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Gene expression analysis reveals 
diabetes-related gene signatures
M. I. Farrim1,2, A. Gomes1, D. Milenkovic3 and R. Menezes1* 

Abstract 

Background Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pan-
creatic β-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes 
(T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strate-
gies focusing on restoring β-cell mass and β-cell insulin secretory capacity may impact disease management. This 
study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated 
gene expression data to unveil novel potential molecular targets associated with β-cell dysfunction.

Methods A comprehensive literature search for human studies on gene expression alterations in the pancreas 
associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioin-
formatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together 
with protein–protein interaction networks and the identification of potential transcription factors (TFs). For noncod-
ing differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory 
activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental 
for establishing a robust regulatory network.

Results Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides 
alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcrip-
tion factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. 
Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabo-
lism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway 
emerged as the only common pathway to all datasets.

Conclusions This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene 
expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds 
promise in modulating α-cells transdifferentiation into β-cells.
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Introduction
Diabetes is among the most common chronic diseases 
worldwide and continues to increase as changing life-
styles lead to increased obesity. According to the 2021 
report from the International Diabetes Federation (IDF), 
the global diabetes prevalence in 20–79-year-olds in 2021 
was estimated to be 10.5% (536.6 million people), ris-
ing to 12.2% (783.2 million) in 2045 [1]. Despite efforts 
to advance knowledge about the disease and to develop 
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novel therapeutic strategies, diabetes still represents a 
significant social and economic burden partially due to 
the lack of effective therapeutics to prevent β-cell loss 
and dysfunction. People with type 1 (T1D) and type 2 
(T2D) diabetes represent two different phenotypes con-
cerning age at onset, diabetes duration, and lifetime gly-
cemic load [2]. However, loss of β-cell mass and function 
with subsequent insulin deficiency represent important 
events in disease pathogenesis. Therefore, restoring func-
tional pancreatic β-cells is the biggest challenge in treat-
ing diabetes [3].

In recent years, the focus of research on the mecha-
nisms of diabetes has shifted to the molecular level, 
including the study of disturbed epigenetic modifications 
and abnormal noncoding RNA (ncRNA) expression [4, 
5]. The cell’s biological system is incredibly complex and 
includes components at different levels of gene expres-
sion, such as DNA, messenger RNA (mRNA), ncRNAs 
such as microRNAs (miRNAs) and long noncoding 
RNAs (lncRNAs), and proteins. Each of these levels can 
be modulated by different elements causing alterations 
in cell function [6]. MiRNAs and lncRNAs are single-
stranded RNA molecules of approximately 22 and more 
than 200 nucleotides in length, respectively [7]. They are 
involved in the regulation of different processes, includ-
ing the cell cycle and cellular differentiation, with pos-
sible roles in multiple physiological and pathological 
processes, such as cell interactions, immune responses, 
and other cellular functions, via post-translational modi-
fications. Recent studies have linked the role of some 
miRNAs and lncRNAs with diabetes pathogenesis in cell 
functions associated with insulin function, β-cell activity, 
and glucose metabolism [8–10]. Moreover, studies sug-
gest that ncRNAs may serve as modulators and diagnos-
tic markers of diabetic cardiovascular disease [11].

Owing to the multifactorial and complex processes 
underlying diabetes pathophysiology, traditional bench 
science, where only one level of gene expression regula-
tion is evaluated, provides an incomplete picture of the 
mechanisms involved [12]. Genomics strategies are put 
in place to overcome this limitation by integrating two 
or more types of genomic data to create a global network 
of biological interactions [6]. Data-driven research based 
on integrative genomics has the potential to unravel dis-
ease mechanisms and has become indispensable for the 
deep understanding of the physiological processes and 
complex mechanisms underlying disease onset and pro-
gression of heterogeneous diseases such as diabetes [9, 
12, 13]. Large-scale studies of data compiled from dif-
ferent genomic studies can alleviate the biases of indi-
vidual studies and unveil possible disease biomarkers and 
molecular targets amenable to therapeutic intervention 
[6].

Integrated genomics studies are still scarce in the con-
text of diabetes [14], mainly in T1D. Concerning T2D, 
several studies using individual genomics approaches 
have been reported; however, these tend to be under-
powered due to small sample sizes and lack of consen-
sus on the protocols used, yielding inconsistent findings 
[9]. Notwithstanding, further integrative studies are still 
needed to compile data from complementary omics to 
add more pieces to the puzzle of the molecular mecha-
nisms underlying diabetes pathogenesis [9, 15].

To fill this knowledge gap, we used publicly available 
data on gene expression and regulatory noncoding RNAs 
and integrated these data using computational biology 
to identify molecular targets and networks associated 
with diabetes. The integrated analysis of protein-coding 
genes, miRNAs, and lncRNAs identified several pathways 
involved in the regulation of cellular functions, such as 
metabolism, cell signaling, the immune system, cell adhe-
sion, and interactions. The GABAergic synapse pathway 
was identified as the common pathway to all analyses. 
The regenerative capacity of γ-aminobutyric acid (GABA) 
has been studied in conditions of β-cell depletion, where 
GABA seems to contribute to the transdifferentiation of 
α-cells into β-cells. Our study reinforces the importance 
of this pathway as a potential target for improving insulin 
production in diabetes.

Methods
Strategy for literature research and data extraction
Literature on diabetes-associated gene expression altera-
tions in PubMed was conducted from May to June 2022 
for combinations of the keywords “diabetes,” “β-cells,” 
“β-cell dysfunction” and “insulin-producing cells.” The 
inclusion criteria were as follows: (1) studies evalu-
ating pancreatic islet samples; (2) studies reporting 
donors without diabetes (ND) and donors with diabe-
tes (DD); and (3) studies providing publicly available 
annotation data (Fig.  1). Only human studies with pub-
licly available datasets and that considered a control 
group (non-diabetic individuals) were used. Six studies, 
denoted as GSE164416 [16], GSE25724 [17], GSE20966 
[18], GSE76894 [19], GSE86473 [20], and GSE124742 
[21] (Table  1), were selected for data collection. For 4 
of the studies (GSE25724, GSE164416, GSE20966 and 
GSE76894), the data were analyzed with GEO2R tool, 
available at the Gene Expression Omnibus (GEO) reposi-
tory. The samples were divided into DD vs ND groups, 
and the following settings were applied: Benjamini & 
Hochberg was used for p value adjustment with a sig-
nificance cutoff of 0.05. No log transformation or forced 
normalization was applied. For the 2 remaining studies 
(GSE86473 and GSE124742), the differently expressed 
genes (DEGs) were obtained from the supplementary 
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material available with the original article. Both stud-
ies used methods previously validated and applied R and 
python scripts to obtain DEGs.

Table 1 contains the details of the selected studies with 
the respective accession numbers after the selection pro-
cess. The full table of differentially expressed genes iden-
tified for each study analyzed can be found in Additional 
file 1.

Bioinformatic analysis
To account for changes within datasets, each dataset was 
first analyzed individually. Only differentially expressed 
genes (p value < 0.05) were extracted and subjected to 
bioinformatic analyses. The ShinyGO [22] (http:// bioin 

forma tics. sdsta te. edu/ go/) online tool was used for the 
identification of the different types of RNA (mRNA, 
lncRNA, miRNA) present in the studies.

Individual genomics‑layer network construction
mRNA network
Potential transcription factors (TFs) were identified 
with the bioinformatic tool Enrichr [23] (https:// amp. 
pharm. mssm. edu/ Enric hr/) as a platform to interrogate 
two transcription factor databases, TRRUST [24] and 
TRANSFAC [25]. The ClustVis [26] (https:// biit. cs. ut. 
ee/ clust vis/) tool was used to generate the fold-change 
heatmap.

