metagenome-assembled viral contigs 
with CheckV

Table 2 The similarities between the four genomes recovered and their closest reference genomes

Nearly complete 
genome recovered

Closest reference genome Similarity of 
genomes  (SG)

Classification Length (nt) Classification Length (nt) Genome Structure

Mamastrovirus
(MT.2021.03.18)

6603 Astrovirus VA1
(NC_013060)

6586 ssRNA (linear) 0.9280

Betapolyomavirus
(EP.2021.03.18)

5122 Betapolyomavirus hominis
(NC_001538)

5153 dsDNA (circular) 0.9003

Enterovirus
(D1.2021.03.18)

7469 Human coxsackievirus A1 (JX1741) 7398 ssRNA (linear) 0.9644

Norovirus
(D1.2021.10.07)

7085 Norovirus GII 2
(NC_039476)

7536 ssRNA (linear) 0.8635
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(CVA1, JX1741) with the genomic similarity being 0.9644 
(Fig. 7B). This CVA1 was previously identified in sympto-
matic individuals (high school students in the USA after a 
trip to Mexico in 2004) [49].

Norovirus is the major pathogen associated with acute 
gastroenteritis worldwide. Sizes of Norovirus genomes 
range from 7.5 to 7.7  kb, and consist of three ORFs 
(Fig. 7C) [50]. Genotypes of Noroviruses are diverse and 
two major groups that affect humans include GI and 
GII [51]. In North American, levels of human Norovi-
rus GII in wastewater influent were found to be higher 
than those of GI [52]. In this study, the near-complete 
contig affiliated with the Norovirus genus was found to 
be most similar to Norovirus GII.2 (NC_039476), with a 
genomic similarity of 0.8635. The relatively reduced simi-
larity may be due to the incomplete sequence recovered 
in the study. The length of reference Norovirus GII.2 is 
7536 nt, while the recovered Norovirus contig was 7085 
nt. Genomes of Betapolyomaviruses consist of circular 
DNA with lengths of approximately 5  kb [53] (Fig. 7D). 
The closest reference genome to it was Betapolyomavirus 
hominis (NC_001538), with the genomic similarity being 
0.9003.

Consistent identification of human viruses in wastewater 
and the associated clinical disease cases in Detroit 
communities
To understand human virus occurrence in wastewa-
ter and its potential connection with observed clinical 
disease cases in the Detroit metropolitan area, types of 
human viruses, primary transmission routes, potential 
diseases the viruses are related to, and reported disease 
cases in communities from the Detroit metropolitan area 
are summarized (Table 3). Human viruses that were iden-
tified in this study are affiliated with 48 genera. Among 
these genera, dsDNA Orthopoxvirus was found to be 
the most abundant genus of human viruses. Most of the 
assigned contigs within the Orthopoxvirus genus in this 
study are classified as vaccinia virus (VACV) (Fig.  4A), 
consistent with the finding of our previous work, in which 
VACV was found to be the most prevalent species within 
the Orthopoxvirus genus [12]. Worldwide eradication of 
smallpox was officially declared in 1980 and the VACV-
based vaccine ceased after more than 150 years of suc-
cessful prevention against smallpox. However, vaccine is 
still recommended for individuals with unusual potential 
exposure, such as laboratory workers who handle variola 

Fig. 7 Genome structure of the four nearly complete genomes recovered and their closest reference genomes. A Astrovirus (top genome: Astrovirus 
genome recovered from sample collected from MT on March 18, 2021; bottom genome: its closest reference genome, Astrovirus VA1). B Enterovirus 
(top genome: Enterovirus genome recovered from sample collected from D1 on March 18, 2021; bottom genome: its closest reference genome, 
Human coxsackievirus A1). C Norovirus (top genome: Norovirus genome recovered from sample collected from D1 on October 7, 2021; Bottom 
genome: its closest reference genome, Norovirus GII 2). D Betapolyomavirus (top genome: Betapolyomavirus genome recovered from sample 
collected from EP on March 18, 2021; bottom genome: its closest reference genome, Betapolyomavirus hominis)
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Table 3 Classification of detected human virus genera, their primary transmission routes, and corresponding human disease in the 
study area during the sampling years

Family Genus Structure Primary Transmission Route Associated Human Disease Confirmed 
Diseases 
Cases in 
metropolitan 
Detroit, MI