Fig. 1 Flowchart of the studies selected for bioinformatic analysis

http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://biit.cs.ut.ee/clustvis/
https://biit.cs.ut.ee/clustvis/
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Protein network
For the protein‒protein interaction (PPI) network, 
STRING [27] (Protein‒Protein Interaction Networks 
Functional Enrichment Analysis) software v11.5 (https:// 
string- db. org/) was used to identify the interactions 
between nodes that had a confidence score of 0.7. The 
proteins with no connections were removed from the 
network.

lncRNA and miRNA networks
LncRNAs and their respective targets were identified 
using the online tool LncRRIsearch [28] (http:// rtools. 
cbrc. jp/ LncRR Isear ch/ index. cgi? t4= & hist= & em= 
em15) considering the energy threshold of -20 kcal/mol. 
miRNA and the respective targets were identified using 
the online tools miRBase [29] (https:// www. mirba se. org/ 
index. shtml) and MIENTURNET [30] (http:// userv er. bio. 
uniro ma1. it/ apps/ mient urnet/). Only the targets with p 
value < 0.05 were considered for further analysis.

Pathway analysis
Pathway enrichment analyses were conducted using the 
bioinformatic tool GeneTrail [31] v.3.2 (https:// genet 
rail2. bioinf. uni- sb. de/) to access the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [32] and WikiPathways 
databases. The following settings were applied: over-
representation analysis with a two-sided null hypothesis 
and no adjustment of the p value. Only the pathways with 
a p value < 0.05 were analyzed, and the pathways associ-
ated with other diseases (such as cancer, infections, and 
others) were removed. R studio software 2023.03.0 + 386 
with the package “ggplot2” was used to generate the bub-
ble plots.

Multilayer integration and network analysis
InteractiVenn [33] (http:// www. inter activ enn. net/) was 
used to discover common elements between differ-
ent datasets. In Cytoscape software [34] (version 3.10; 
https:// cytos cape. org/), interactions between mRNA-
TFs, miRNA-targets, lncRNA-targets, and protein‒
protein were visualized. The KEGG Mapper database 
(https:// www. genome. jp/ kegg/ mapper/ color. html) tool 
was used to visualize and construct the GABAergic 
synapse pathway. Genes associated with diabetes were 
retrieved from the Genome-Wide Association Studies 
(GWAS) Catalog (https:// www. ebi. ac. uk/ gwas/).

Results
Study selection and analysis
A comprehensive search on PubMed, conducted in 
May–June 2022, identified 98 publications. The litera-
ture search was conducted with combinations of the fol-
lowing keywords: diabetes, β-cells, β-cell dysfunction, 
and insulin-producing cells (Fig. 1). After the removal of 
duplicates and records outside the intended scope, this 
number dropped to 52 manuscripts, which were further 
screened and assessed for eligibility. A detailed full-text 
analysis of these 52 studies led to the exclusion of 44 
studies reporting animal and in  vitro studies as well as 
manuscripts with non-available data in public databases 
or that did not consider a control group (individuals with-
out diabetes). A total of 6 studies, denoted as GSE164416 
[16], GSE25724 [17], GSE20966 [18], GSE76894 [19], 
GSE86473 [20], and GSE124742 [21] (Table  1), were 
selected for data extraction and considered eligible for 
bioinformatic analysis. They included only reports with 
significant changes in gene expression of pancreatic islets 

Table 1 Characterization of the studies selected for bioinformatic analysis

ND individuals without diabetes, T2D individuals with type 2 diabetes, T1D individuals with type 1 diabetes, FACS fluorescence-activating cell sorting

Study Dataset Human pancreatic 
islets samples

Sample isolation method Protocol design

Total n° Type

Doi: https:// doi. org/ 10. 1038/ 
s42255- 021- 00420-9

GSE164416 57 18 ND, 39 T2D Laser capture microdissection SMART-seq
Illumina Hiseq 2500 or 500

Doi: https:// doi. org/ 10. 1074/ jbc. 
M110. 200295

GSE25724 13 7 ND, 6 T2D Collagenase digestion followed 
by density gradient purification

HG- U133A Affymetrix chips

Doi: https:// doi. org/ 10. 1371/ journ al. 
pone. 00114 99

GSE20966 20 10 ND, 10 T2D Laser capture microdissection DNA-Chip Analyzer

Doi: https:// doi. org/ 10. 1007/ 
s00125- 017- 4500-3

GSE76894 103 84 ND, 19 T2D Enzymatic digestion or laser cap-
ture microdissection

Affymetrix Human Genome U133 
Plus 2.0 Array

Doi: https:// doi. org/ 10. 1101/ gr. 
212720. 116

GSE86473 8 5 ND, 3 T2D Cultured and isolated via C1 inte-
grated fluidic circuit

SMART-seq2
Illumina NextSeq500

Doi: https:// doi. org/ 10. 1016/j. cmet. 
2020. 04. 005

GSE124742 6 3 ND, 3 T1D Patch-seq and FACS SMART-seq2
Illumina NextSeq500 or Novaseq 
platform

https://string-db.org/
https://string-db.org/
http://rtools.cbrc.jp/LncRRIsearch/index.cgi?t4=&hist=&em=em15
http://rtools.cbrc.jp/LncRRIsearch/index.cgi?t4=&hist=&em=em15
http://rtools.cbrc.jp/LncRRIsearch/index.cgi?t4=&hist=&em=em15
https://www.mirbase.org/index.shtml
https://www.mirbase.org/index.shtml
http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
https://genetrail2.bioinf.uni-sb.de/
https://genetrail2.bioinf.uni-sb.de/
http://www.interactivenn.net/
https://cytoscape.org/
https://www.genome.jp/kegg/mapper/color.html
https://www.ebi.ac.uk/gwas/
https://doi.org/10.1038/s42255-021-00420-9
https://doi.org/10.1038/s42255-021-00420-9
https://doi.org/10.1074/jbc.M110.200295
https://doi.org/10.1074/jbc.M110.200295
https://doi.org/10.1371/journal.pone.0011499
https://doi.org/10.1371/journal.pone.0011499
https://doi.org/10.1007/s00125-017-4500-3
https://doi.org/10.1007/s00125-017-4500-3
https://doi.org/10.1101/gr.212720.116
https://doi.org/10.1101/gr.212720.116
https://doi.org/10.1016/j.cmet.2020.04.005
https://doi.org/10.1016/j.cmet.2020.04.005
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from human donors, analyzed by microarray, RNA-seq, 
and single-cell sequencing. The study selection pro-
cess for bioinformatic analysis is depicted in Fig. 1. The 
study population comprises 5 studies including T2D and 
ND donors (GSE164416 [16], GSE25724 [17], GSE20966 
[18], GSE76894 [19], GSE86473 [20]) and 1 study includ-
ing T1D and ND donors (GSE124742 [21]). Males and 
females were found in equal numbers in all studies. The 
average age of donors was 55  years old, with donors in 
the T1D study being younger (an average age of 32 years 
old). The body mass index (BMI) of the donors ranged 
between 23 and 34 kg/m2.

Integrated analysis of differentially expressed genes 
and pathways
The number of DEGs between ND/DD samples in each 
study varied from 868 to 7083. Among these, differen-
tially expressed mRNAs, lncRNAs, and miRNAs were 
analyzed for each study (Table  2). Globally, ~ 96.9% of 
the genes corresponded to protein-coding genes, 2.6% to 
lncRNAs, and nearly 0.5% to miRNAs. These data indi-
cate that not only protein-coding genes but also regula-
tory RNAs such as lncRNAs and miRNAs are altered in 
DD samples. Comparisons of DEGs among the 6 studies 
showed 59 genes in common among 4 or more studies 
(Fig.  2A). The fold change of these genes was evaluated 
in the different studies, showing that generally ~ 59.3% of 
the DEGs were upregulated, while ~ 40.7% were down-
regulated. Notwithstanding, there were dissimilarities 
in the pattern of regulation between different studies, as 
observed by the different colors in the heatmap (Fig. 2B).

The differentially expressed protein-coding genes from 
each study were subjected to pathway enrichment analy-
ses using GeneTrail, and the pathways common to at least 
4 studies are represented in Fig. 2C. The studies analyzed 
by microarrays had a higher number of altered pathways 
and several hits. These pathways are involved in cell sign-
aling of HIF-1, FoxO, GnRH, TGF-β, the immune system, 
including cytokine interactions and antigen presentation, 

cell adhesion and interactions, metabolism, nervous 
system-like axon guidance, and other cellular functions, 
such as proteasome and apoptosis. Olfactory transduc-
tion appeared to be a common pathway in all the studies. 
Although not common to all the studies, metabolic path-
ways had the highest number of hits.

Protein‒protein interaction analysis
Potential interactions among proteins encoded by the 
genes identified as differentially expressed in diabetes 
were explored using the STRING database. The analysis 
revealed a network of interactions between different pro-
teins that form nodes in the network (Fig. 3A). We next 
selected the proteins with the highest number of interac-
tions potentially playing important roles in the regulation 
of different cellular functions. The number of interac-
tions reached 29 for ACTB (β Actin), 19 for HSPA5 (Heat 
Shock Protein Family A), 18 for INS (Insulin), 15 for 
GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase), 
and 14 for ACTG1 (Actin γ-1) and PKCA (Protein Kinase 
C α). Interestingly, pathway enrichment analysis of the 
top 13 proteins (ACTB, HSPA5, INS, GAPDH, ACTG1, 
PKCA, SMAD3, ACTR2, CDKN1A, MDM2, ACTR3, 
B2M and NCK1) with more interactions, conducted in 
GeneTrail, revealed that these proteins are involved in 
insulin secretion, regulation of actin cytoskeleton, tight 
junction, FoxO and HIF-1 signaling pathways, among 
others (Fig. 3B).

Transcription factors regulating the expression 
of diabetes‑modulated genes
Using the Enrichr platform, the next step was to take 
the gathered data on differentially expressed genes to 
search for potential TFs whose regulatory function could 
be modulated by  diabetes. We identified 178 transcrip-
tion factors, from which 16 potential TFs were found 
to be common to 3 or more studies: ataxia telangiecta-
sia mutated (ATM), androgen receptor (AR), homeodo-
main interacting protein kinase 2 (HIPK2), Kruppel-like 

Table 2 Different types of RNA present in each study

mRNA messenger RNA, lncRNA long noncoding RNA, miRNA microRNA

Data set mRNA lncRNA miRNA Total

N % N % N %

GSE164416 868 90.70 89 9.30 0 0.00 957

GSE25724 7083 97.95 94 1.30 54 0.75 7231

GSE20966 4240 95.41 204 4.59 0 0.00 4444

GSE76894 5626 96.92 132 2.27 47 0.81 5805

GSE86473 2299 99.27 15 0.65 2 0.09 2316

GSE124742 1999 96.85 63 3.05 2 0.10 2064
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factor 5 (KFL5), MYCN proto-oncogene BHLH tran-
scription factor (MYCN), nuclear factor kappa B subunit 
1 (NFKB1), paired like homeodomain 1 (PITX1), peroxi-
some proliferator activated receptor gamma (PPARG), 
RELA proto-oncogene NF-KB subunit (RELA), reti-
noid X receptor α (RXRA), Sp1 transcription factor 
(SP1), signal transducer and activator of transcription 

1 (STAT1), signal transducer and activator of transcrip-
tion 3 (STAT3), tumor protein p53 (TP53), tumor protein 
p73 (TP73) and zinc finger protein 148 (ZNF148) (Fig. 4). 
The network construction showed the interconnectiv-
ity between the main TFs and their extensive network 
with more than 4000 targets (Additional file  2: Fig. S1). 
Therefore, the activity of these TFs could be affected by 

Fig. 2 Differentially expressed genes (DEGs) in the selected studies. A Venn diagram of DEGs from each study and their intersections. The genes 
presented are common to at least 4 selected studies. B Heatmap of the DEGs common to at least 4 of the studies. Class 1 and Class 2 correspond 
to microarrays and RNA-seq/single-cell studies, respectively. Red and blue colors represent up- and downregulated genes, respectively. C 
Bubble plot of the functional enriched pathways of the mRNA genes for each study. The size and color of the dots represent the number of hits 
and the range of the pathway’s p values, respectively. KEGG pathways are represented with no asterisk, WikiPathways with *, and pathways common 
to both databases are represented with **
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diabetes and be responsible for the regulation of identi-
fied differentially expressed genes.

LncRNAs and miRNAs expression altered in diabetes
The gene expression data allowed the identification of 
altered expression patterns of noncoding RNAs, particu-
larly miRNAs and lncRNAs, associated with diabetes.

Changes were observed in the expression of 597 lncR-
NAs, of which 13 were common to at least 3 studies 
(Fig. 5A). The lncRRIsearch database was used to search 

for the target genes of the identified lncRNAs, and ~ 960 
target genes were identified for the 13 common lncR-
NAs. The network of interactions among the identified 
lncRNAs and their target genes is presented in Fig.  5C. 
Identification of lncRNA-associated cellular functions 
was performed using the respective target genes to reveal 
pathways from GeneTrail. Metabolic pathways, retro-
grade endocannabinoid signaling, and circadian entrain-
ment were a few of the main pathways identified in these 
analyses (Fig. 5E).

Fig. 3 Functional interaction of common differentially expressed proteins. A Network of protein‒protein interactions with a confidence score 
of 0.7. B Heatmap of the pathways associated with the proteins with the highest number of interactions. Each protein is represented by a different 
color. KEGG pathways are represented with no asterisk, WikiPathways with *, and pathways common to both databases are represented with **

Fig. 4 Differentially expressed transcription factors (TFs) and targets. Venn diagram of the differentially expressed TFs for the different studies. Only 
the TFs highlighted are common to at least 3 of the publications in the analysis
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Four studies reported changes in the expression of 105 
miRNAs associated with diabetes, of which 20 were com-
mon between 2 studies (Fig. 5B). The target genes of these 
miRNAs were identified using MIENTURNET, which 
revealed 539 target genes. These data were used to con-
struct a network of miRNAs and their targets (Fig. 5D). 
Functional enrichment analysis was performed using 
GeneTrail, which allowed the identification of apoptosis, 
MAPK, and TGF-β/TGF-β receptor signaling as cellular 
pathways significantly affected by miRNAs common to at 
least 2 studies (Fig. 5F).

These results support the notion that diabetes is associ-
ated with altered expression of specific noncoding RNAs, 
such as lncRNAs and miRNAs, that can affect many 
genes in different pathways.

Integrated functional analysis
The key players for each RNA type (mRNA, lncRNA, 
and miRNA) and associated proteins were integrated 
into a functional analysis to uncover potential diabetes 
markers. As expected, pathways associated with T1D, 
T2D and maturity-onset diabetes of the young appeared 
altered in mRNA and associated proteins. Insulin signal-
ing, secretion, and resistance were also altered. Several 
signaling pathways (e.g., MAPK, FoxO, PI3K-Akt) were 
altered. Retrograde endocannabinoids, growth hormone 
processing and secretion, glutamatergic, dopaminergic 
and cholinergic synapses, carbon metabolism and amino 
acid synthesis, and apoptosis were some of the pathways 
common to three groups. The enriched pathway analysis 
of DEGs, proteins, and targets of miRNAs and lncRNAs 
showed a common pathway to all players, the GABAer-
gic synapse (Fig. 6A). This pathway is regulated at differ-
ent levels, schematically represented in Fig. 6B, in which 
intervening components of the pathway are regulated by 
several TFs, miRNAs, and lncRNAs shown to be differen-
tially expressed in DD.