References

2020 2021

Adenoviridae Mastadenovirus ds DNA Respiratory, fecal–oral Common cold [59]

Anelloviridae Gammatorquevirus ss DNA Fecal–oral, parenteral, sexual May be associated with dis-
eases such as unexplained 
fever, diabetes, cancer

[60]

Astroviridae Mamastrovirus ss RNA (+) Fecal–oral Gastroenteritis [61]

Caliciviridae Norovirus ss RNA (+) Fecal–oral Norovirus, Gastroenteritis 104 62 [62]

Sapovirus ss RNA (+) Fecal–oral Gastroenteritis [63]

Coronaviridae Alphacoronavirus ss RNA (+) Respiratory Common cold [64]

Betacoronavirus ss RNA (+) Respiratory, Zoonosis SARS, MERS, COVID-19 36,567 729,275 [64]

Filoviridae Marburgvirus ss RNA (-) Zoonosis, fomite Viral hemorrhagic fevers [65]

Flaviviridae Flavivirus ss RNA (+) Zoonosis, arthropod bite/
borne

Encephalitis, dengue fever 8 2 [66]

West Nile 35 44

Zika 4 NR

Hepacivirus ss RNA (+) Sexual, blood Hepatitis C 2541 1739 [67]

Hantaviridae Orthohantavirus ss RNA (-) Zoonosis, urine, saliva Viral hemorrhagic fevers, han-
tavirus pulmonary syndrome

[68]

Hepeviridae Orthohepevirus ss RNA (+) Fecal–oral Hepatitis E 5 7 [69]

Hepadnaviridae Orthohepadnavirus RT Sexual contact, blood Hepatitis B 3066 376 [70]

Herpesviridae Rhadinovirus ds DNA Sexual contact, saliva Skin lymphoma [71]

Varicellovirus ds DNA Respiratory, contact Chickenpox 62 60 [72]

Shingles 386 244

Simplexvirus ds DNA Sexual contact, saliva Skin lesions [73]

Roseolovirus ds DNA Respiratory, contact Encephalitis [74]

Lymphocryptovirus ds DNA Zoonosis, animal bite, contact, 
saliva

Encephalitis, mononucleosis [75]

Cytomegalovirus ds DNA Contact, urine, saliva Mononucleosis, pneumonia [76]

Matonaviridae Rubivirus ss RNA (+) Respiratory Rubella 4 3 [77]

Orthomyxoviridae Alphainfluenzavirus ss RNA (-) Respiratory, zoonosis, animal 
contact

Acute febrile respiratory tract 
infection

[59]

Paramyxoviridae Respirovirus ss RNA (-) Respiratory Common cold [59]

Papillomaviridae Alphapapillomavirus ds DNA Sexual, contact Genital warts, cervical cancer, 
skin warts

[78]

Nupapillomavirus ds DNA Contact Skin warts [78]

Betapapillomavirus ds DNA Contact Warts, papilloma, malignant 
tumors

[78]

Gammapapillomavirus ds DNA Contact Warts, papilloma [78]

Mupapillomavirus ds DNA Contact Skin warts [78]

Parvoviridae Bocaparvovirus ss DNA Respiratory Acute respiratory illness [79]

Erythroparvovirus ss DNA Respiratory Fifth disease, skin lesions [80]

Peribunyaviridae Orthobunyavirus ss RNA (-) Zoonosis, arthropod bite Encephalitis, fever, joint pain [81]
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virus [54, 55]. In addition, US military continues to vac-
cinate against smallpox due to concerns about potential 
bioterrorism involving stored smallpox virus [56].

Betacoronaviruses include two common human coro-
naviruses (OC43 and HKU1) that cause middle east 
respiratory syndrome (MERS-CoV), severe acute res-
piratory syndrome (SARS-CoV), and the novel coronavi-
rus that causes coronavirus disease 2019 (SARS-CoV-2). 
Betacoronaviruses were identified in the wastewater sam-
ples (Figs. S2 and 4B), as expected, since samples were 
collected during the COVID-19 pandemic period. These 
samples have been analyzed with ddPCR, and SARS-
CoV-2 occurrence has been confirmed [6, 7, 22].