Comparative analysis with genome‑wide association 
studies
The association of diabetes-modulated genes from the 
GWAS catalog and the DEGs obtained in this study 
revealed 67 common genes (Fig.  7A). To gain further 
insight into the effects of diabetes, we performed a 

functional enrichment analysis of these common genes 
using GeneTrail. The top 20 pathways with a higher num-
ber of hits were associated with T2D, glucagon, insulin, 
MAPK, and Ras signaling and endocytosis, among others 
(Fig. 7B).

Discussion
Diabetes pathogenesis is not yet fully understood due 
to the heterogeneity and complex underlying disease 
mechanisms. The loss of pancreatic β-cell mass, by either 
autoimmune destruction or apoptosis, represents a 
pathophysiological process leading to insulin deficiency 
in diabetes. Therapeutic strategies focusing on restor-
ing β-cell mass and β-cell insulin secretory capacity may 
impact disease management. Thus, this study aimed to 
investigate diabetes-related gene expression studies to 
uncover molecular targets and networks associated with 
diabetes.

Over the years, transcriptomic studies have shed light 
on common molecular mechanisms underlying T1D 
and T2D and the early molecular changes associated 
with insulin resistance and impaired fasting glucose [35]. 
Nevertheless, while individual analysis pinpoints rel-
evant mechanisms, the integrated and combined analy-
sis of multiple levels emerges as a promising approach to 
comprehending disease-linked mechanisms. Integrated 
strategies have the power to expand our knowledge of 
disease-related determinants that can be used as bio-
markers of disease onset and progression [36]. Despite 
the massive data provided by different studies, limitations 
and challenges still affect the results, from the choice of 
materials to the methods applied [35].

In this study, several diabetes-associated components 
were identified through the analysis and integration of 
gene expression, lncRNAs, and miRNAs data. As pre-
dicted, the highest percentage of significantly altered 
genes corresponded to protein-coding genes. Most of 
these genes were upregulated, as is generally found in 
most studies [15, 37]. These genes are typically involved 
in pathways such as cell signaling, the immune system, 
cell adhesion and interactions, metabolism, and the nerv-
ous system, among other cellular functions, revealing 
dysregulated activation of several β-cell mechanisms.

(See figure on next page.)
Fig. 5 Differentially expressed long noncoding RNA (lncRNA) and microRNA (miRNA) networks and functional pathways. A, B Venn diagram 
of the differentially expressed lncRNAs and miRNAs, respectively. The names of lncRNAs common to at least 3 of the studies are shown. C, D 
Interaction network of common differentially expressed lncRNAs and miRNAs, respectively. The RNAs correspond to the nodes and their respective 
targets on the edges. E, F Bubble plot of the functional enriched pathways of lncRNA and miRNA targets for each study, respectively. KEGG 
pathways are represented with no asterisk and WikiPathways with *. The size and color of the dots represent the number of hits and the range 
of the pathway’s p value, respectively
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Metabolic pathways, although not common to all stud-
ies, have the highest number of hits and altered genes. 
Many of these altered genes are mainly involved in 
mitochondrial function and oxidative phosphorylation, 
carbon metabolism, and amino acid synthesis. Several 
studies have highlighted the association between mito-
chondrial dysfunction and β-cell dysfunction. Moreover, 
mitochondrial dysfunction in many tissues can contrib-
ute to diabetes pathogenesis and complications in several 
ways [38]. An increase in oxidative stress due to mito-
chondrial dysfunction can cause functional alterations in 
proteins, lipids and nucleic acids, and interfere with dif-
ferent cellular processes [39]. Additionally, mitochondrial 
metabolism is crucial for the coupling of amino acids 
that, under appropriate conditions, can stimulate insu-
lin secretion. In fasting periods, a few amino acids may 
modulate glucagon release from pancreatic α-cells, which 
then influences insulin secretion from β-cells [40]. Fur-
ther supporting the link between mitochondrial function 
and amino acid metabolism, this study also identified 
several genes associated with amino acid synthesis, such 
as ALDOB, ARG2, ENO1, and GLU, which are differen-
tially expressed under diabetic conditions.

Olfactory transduction appears to be a common path-
way in all studies. Changes in olfactory sensitivity and 
loss of olfactory function were reported both in T1D and 
T2D [41]. Moreover, it was shown that olfactory impair-
ment is a predictive clinical sign of neurological defects 
in elderly people with T2D. Hence, olfactory alterations 
could be used as an early biomarker to detect incom-
ing cognitive problems in the context of metabolic dis-
eases [41]. An increasing number of olfactory receptors 
that mediate chemo-sensing in olfactory transduction in 
neurons have been identified in insulin-producing pan-
creatic islets, mainly in α- and β-cells. Previous studies 
have shown that olfactory receptors in pancreatic α- and 
β-cells can modulate glucagon and insulin secretion, 
respectively, in a cell-autonomous manner [42]. This sys-
tem can modulate glucose metabolism and be a poten-
tial therapeutic target for diabetes by enhancing insulin 
secretion [42].

Interestingly, the FoxO signaling pathway was also 
altered in 4 of the 6 studies selected for the analysis. FoxO 
proteins are transcription factors involved in numer-
ous physiological processes and various pathological 

conditions, including diabetes. In particular, FoxO1 is 
an important regulator of pancreatic β-cell function, 
improving cell compensation under metabolic stress, and 
it also regulates α-cell mass by controlling Arx expres-
sion [43, 44]. Furthermore, the loss of FoxO1 signaling in 
response to metabolic stress promotes the dedifferentia-
tion of β-cells to a cell type similar to endocrine progeni-
tors. Additionally, studies have identified dedifferentiated 
β-cells in human islets from diabetic donors and showed 
that these cells can start expressing glucagon, becoming 
functionally similar to α-cells [44].

Regarding the pathways encountered in the differ-
ent original publications, several pathways are common. 
Pathways associated to metabolism (mainly glucogen-
esis), cell signaling and diabetes (T2D and maturity-onset 
diabetes of the young (MODY)) are present in most of 
the studies. Moreover, alterations associated with insu-
lin signaling were found in GSE86473 and GSE76894. 
Additionally, changes in cell adhesion, immune response, 
apoptosis, mitochondrial function, and proteosome, 
were suggested in GSE86473, GSE164416, GSE20966 and 
GSE124742. Also, Wnt and Il-1 signaling pathways were 
described in GSE76894 and GSE124742. Furthermore, 
GSE124742 points to alterations on the regulation of 
β-cell development, ion channel transport, notch signal-
ing, regulation of gene expression in β-cells. Interestingly, 
GSE76894 refers alterations in GABA receptor signaling 
pathway.

However, the differences previously reported for gene 
expression between the studies are also reflected on path-
way analysis. Apart from the differences intrinsic to the 
different samples, the diversity of statistical methods 
(over-representation analysis vs. gene set enrichment 
analysis and different p value adjustment methods) and 
database resources (KEGG, WikiPathways, Gene ontol-
ogy) applied could also account for the differences found.

The expression of genes and proteins can also be regu-
lated post-transcriptionally by noncoding RNAs, such as 
lncRNAs and miRNAs. Both lncRNAs and miRNAs have 
been shown to execute vital roles in the regulation of dia-
betes pathophysiological processes [7].