Corresponding to the presence of Varicellovirus (vari-
cella-zoster virus, VZV, or HHV-3) in the sampled waste-
water, clinical cases of chickenpox and shingles in the 
Detroit metropolitan area in 2020 numbered 62 and 386, 
respectively, and in 2021, numbered 60 and 244, respec-
tively [57, 58]. Contigs assigned to Roseolovirus were 
found in all of the samples (Fig. 4B), indicating potential 
human infection by these pathogens in communities. 
Contigs affiliated with Rubivirus were found frequently 
in this study (Fig.  4B) and cases of rubella reported in 
2020 and 2021 equal 4 and 3 in the study area [57, 58]. 
Bocaparvovirus and Erythroparvovirus, two respiratory 
human viruses belonging to the Parvoviridae family, 

Table 3 (continued)

Family Genus Structure Primary Transmission Route Associated Human Disease Confirmed 
Diseases 
Cases in 
metropolitan 
Detroit, MI

References

2020 2021

Picornaviridae Hepatovirus ss RNA (+) Fecal–oral Hepatitis A 13 15 [82]

Parechovirus ss RNA (+) Respiratory Mild, gastrointestinal, or respir-
atory illness

[83]

Enterovirus ss RNA (+) Fecal–oral, respiratory Meningitis, myocarditis, 
paralysis, common cold, diar-
rhea, neurological disorder, 
poliomyelitis

[84]

Cardiovirus ss RNA (+) Zoonosis Encephalitis [85]

Kobuvirus ss RNA (+) Fecal–oral Gastroenteritis [86]

Salivirus ss RNA (+) Fecal–oral Gastroenteritis [87]

Cosavirus ss RNA (+) Fecal–oral (probable) Gastroenteritis (probable) [88]

Polyomaviridae Betapolyomavirus ds DNA Respiratory May be associated with cen-
tral nervous system disease

[89, 90]

Poxviridae Orthopoxvirus ds DNA Respiratory, zoonosis, contact Skin lesions, smallpox [54]

Parapoxvirus ds DNA Zoonosis, contact Skin lesions [91]

Molluscipoxvirus ds DNA Contact Skin lesions [92]

Reoviridae Seadornavirus dsRNA Zoonosis, arthropod bite Encephalitis [93]

Retroviridae Deltaretrovirus RT Sexual contact, maternal-
neonatal

Leukemia [94]

Spumavirus RT Animal bites Associated with T lymphocyte 
differentiation and monocyte 
activation

[95]

Gammaretrovirus RT Often from mother to off-
spring

Multiple sclerosis (probable) [96]

Lentivirus RT Sexual contact, blood HIV 334 412 [97]

Rhabdoviridae Lyssavirus ss RNA (-) Zoonosis, animal bite Fatal encephalitis, encephalitis [98]

Togaviridae Alphavirus ss RNA (+) Zoonosis, arthropod bite Fever, joint pain, chikungunya, 
encephalitis, pogosta disease

2 1 [99]

Blank cells indicate that data is not available. Human diseases in red font correspond to the number of confirmed cases listed in the following column. Disease cases 
were based on the weekly disease reports published by the Michigan Disease Surveillance System (MDSS) in years 2021 and 2022. Abbreviations: ds DNA: double 
stranded DNA; ss DNA: single-stranded DNA; ss RNA (+): single-stranded positive RNA; ss RNA (−): single-stranded negative RNA; RT: reverse transcribing viruses. 
SARS: severe acute respiratory syndrome; MERS: Middle Eastern respiratory syndrome; COVID-19: coronavirus disease 2019
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were prevalent in all of the samples (Fig.  4B). Parecovi-
rus related contigs, which may be associated with human 
parechovirus (HPeV), was also found frequently in the 
samples (Fig. 4B). Infections of HPeV are reported to be 
associated with some mild respiratory and gastrointes-
tinal diseases, but can also cause serious disease such as 
meningitis, encephalitis, and neonatal sepsis [83].

Beyond contigs related to respiratory viruses, contigs 
related to viruses potentially transmitted through a fecal–
oral route were also detected with high frequency in our 
samples (Fig.  4B). These include Mamastrovirus, Noro-
virus, Orthohepevirus, Hepatovirus, Enterovirus, Kobu-
virus, Salivirus, and Cosavirus related contigs (Fig.  4B). 
Contigs related to the Mamastrovirus genus were found 
in 38 samples. Species within the Mamastrovirus genus 
are reported to commonly cause symptoms such as mild 
diarrhea, as well as less commonly, vomiting, headache, 
and fever [61]. Norovirus has been responsible for acute 
non-bacterial gastroenteritis diseases worldwide, for dec-
ades [62] and were found in 90% (43/48) of the 48 sam-
ples taken. In the Detroit metropolitan area, Norovirus 
disease cases reported were 104 in 2020 and 62 in 2021 
[57, 58]. The Orthohepevirus genus contains the well-
known causative viral pathogen, hepatitis E virus (HEV); 
contigs affiliated with the genus were found in 47 of 48 
wastewater samples. In 2020 and 2021, there were five 
and seven hepatitis E cases reported in the Detroit met-
ropolitan area [57, 58].

The Hepatovirus genus contains another common 
hepatitis virus: hepatitis A (also known as Hepatovirus A 
virus, HAV) [82]. Contigs related to it were identified in 
all of the collected samples (Fig. 4B). There were 13 and 
15 hepatitis A cases reported in 2020 and 2021, respec-
tively, in the study area [57, 58]. The Enterovirus genus 
includes various viral pathogens that can cause diseases 
with symptoms ranging from mild symptom to the disa-
bling and sometimes life-threatening disease of paralytic 
poliomyelitis. Enterovirus D68 (EV-D68) is a well-known 
non-polio enterovirus that can cause respiratory illness. 
Contigs related to the Enterovirus genus were identified 
in all of the collected samples (Fig.  4B). Like Hepatovi-
rus and Enterovirus, Kobuvirus, Salivirus and Cosavirus 
also belong to the Picornavirus. Occurrence frequencies 
of these three viruses were higher than 90% in this study 
(Fig. 4B). These viruses are often associated with causing 
diarrhea and gastroenteritis [86, 88, 100].

Other than respiratory and fecal–oral transmission, 
viruses transmitted by blood and other bodily fluids 
can cause health concerns. The genus Lentivirus was 
detected in all 48 samples (Fig. 4B). Human immunode-
ficiency viruses (HIV), which belong to the Lentivirus 
genus, attack the body’s immune system and may lead to 
acquired immunodeficiency syndrome (AIDS). Through 

a most recent HIV statistics published by CDC, an esti-
mated 1.2 million people in the USA and dependent areas 
had HIV at the end of 2021, about 87% of these people 
knew they had HIV [101]. Within the Detroit metropoli-
tan area during the sampling years of 2020 and 2021, 334 
and 412 HIV cases were reported, respectively [57, 58]. 
Linking the presence of genus Lentivirus in wastewater 
and the disease cases in the Detroit community is diffi-
cult, due to the limited information of species composi-
tion within this genus and the incidence rates for HIV in 
the community.

The genus Orthohepadnavirus, which contains the 
hepatitis B virus (HBV), was present in 19% (9/48) of the 
wastewater samples (Fig. 4B). The total number of hepa-
titis B cases reported in the Detroit metropolitan area in 
2020 and 2021 were 3066 and 376, respectively [57, 58]. 
Through the 2021 viral hepatitis surveillance report, a 
decrease of viral hepatitis cases in 2020 and 2021 in the 
USA was reported; however, this should be interpreted 
with caution, since it may be related to fewer people 
being tested for viral hepatitis during the COVID-19 pan-
demic [102]. The Hepacivirus genus, which contains the 
hepatitis C virus (HCV), was present in 63% (30/48) of 
the wastewater samples collected in this study (Fig. 4B). 
Cases of hepatitis C reported in the Detroit metropoli-
tan area in 2020 and 2021 were 2541 and 1739, respec-
tively [57, 58]. The Lymphocryptovirus genus, which 
includes the human-infecting human gammaherpesvirus 
4 (Epstein–Barr virus, EBV) transmitted through bod-
ily fluids, was detected in all of the 48 samples collected 
(Fig. 4B).