Recent studies have shown changes in lncRNA expres-
sion in individuals with diabetes or animal models of the 
disease. This suggests that lncRNAs may play impor-
tant roles in the regulation of β-cell function, impacting 

Fig. 6 Integrated functional analysis. A Heatmap showing the main enriched pathways common to the differentially expressed components 
messenger RNA (mRNA), long noncoding RNA (lncRNA), microRNA (miRNA), and proteins. The colors represent the number of hits for each type. 
B GABAergic synapse functional pathway interactions and regulation of altered factors. The transcription factors (TFs) regulating differentially 
expressed mRNA genes are represented in blue. Modulations by lncRNAs and miRNAs are represented in green and red, respectively. The protein 
identified is in yellow

(See figure on next page.)
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insulin secretion and glucose metabolism, which are 
often dysregulated during pancreatic β-cell differen-
tiation [8]. A fraction of β-cell lncRNAs are cell-specific 
and are activated during β-cell differentiation. This lncR-
NA’s cellular specificity has also been reported in other 
cell types, suggesting a role for lncRNAs in the regula-
tion of lineage-specific differentiation or specialized 

cellular functions [45]. They can also contribute to dia-
betes complications by altering mechanisms involved in 
inflammation, endoplasmic reticulum (ER) stress, and 
mitochondrial dysfunction [46].

For the differentially expressed lncRNAs identified, 
MIR7-3HG, LINC01116, HIF1A, MEG3, XIST, NEAT1, 
and HHLA3 have been previously associated with some 

Fig. 7 Integrative analysis with genome-wide association studies (GWAS). A List of genes common between the GWAS Catalog for diabetes 
and the list of differentially expressed genes (DEGs) common for mRNA, lncRNA and miRNA obtained in this study. B Histogram of the top 20 
altered pathways. KEGG pathways are represented with no asterisk, WikiPathways with *, and pathways common to both databases are represented 
with **
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form of diabetes and diabetes-associated complica-
tions [8, 47–52]. MEG3 is downregulated in the islets 
and blood of individuals with diabetes, and in a murine 
β-cell line (MIN6), MEG3 seems to regulate insulin 
synthesis and secretion since its absence reduced the 
expression of key factors for β-cell function (PDX-1 and 
MAFA), decreasing insulin synthesis [8, 52]. NEAT1 is 
overexpressed in individuals, and it is highly expressed in 
hyperglycemia conditions affecting inflammatory path-
ways [53, 54]. MIR7-3HG was shown to ameliorate dex-
amethasone-induced dysfunction in β-cells through the 
PI3K-AKT signaling pathway [47].

Regarding the altered lncRNA-associated pathways, 
the results are in accordance with those of the protein-
coding genes in the sense that metabolic pathways have 
the highest number of genes involved, and olfactory 
transduction is altered in almost all studies. Additionally, 
the pathways of lysine degradation and circadian entrain-
ment were also altered in all studies. Similarly, these 
pathways were enriched in the miRNA analysis along 
with pathways associated with inflammation, cellular 
signaling, and apoptosis, as will be discussed next.

MiRNAs are highly stable and can be found in sev-
eral tissues and body fluids, including human peripheral 
blood, suggesting that they can be a source of accessible 
biomarkers of the disease [7]. Over the years, an increas-
ing number of miRNAs have been associated with diabe-
tes pathogenesis. Dysregulation of miRNAs can lead to 
profound impairment of glucose metabolism since they 
can affect β-cells through different mechanisms, such as 
apoptosis, proliferation, differentiation, or altered func-
tion, particularly insulin secretion [55]. In pancreatic 
islets, most studies this far have investigated the role 
of single miRNAs and suggest that some miRNAs can 
exert compensatory effects on β-cells and others impact 
insulin secretion through miRNA-mediated dysfunc-
tion. However, it is suggested that islet function is regu-
lated by miRNA groups rather than single miRNAs. A 
regulatory network resorting to whole-genome data and 
bioinformatic tools to scrutinize diabetes-related differ-
entially expressed miRNAs and their targets can provide 
more accurate information about the pathophysiology 
of the disease [56]. Among the specific islet miRNAs 
found to be altered in our study, miR-24-3p, miR7110-3p, 
miR3652, miR-4745-5p, and miR224-5p were increased 
in diabetes conditions [57–[62]. For example, miR7110 
was present in individuals with T1D, and IGF2BP2 
(insulin-like growth factor 2 mRNA binding protein 2) 
is a direct target of this miRNA [58]. Furthermore, miR-
24-3p interferes with the PI3K/AKT pathway, which has 
an important role in cell proliferation and differentiation 
[63]. Nevertheless, studies about the specific mechanisms 
and targets through which miRNAs function in diabetes 

and their impact on β-cell dysfunction are still scarce 
[64].

Furthermore, transcription factors can be responsible 
for the regulation of the DEGs. In this study, we identi-
fied 16 potential TFs that could regulate some of the 
altered genes. Among these, HIPK2 activity has been 
found to be affected by hyperglycemia conditions and 
also influences the activity of PDX-1 [65, 66]. Addition-
ally, KLF5 interacts with FOXO1 and is suggested to be 
involved in T1D and T2D, and in diabetic complications 
[67, 68]. PPARG and RXR have been suggested as thera-
peutic targets for T2D, due to PPARG role in regulating 
genes associated to glucose homeostasis [69], and RXR 
for regulating glucose-stimulated insulin secretion and 
affecting a number of genes that have been implicated 
in β-cell function and differentiation [70]. STAT1 medi-
ates β-cell dedifferentiation, inflammation and apoptosis 
pathways [71]. Lastly, STAT3 expression has been asso-
ciated with β-cell dysfunction and promotion of neona-
tal diabetes [72]. Moreover, STAT3 has been suggested 
to play a role in regulating cellular plasticity and in α- to 
β-cell transdifferentiation [73].

The integrated analysis showed several altered path-
ways common to at least 3 groups. For example, the 
endocannabinoid pathway can contribute to β-cell loss 
by modulating inflammatory and cell death mechanisms, 
and dysregulation in this system can have deleterious 
effects on glucose metabolism and insulin sensitivity 
[74]. The prevalence of different altered synapses, such 
as glutamatergic, dopaminergic and cholinergic synapses, 
agrees with recent studies that show impairment in syn-
aptic processes as a result of defects in insulin action, 
suggesting that neurotransmitter systems are susceptible 
to insulin signaling abnormalities [75]. Moreover, other 
signaling pathways (e.g., MAPK, FoxO, and PI3K-Akt) 
were also identified. PI3K-Akt signaling is vital for insulin 
function, and in diabetes, impairments in this pathway 
can lead to insulin resistance by inducing oxidative stress, 
protein accumulation and misfolding, mitochondrial dys-
function, inflammation, and apoptosis [76].

GABAergic synapses emerge as a common pathway for 
all players. γ-Aminobutyric acid (GABA) is an impor-
tant neurotransmitter that is highly produced in the 
central nervous system and is also expressed in pancre-
atic β-cells. In pancreatic islets, GABA is associated with 
auto- and paracrine signaling between endocrine cells. 
Several studies have shown that this neurotransmitter is 
involved in glucose-responsive insulin and negatively reg-
ulates glucagon release. Dysregulation of α-cell glucagon 
secretion contributes to hyperglycemia present in T1D 
and T2D. Furthermore, GABA content is reported to be 
reduced in human islets from T1D and T2D donors, and 
the functional consequences of this process have not been 
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studied [77]. Remarkably, this study reveals that several 
players in this system, including glutamic acid decarbox-
ylase (GAD) and  GABAA receptor, which are essential for 
GABA metabolism, are regulated by miRNAs and lncR-
NAs that are altered in donors with diabetes. For exam-
ple, miR7110-3p, miR3652, miR-4745-5p, and miR224-5p 
have been identified in the GABAergic pathway, in which 
miR7110-3p is involved in the regulation of the  GABAA 
receptor. This receptor has been identified in β-cells, and 
its expression and response have been found altered in 
human islets from donors with T2D [77]. Furthermore, 
lncRNAs MIR7-3HG, LINC01116, HIF1A, MEG3, XIST 
and NEAT1 have also been identified in the GABA sys-
tem, in which MEG3 is involved in the regulation of 
GAD. GAD is responsible for the synthesis of GABA in 
β-cells and is also a major autoantigen in T1D [77].