There are other viral pathogens which are transmit-
ted to humans through arthropod vectors, like mosqui-
toes and ticks. For example, the genus Flavivirus was 
detected in 23% (11/48) of the wastewater samples in this 
study (Fig. 4B). Within genus Flavivirus, mosquito-borne 
viruses include yellow fever virus, dengue fever virus, 
Japanese encephalitis, West Nile viruses, and zika virus. 
There were eight and two cases of dengue fever reported 
in the study area in years 2020 and 2021, respectively, 
35 and 44 cases of West Nile disease reported in years 
2020 and 2021, respectively, and four and zero cases of 
Zika disease reported in 2020, and 2021, respectively [57, 
58]. The genus Alphavirus consists of infectious viruses 
that cause eastern equine encephalitis (eastern equine 
encephalitis virus [EEEV]), and Chikungunya (chikun-
gunya virus [CHIKV]). Contigs assigned to the genus 
Alphavirus were detected in all of the 48 samples. In 
2019, the largest outbreak of eastern equine encephali-
tis (EEE) ever recorded in Michigan was observed, with 
10 human cases (6 fatal). In 2020, an outbreak of EEE of 
4 human cases occurred in Michigan [103, 104]. There 
were two and one cases of Chikungunya reported in the 
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Detroit metropolitan area in the years of 2020 and 2021, 
respectively [57, 58].

Overall, the detected genera in wastewater are only 
an indication of potential presence of associated viruses 
in the population. The investigation approach needs to 
be further optimized and collaboration between envi-
ronmental researchers, public health officials, and epi-
demiologists needs to be strengthened to maximize the 
application of the wastewater-related data.

Discussion
Respiratory viruses were found to be prevalent in the 
wastewater samples examined in this work, which is 
interesting since typically wastewater surveillance is 
thought as a tool to investigate mainly the waterborne 
or fecal–oral transmitting human viruses [105]. Waste-
water monitoring of respiratory viruses started from 
2009 and has grown rapidly as highlighted by the success 
of wastewater surveillance of SARS-CoV-2 [106]. In a 
proof-of-concept study, multiple respiratory viruses (e.g., 
Bocavirus, Parechovirus, Rhinovirus A, and Rhinovirus B) 
were detected in wastewater samples from four waste-
water treatment plants in Queensland, Australia [106]. A 
range of respiratory virus concentrations in wastewater 
were characterized and analyzed to link virus concentra-
tions in wastewater to disease cases in the community 
[107]. In our study, respiratory viruses including Boca-
parvovirus, Betacoronavirus, Rubivirus, and Erythropar-
vovirus were identified. These indicate that surveillance 
of respiratory viruses in wastewater could be a reliable 
tool to inform the presence or trends of infectious dis-
eases associated with the respiratory virus circulation in 
a community.

It is reported that around 75% of the emerging infec-
tious diseases have a zoonotic origin and through the 
host-virus interactions analyses, rodents and bats are 
among the major reservoirs of zoonotic viruses [108]. 
In this work, numerous potentially zoonotic viruses 
were detected in wastewater in metro Detroit area. Viral 
contigs related to Parapoxvious, Simplexvirus, Mol-
luscipoxvirus, Deltaretrovirus, and Spumavirus, which 
are potentially associated with zoonotic diseases, were 
identified in all of the 48 samples. However, relation-
ships of zoonotic viruses and the associated disease cases 
in a given community remain unclear. By longitudinally 
monitoring the hepatitis E and rat hepatitis E in waste-
water in Cordoba, Spain from March 2021 to March 
2023, Maria et  al. evaluated the possible correlation 
between the detection of hepatitis E and rat hepatitis E 
in wastewater and their clinical cases[109], no correla-
tion was observed through their dataset. Further studies 
are needed to address the relationship between zoonotic 

viruses in wastewater and clinical disease in urban and 
rural settings.

Consistent identification of human viruses in waste-
water and the associated disease cases in clinical data 
highlights the potential application of wastewater sur-
veillance for identifying human virus occurrence in a 
given community. Constructing relationships between 
human viruses in wastewater and clinically confirmed 
cases could be challenging, but beneficial for disease 
control. During the COVID-19 pandemic, both com-
prehensive wastewater surveillance data of SARS-CoV-2 
and clinical data were collected and modeled. Predictive 
intelligence methods have been developed, showing that 
early warning of disease surges can be created by corre-
lating wastewater data with clinical data [6]. Signals from 
sequencing data were correlated to the clinical disease 
cases in a wastewater surveillance study in Houston and 
El Paso in Texas. To be specific, the reads per kilobase of 
transcript per million filtered reads (RPKMF) was used 
to reflect the relative virus levels (i.e., SRAS-CoV-2) in 
a given sample [110]. However, quantification of viruses 
using sequencing and metagenomics approaches is chal-
lenging. If a virus of potential concern is detected during 
diversity screening using metagenomics, follow-up test-
ing with conventional methods such as ddPCR is recom-
mended for quantification.