Additionally, exogenously delivered GABA has been 
reported to improve β-cell mass in conditions of β-cell 
depletion by promoting transdifferentiation of α-cells 
into β-cells in insulin-deficient or diabetic mice [78]. The 
potential for GABA to effectively influence β-cell mass 
in vivo and the functional consequences of its reduction 
in donors with diabetes has not been thoroughly demon-
strated. Remarkably, GABA appears to have an important 
role in β- and α-cell communication [77], suggesting that 
the players in this islet GABAergic system can be poten-
tial targets for novel diabetes therapeutic strategies with 
a particular focus on cell transdifferentiation.

Diabetes-associated variants, mostly located in non-
coding regions, are associated with β-cell function and 
mechanisms. However, the association between the iden-
tified risk loci and mechanisms underlying disease onset 
and progression is still difficult [15, 56]. Combining the 
integrative analysis with GWAS data empowered the 
relevance of alterations in disease conditions and high-
lighted several pathways. For instance, glucagon signal-
ing has an essential role in intra-islet paracrine regulation 
and insulin secretion, reinforcing the importance of com-
munication between α- and β-cells.

Despite the relevance of the results presented here, 
they should be interpreted with caution considering the 
study’s limitations. First, the variability of individual 
donors in terms of their underlying pathophysiologi-
cal condition must contribute to the evident differences 
between the expression profiles of individuals with dia-
betes and those without the disease so that the results 
presented here need to be experimentally validated. 
In addition, limitations associated with the variability 
between studies, namely the experimental protocols 
(e.g., differences in islet isolation and culturing tech-
niques, the number of samples under comparison) can 
create a bias in the results towards the studies with a 
higher number of DEGs. Furthermore, the differences 

in the original analysis (e.g., distinct profiling methods) 
may also influence the obtained results.

Conclusions
This study took advantage of powerful bioinformatic 
tools to scrutinize and integrate data from publicly 
available diabetes-associated gene expression data, 
highlighting molecular targets associated with β-cell 
dysfunction. The integrated analysis of protein-coding 
genes, miRNAs and lncRNAs identified several path-
ways involved in important cellular functions, such as 
metabolism, cell signaling, the immune system, cell 
adhesion and interactions. The GABAergic synapse 
pathway was the common pathway to all datasets ana-
lyzed. Considering the importance of GABA in pancre-
atic islets, this process could be a potential therapeutic 
target through the transdifferentiation of α-cells into 
β-cells.

Abbreviations
BMI  Body mass index
DD  Donors with diabetes
DEG  Differentially expressed genes
ER  Endoplasmic reticulum
FACS  Fluorescence-activating cell sorting
GABA  γ-Aminobutyric acid
GAD  Glutamic acid decarboxylase
GEO  Gene Expression Omnibus
GWAS  Genome-Wide Association Studies
IDF  International Diabetes Federation
KEGG  Kyoto Encyclopedia of Genes and Genomes
lncRNA  Long noncoding RNA
miRNA  MicroRNA
MODY  Maturity-onset diabetes of the young
mRNA  Messenger RNA
ncRNA  Noncoding RNA
ND  Donors without diabetes
T1D  Type 1 diabetes
T2D  Type 2 diabetes
TF  Transcription factor

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40246- 024- 00582-z.

Additional file 1. List of genes for the differentially expressed genes 
(DEGs) for each study analysed (GSE164416, GSE25724, GSE76894, 
GSE20966, GSE86743, GSE124742).

Additional file 2. Network of potential transcription factors (TFs) and 
their targets. The common TFs to at least 3 studies are represented as 
nodes and their targets as the edges.

Acknowledgements
Not applicable.

Author contributions
AG, DM and RM designed the study. AG, MIF and DM performed the data 
analysis. All authors contributed to the article and approved the submitted 
version.

https://doi.org/10.1186/s40246-024-00582-z
https://doi.org/10.1186/s40246-024-00582-z


Page 15 of 17Farrim et al. Human Genomics           (2024) 18:16  

Funding
This research was funded by national funds through FCT—Foundation for Sci-
ence and Technology, I.P. (Portugal), under the [UIDB/04567/2020] (DOIhttps://
doi.org/10.54499/UIDB/04567/2020) and [UIDP/04567/2020] (DOIhttps://doi.
org/10.54499/UIDP/04567/2020) project; and by ILIND/COFAC grant FAZER+/
ILIND/CBIOS/1/2023 . MIF received a Fulbright Grant for Research from FUL-
BRIGHT Portugal. RM  is funded by the FCT Scientific Employment Stimulus 
contract [CEEC/04567/CBIOS/2020].

Availability of data and materials
The raw datasets supporting the conclusions of this article will be made avail-
able by the authors, without undue reservation, to any qualified researcher. 
The original data from each study analyzed here are publicly available. The 
data can be found here: https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? 
acc= GSE16 4416, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE25 724, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE76 894, 
https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE86 473, https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE12 4742, https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE20 966.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Authors declare that they have no competing interests.

Received: 4 September 2023   Accepted: 1 February 2024

References
 1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. 

IDF diabetes atlas: global, regional and country-level diabetes prevalence 
estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 
2022;183:109119.

 2. Rosengren A, Dikaiou P. Cardiovascular outcomes in type 1 and type 2 
diabetes. Diabetologia. 2023;66:425–37.

 3. Dinić S, Arambašić Jovanović J, Uskoković A, Mihailović M, Grdović N, Tolić 
A, et al. Oxidative stress-mediated beta cell death and dysfunction as a 
target for diabetes management. Front Endocrinol. 2022;13:1006376.

 4. Filardi T, Catanzaro G, Mardente S, Zicari A, Santangelo C, Lenzi A, et al. 
Non-coding RNA: role in gestational diabetes pathophysiology and 
complications. Int J Mol Sci. 2020;21:4020.

 5. Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of 
diabetes: BANSAL AND PINNEY. Pediatr Diabetes. 2017;18:167–77.

 6. Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Fong R, Heiss C, 
et al. Structurally related (−)-epicatechin metabolites and gut microbiota 
derived metabolites exert genomic modifications via VEGF signaling 
pathways in brain microvascular endothelial cells under lipotoxic condi-
tions: Integrated multi-omic study. J Proteom. 2022;263:104603.

 7. Song Y, Nie L, Wang M, Liao W, Huan C, Jia Z, et al. Differential expres-
sion of lncRNA-miRNA-mRNA and their related functional networks in 
new-onset type 2 diabetes mellitus among chinese rural adults. Genes. 
2022;13:2073.

 8. Dieter C, Lemos NE, Corrêa NRDF, Assmann TS, Crispim D. The impact of 
lncRNAs in diabetes mellitus: a systematic review and in silico analyses. 
Front Endocrinol. 2021;12:602597.

 9. De Silva K, Demmer RT, Jönsson D, Mousa A, Forbes A, Enticott J. A data-
driven biocomputing pipeline with meta-analysis on high throughput 
transcriptomics to identify genome-wide miRNA markers associated with 
type 2 diabetes. Heliyon. 2022;8:e08886.

 10. Tian Y, Xu J, Du X, Fu X. The interplay between noncoding RNAs and 
insulin in diabetes. Cancer Lett. 2018;419:53–63.

 11. Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, et al. Non-coding RNAs in 
diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol. 
2022;13:961802.

 12. Wang S, Yong H, He X-D. Multi-omics: Opportunities for research 
on mechanism of type 2 diabetes mellitus. World J Diabetes. 
2021;12:1070–80.

 13. Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, 
Bravo FI, et al. Systematic analysis of nutrigenomic effects of polyphenols 
related to cardiometabolic health in humans—evidence from untargeted 
mRNA and miRNA studies. Ageing Res Rev. 2022;79:101649.

 14. Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer 
MJ, et al. Parallel multi-omics in high-risk subjects for the identification 
of integrated biomarker signatures of type 1 diabetes. Biomolecules. 
2021;11:383.

 15. Bacos K, Perfilyev A, Karagiannopoulos A, Cowan E, Ofori JK, Bertonnier-
Brouty L, et al. Type 2 diabetes candidate genes, including PAX5, cause 
impaired insulin secretion in human pancreatic islets. J Clin Invest. 
2023;133:e163612.

 16. Wigger L, Barovic M, Brunner A-D, Marzetta F, Schöniger E, Mehl F, et al. 
Multi-omics profiling of living human pancreatic islet donors reveals 
heterogeneous beta cell trajectories towards type 2 diabetes. Nat Metab. 
2021;3:1017–31.

 17. Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE, 
et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin 
granules in pancreatic β cells. J Biol Chem. 2011;286:4216–25.

 18. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, et al. 
Gene expression profiles of beta-cell enriched tissue obtained by laser 
capture microdissection from subjects with type 2 diabetes. PLoS ONE. 
2010;5:e11499.

 19. Solimena M, Schulte AM, Marselli L, Ehehalt F, Richter D, Kleeberg M, et al. 
Systems biology of the IMIDIA biobank from organ donors and pancrea-
tectomised patients defines a novel transcriptomic signature of islets 
from individuals with type 2 diabetes. Diabetologia. 2018;61:641–57.

 20. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, 
et al. Single-cell transcriptomes identify human islet cell signatures and 
reveal cell-type–specific expression changes in type 2 diabetes. Genome 
Res. 2017;27:208–22.

 21. Camunas-Soler J, Dai X-Q, Hang Y, Bautista A, Lyon J, Suzuki K, et al. 
Patch-seq links single-cell transcriptomes to human islet dysfunction in 
diabetes. Cell Metab. 2020;31:1017-1031.e4.

 22. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for 
animals and plants. Bioinformatics. 2020;36:2628–9.

 23. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, 
et al. Enrichr: a comprehensive gene set enrichment analysis web server 
2016 update. Nucleic Acids Res. 2016;44:W90–7.

 24. Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded 
reference database of human and mouse transcriptional regulatory 
interactions. Nucleic Acids Res. 2018;46:D380–6.

 25. Matys V. TRANSFAC(R): transcriptional regulation, from patterns to profiles. 
Nucleic Acids Res. 2003;31:374–8.

 26. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivari-
ate data using Principal Component Analysis and heatmap. Nucleic Acids 
Res. 2015;43:W566–70.

 27. Mering CV. STRING: a database of predicted functional associations 
between proteins. Nucleic Acids Res. 2003;31:258–61.

 28. Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: a web server for 
lncRNA-RNA interaction prediction integrated with tissue-specific expres-
sion and subcellular localization data. Front Genet. 2019;10:462.

 29. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA 
sequences to function. Nucleic Acids Res. 2019;47:D155–62.

 30. Licursi V, Conte F, Fiscon G, Paci P. MIENTURNET: an interactive web tool 
for microRNA-target enrichment and network-based analysis. BMC Bioin-
form. 2019;20:545.

 31. Gerstner N, Kehl T, Lenhof K, Müller A, Mayer C, Eckhart L, et al. GeneTrail 
3: advanced high-throughput enrichment analysis. Nucleic Acids Res. 
2020;48:W515–20.

 32. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Res. 2000;28:27–30.

https://doi.org/10.54499/UIDB/04567/2020
https://doi.org/10.54499/UIDB/04567/2020
https://doi.org/10.54499/UIDP/04567/2020
https://doi.org/10.54499/UIDP/04567/2020
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164416
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164416
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25724
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25724
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76894
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86473
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20966
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20966


Page 16 of 17Farrim et al. Human Genomics           (2024) 18:16 

 33. Heberle H, Meirelles GV, Da Silva FR, Telles GP, Minghim R. Inter-
actiVenn: a web-based tool for the analysis of sets through Venn 
diagrams. BMC Bioinform. 2015;16:169.

 34. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 
Cytoscape: a software environment for integrated models of biomo-
lecular interaction networks. Genome Res. 2003;13:2498–504.

 35. Tonyan ZN, Nasykhova YA, Danilova MM, Barbitoff YA, Changalidi AI, 
Mikhailova AA, et al. Overview of transcriptomic research on type 2 
diabetes: challenges and perspectives. Genes. 2022;13:1176.

 36. Liu J, Liu S, Yu Z, Qiu X, Jiang R, Li W. Uncovering the gene regulatory 
network of type 2 diabetes through multi-omic data integration. J 
Transl Med. 2022;20:604.

 37. Wang X, Liu J, Wang Q, Chen Q. The transcriptomic and epigenetic 
alterations in type 2 diabetes mellitus patients of Chinese Tibetan and 
Han populations. Front Endocrinol. 2023;14:1122047.

 38. Krako Jakovljevic N, Pavlovic K, Jotic A, Lalic K, Stoiljkovic M, Lukic L, 
et al. Targeting mitochondria in diabetes. Int J Mol Sci. 2021;22:6642.

 39. Carvalho C, Moreira PI. Metabolic defects shared by Alzheimer’s 
disease and diabetes: a focus on mitochondria. Curr Opin Neurobiol. 
2023;79:102694.

 40. Newsholme P, Brennan L, Bender K. Amino acid metabolism, β-cell 
function, and diabetes. Diabetes. 2006;55:S39–47.

 41. Faour M, Magnan C, Gurden H, Martin C. Olfaction in the context of 
obesity and diabetes: Insights from animal models to humans. Neurop-
harmacology. 2022;206:108923.

 42. Munakata Y, Yamada T, Imai J, Takahashi K, Tsukita S, Shirai Y, et al. 
Olfactory receptors are expressed in pancreatic β-cells and promote 
glucose-stimulated insulin secretion. Sci Rep. 2018;8:1499.

 43. Marchelek-Mysliwiec M, Nalewajska M, Turoń-Skrzypińska A, Kotrych K, 
Dziedziejko V, Sulikowski T, et al. The role of forkhead Box O in patho-
genesis and therapy of diabetes mellitus. Int J Mol Sci. 2022;23:11611.

 44. Casteels T, Zhang Y, Frogne T, Sturtzel C, Lardeau C-H, Sen I, et al. An 
inhibitor-mediated beta-cell dedifferentiation model reveals distinct 
roles for FoxO1 in glucagon repression and insulin maturation. Mol 
Metab. 2021;54:101329.

 45. Akerman I, Tu Z, Beucher A, Rolando DMY, Sauty-Colace C, Benazra M, 
et al. Human pancreatic β Cell lncRNAs control cell-specific regulatory 
networks. Cell Metab. 2017;25:400–11.

 46. Leung A, Natarajan R. Long Noncoding RNAs in Diabetes and Diabetic 
Complications. Antioxid Redox Signal. 2018;29:1064–73.

 47. Mao X, Zhou J, Kong L, Zhu L, Yang D, Zhang Z. A peptide encoded 
by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-
induced dysfunction in pancreatic β-cells through the PI3K/AKT signal-
ing pathway. Biochem Biophys Res Commun. 2023;647:62–71.

 48. Gu HF, Zheng X, Abu Seman N, Gu T, Botusan IR, Sunkari VG, et al. 
Impact of the hypoxia-inducible factor-1 α (HIF1A) Pro582Ser polymor-
phism on diabetes nephropathy. Diabetes Care. 2013;36:415–21.

 49. Li Y, Yuan X, Shi Z, Wang H, Ren D, Zhang Y, et al. LncRNA XIST serves as 
a diagnostic biomarker in gestational diabetes mellitus and its regula-
tory effect on trophoblast cell via miR-497-5p/FOXO1 axis. Cardiovasc 
Diagn Ther. 2021;11:716.