The approach described in this paper is promising. 
However, it is important to note that human viruses in 
wastewater are diverse and vary in their morphology, 
transmission pathway, and pathogenesis, making it chal-
lenging to detect them all and relate their presence in 
wastewater to the clinical cases reported in the commu-
nity. Limitations of this study are summarized as follows:

Firstly, the untargeted sequencing approach is not 
sensitive enough to identify human viruses at a fine 
taxonomic level in wastewater, which is necessary to 
relate to the diseases circulating in a given community. 
The presented findings in wastewater samples are pri-
marily at the genus level. Viral pathogen analysis at the 
strain or genotype level will help researchers to under-
stand infection and outbreak patterns in communities 
and will provide insights into disease control and pre-
vention. Comprehensive surveillance of specific human 
virus species is necessary to understand the epidemiol-
ogy and potential virulence of outbreaks [47, 48, 111]. 
For the determination of specific infectious agents, com-
plete genomic sequences are desirable to assessing viral 
pathogen threats [112, 113]. Nevertheless, only a few 
near-complete draft genomes of human viruses have 
been identified with untargeted metagenomics in this 
work. Following screening with untargeted metagenom-
ics, targeted capture-based sequencing approaches will 
be beneficial. Targeted capture-based sequencing has 
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been applied in human infectious disease studies [114] 
and recently in the wastewater surveillance field [110]. 
The development of a targeted enrichment methodol-
ogy as well as deep sequencing methodology will enable 
findings of human viruses at a fine level and an improved 
genome coverage, which may offer sensitive and suit-
able estimation of human viruses in circulation and the 
possibility of species or variant frequency investiga-
tion. Secondly, amplification is usually required in viral 
sequencing studies to ensure the sufficient nucleic acids 
needed; we used a random amplification approach in this 
study. The effects of different amplification methods on 
human virus discovery need to be assessed. Thirdly, col-
lection of disease case data in a given community is often 
constrained by resources, human behavior changes, and 
other parameters. Long-term clinical data are difficult 
to collect and most often are not available at all for non-
reportable diseases. In this work, we used public health 
records for clinical datasets in the metropolitan Detroit 
Area in Michigan, which is an area with varied popula-
tion demographics and human behaviors.

Conclusions

• Assembled contigs related to diverse human virus 
genera were detected in raw wastewater samples 
from the Detroit metropolitan area during the 
COVID-19 pandemic. In addition to Betacorona-
virus, detected viruses included Orthopoxvirus, 
Rhadinovirus, Parapoxvirus, Varicellovirus, Hepa-
tovirus, Simplexvirus, Bocaparvovirus, Molluscipox-
virus, Parechovirus, Roseolovirus, Lymphocryptovirus, 
Alphavirus, Spumavirus, Lentivirus, Deltaretrovi-
rus, Enterovirus, Kobuvirus, Gammaretrovirus, Car-
diovirus, Erythroparvovirus, Salivirus, Rubivirus, 
Orthohepevirus, Cytomegalovirus, Norovirus, and 
Mamastrovirus. Identification of virus-related con-
tigs using bioinformatic methods should be used as a 
“screening” tool that will indicate the need for further 
testing.

• Nearly complete draft genomes of Astrovirus, 
Betapolyomavirus, Norovirus, and Enterovirus were 
recovered in a few of the collected 48 samples, show-
ing that this method can pinpoint circulating patho-
gens at the species or genotype level. However, tar-
geted sequencing is still required to investigate the 
spatial and/or temporal pattern of many pathogens at 
a finer resolution.

• The presence of some human viruses in wastewater 
was associated with reported clinical disease cases 
in the community. Some of the detected viral-related 
sequences belonged to human viruses that are not 

reported by the local health department. Under-
standing the relationships between the occurrence 
and abundance of human viruses in wastewater and 
associated diseases circulating in the community 
will require more evidence regarding mechanisms of 
pathogenesis, transmission of human viruses into the 
human body, and the potential symptoms of diseases.
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