 50. Atef MM, Shafik NM, Hafez YM, Watany MM, Selim A, Shafik HM, et al. 
The evolving role of long noncoding RNA HIF1A-AS2 in diabetic retin-
opathy: a cross-link axis between hypoxia, oxidative stress and angio-
genesis via MAPK/VEGF-dependent pathway. Redox Rep. 2022;27:70–8.

 51. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role 
of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated 
senescence, and inflammation in patients with type 2 diabetes. Hum 
Genom. 2018;12:41.

 52. Qiu G-Z, Tian W, Fu H-T, Li C-P, Liu B. Long noncoding RNA-MEG3 is 
involved in diabetes mellitus-related microvascular dysfunction. Bio-
chem Biophys Res Commun. 2016;471:135–41.

 53. Jia D, He Y, Wang Y, Xue M, Zhu L, Xia F, et al. NEAT1: a novel long 
non-coding RNA involved in mediating type 2 diabetes and its various 
complications. Curr Pharm Des. 2022;28:1342–50.

 54. Alfaifi M, Ali Beg MM, Alshahrani MY, Ahmad I, Alkhathami AG, Joshi PC, 
et al. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and 
MIAT expression and their association in type 2 diabetes mellitus. BMJ 
Open Diabetes Res Care. 2021;9:e001821.

 55. Feng J, Xing W, Xie L. Regulatory roles of MicroRNAs in diabetes. Int J 
Mol Sci. 2016;17:1729.

 56. Karagiannopoulos A, Esguerra JLS, Pedersen MG, Wendt A, Prasad RB, 
Eliasson L. Human pancreatic islet miRNA-mRNA networks of altered 
miRNAs due to glycemic status. Science. 2022;25:103995.

 57. Kim M, Zhang X. The profiling and role of miRNAs in diabetes mellitus. 
J Diabetes Clin Res. 2019;1:5.

 58. Priyanka P, Panagal M, Sivakumar P, Gopinath V, Ananthavalli R, 
Karthigeyan M, et al. Identification, expression, and methylation of 
miR-7110 and its involvement in type 1 diabetes mellitus. Gene Rep. 
2018;11:229–34.

 59. Mollet IG, Macedo MP. Pre-diabetes-linked miRNA miR-193b-3p targets 
PPARGC1A, disrupts metabolic gene expression profile and increases 
lipid accumulation in hepatocytes: relevance for MAFLD. Int J Mol Sci. 
2023;24:3875.

 60. Tavano F, Fontana A, Mazza T, Gioffreda D, Biagini T, Palumbo O, et al. 
Early-onset diabetes as risk factor for pancreatic cancer: miRNA expres-
sion profiling in plasma uncovers a role for miR-20b-5p, miR-29a, and 
miR-18a-5p in diabetes of recent diagnosis. Front Oncol. 2020;10:1567.

 61. Takada Y, Ono Y, Shibuta T, Ishibashi A, Takamori A, Fujimoto K et al. 
Diagnosis of type 2 Diabetes Mellitus (T2DM) using Paired microRNAs. 
bioRxiv 2022. 2022–09.

 62. Bacon S, Engelbrecht B, Schmid J, Pfeiffer S, Gallagher R, McCarthy A, 
et al. MicroRNA-224 is readily detectable in urine of individuals with 
diabetes mellitus and is a potential indicator of beta-cell demise. 
Genes. 2015;6:399–416.

 63. Xu Y, Ouyang L, He L, Qu Y, Han Y, Duan D. Inhibition of exosomal miR-
24-3p in diabetes restores angiogenesis and facilitates wound repair 
via targeting PIK3R3. J Cell Mol Med. 2020;24:13789–803.

 64. Párrizas M, Novials A. Circulating microRNAs as biomarkers for meta-
bolic disease. Best Pract Res Clin Endocrinol Metab. 2016;30:591–601.

 65. Boucher M-J, Simoneau M, Edlund H. The homeodomain-interacting 
protein kinase 2 regulates insulin promoter factor-1/pancreatic 
duodenal homeobox-1 transcriptional activity. Endocrinology. 
2009;150:87–97.

 66. Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. The sweet side of 
HIPK2. Cancers. 2023;15:2678.

 67. Ghavami A, Roshanravan N, Alipour S, Barati M, Mansoori B, Ghalichi F, 
et al. Assessing the effect of high performance inulin supplementation 
via KLF5 mRNA expression in adults with type 2 diabetes: a rand-
omized placebo controlled clinical trail. Adv Pharm Bull. 2018;8:39–47.

 68. Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, 
Palioura D, et al. KLF5 is induced by FOXO1 and causes oxidative stress 
and diabetic cardiomyopathy. Circ Res. 2021;128:335–57.

 69. Frkic RL, Richter K, Bruning JB. The therapeutic potential of inhibit-
ing PPARγ phosphorylation to treat type 2 diabetes. J Biol Chem. 
2021;297:101030.

 70. Miyazaki S, Taniguchi H, Moritoh Y, Tashiro F, Yamamoto T, Yamato E, 
et al. Nuclear hormone retinoid X receptor (RXR) negatively regulates 
the glucose-stimulated insulin secretion of pancreatic β-cells. Diabe-
tes. 2010;59:2854–61.

 71. Moore F, Naamane N, Colli ML, Bouckenooghe T, Ortis F, Gurzov EN, 
et al. STAT1 is a master regulator of pancreatic β-cell apoptosis and islet 
inflammation. J Biol Chem. 2011;286:929–41.

 72. Schaschkow A, Pang L, Vandenbempt V, Elvira B, Litwak SA, Vekeriotaite 
B, et al. STAT3 regulates mitochondrial gene expression in pancreatic 
β-cells and its deficiency induces glucose intolerance in obesity. Dia-
betes. 2021;70:2026–41.

 73. Wakabayashi Y, Miyatsuka T, Miura M, Himuro M, Taguchi T, Iida H, et al. 
STAT3 suppression and β-cell ablation enhance α-to-β reprogramming 
mediated by Pdx1. Sci Rep. 2022;12:21419.

 74. Gruden G, Barutta F, Kunos G, Pacher P. Role of the endocannabinoid 
system in diabetes and diabetic complications: Role of endocannabi-
noid system in diabetes. Br J Pharmacol. 2016;173:1116–27.

 75. De Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, 
Beguinot F, et al. Insulin effects on core neurotransmitter path-
ways involved in schizophrenia neurobiology: a meta-analysis of 
preclinical studies. Implications for the treatment. Mol Psychiatry. 
2023;28:2811–2825

 76. Ramasubbu K, Devi RV. Impairment of insulin signaling pathway PI3K/
Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus 
and neurodegenerative diseases: a perspective review. Mol Cell Bio-
chem. 2023;478:1307–24.



Page 17 of 17Farrim et al. Human Genomics           (2024) 18:16  

 77. Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet 
function. Front Endocrinol. 2022;13:972115.

 78. Jin Z, Korol SV. GABA signalling in human pancreatic islets. Front Endo-
crinol. 2023;14:1059110.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Gene expression analysis reveals diabetes-related gene signatures
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Strategy for literature research and data extraction
	Bioinformatic analysis
	Individual genomics-layer network construction
	mRNA network
	Protein network
	lncRNA and miRNA networks
	Pathway analysis
	Multilayer integration and network analysis


	Results
	Study selection and analysis
	Integrated analysis of differentially expressed genes and pathways
	Protein‒protein interaction analysis
	Transcription factors regulating the expression of diabetes-modulated genes
	LncRNAs and miRNAs expression altered in diabetes
	Integrated functional analysis
	Comparative analysis with genome-wide association studies

	Discussion
	Conclusions
	Acknowledgements
	References


