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Abstract
Background Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation 
mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human 
malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE 
suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA 
hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. 
Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction 
of PPE have been reported as transcriptionally inactive as a consequence of epimutations.

Methods In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes 
and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, 
Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer 
cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter 
hypermethylation marks on gene expression, cellular networks and in a clinical setting.

Results Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest 
independent of transcriptional activity. We observed that different tumours have varying susceptibility to 
epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. 
Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine 
Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-
cancer treatment sensitivity.

Conclusions We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of 
malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such 
as patient survival and therapeutic response.
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Background
Protein phosphorylation is a post-translational modi-
fication that is vital for controlling signalling pathways 
and homeostatic maintenance of human cells such as 
metabolism, transcription/translation and cell divi-
sion [1]. Protein phosphatases (PPE) are enzymes that 
catalyse the removal of phosphate groups from cell sig-
nalling proteins by hydrolysis, reversing the action of 
protein kinases (PK). The activities of both are highly 
coordinated and orchestrate responses from external 
stimuli and/or relay information for key transcriptional 
responses that stimulate or inhibit growth and protect 
the cell which are highly sensitive to small changes in 
PPE activity [2, 3]. PPE are categorized into two subtypes 
according to their specificity and action; Protein Tyro-
sine Phosphatases (PTP) and Protein Serine/Threonine 
Phosphatases (PSTP). PTP are further divided into (a) 
receptor-like and non-receptor PTP and (b) Dual-Spec-
ificity Phosphatases (DUSP). Typical PTP catalyse phos-
photyrosine residues whereas DUSP dephosphorylate 
phosphoserine/threonine and phosphotyrosine amino 
acids. PSTP are also divided into two sub-groups; Phos-
phoProtein Phosphatases (PPP) and Metal-dependent 
Protein Phosphatases (PPM) [4, 5]. . PPE and PK repre-
sent arguably the most studied group of proteins in the 
literature to date. The uncontrolled suppression of PPE 
has often been described as a cause of dysregulated cell 
signalling programs that lead to human disease [3, 6]. In 
cancer, an imbalance in phosphorylation equilibrium has 
been reported as a cause of abnormal cell proliferation, 
dissemination and insensitivity to therapeutic treatment 
(extensively reviewed in Turdo et al., 2021 [7]). Many PK 
are well-known oncogenes, therefore PPE that counteract 
PK are assumed to be tumour suppressors [8]. To date, 
numerous PPE have been reported with tumour sup-
pressor activity, PTEN as the most documented example. 
Identified as a tumour suppressor in 1997, PTEN was ini-
tially observed to be deleted in brain, breast and prostate 
cancer tissue [9]. Protein Phosphatase 2 A (PP2A) is the 
most expressed PSTP and described as a tumour sup-
pressor in several cancers, e.g. breast, lung and melano-
mas [10] due to its role in inhibiting signal transduction 
pathways such RAF-MEK-ERK and Ras/PI3K/PTEN/
Akt/mTOR. These pathways favour a number of cellular 
functions vital for tumour growth, such as cancer pro-
liferation, reduced sensitivity to apoptotic signals and 
activation of pro-survival pathways [11, 12]. This dysreg-
ulation is essential to create an environment conducive to 
malignancies. PTP are one of the most recognized group 
of genes that make up the tumour suppressor family and 
are frequently inactivated and/or mutated in a variety of 
cancers [13, 14]. For example, PTPRT and PTPRD nega-
tively regulate the JAK/STAT pathway [15]. PTPRH and 
PTPRB suppress downstream signalling of PI3K/Akt/

mTOR and MEK/MAPK pathways by dephosphoryla-
tion of the epidermal growth factor receptor (EGFR) [16] 
and PTPN13 in non-small cell lung cancer by the phos-
phorylation control of EGFR and HER2 [17]. As well as 
the PTP, several DUSP are crucial regulators of MAPK 
proteins, such as ERK and JNK and therefore considered 
critical tumour suppressors [18]. Other types of phospha-
tases not discussed above also have important regulatory 
roles as tumour suppressors such as cellular prostatic 
acid phosphatase (PAcP) whose loss of expression leads 
to prostate carcinogenesis [19] or INPP5K, a phos-
phoinositide phosphatase gene associated with tumour 
suppressor activity in endometrial carcinoma [20].

Epigenetic dysregulation has been identified in cancer 
cells and mainly consists of global DNA hypomethylation 
with DNA hypermethylation at promoters of specific 
tumour-suppressor genes resulting in transcriptional 
silencing [21]. The clinical implications of DNA methyla-
tion have been an important characteristic to understand 
cellular transformation and is an important tool for can-
cer diagnosis, prognosis and therapy monitoring [22]. In 
spite of the overwhelming evidence for PPE as tumour 
suppressors and the role of DNA hypermethylation plays 
in transcription silencing, only a handful of PPE have 
been epigenetically characterized in primary tumours 
[23–30].

Advances in sequencing technologies, data availability 
and bioinformatic approaches have enabled simultane-
ous analyses of large sample sizes and -omic datasets. In 
this study, we performed an exhaustive, systematic analy-
sis of promoter DNA methylation of genes that encode 
PPE and PPE-interacting proteins (PPEIP) in five differ-
ent malignant tissues to identify aberrant DNA hyper-
methylation profiles that are absent in healthy controls 
(epimutations). We report the frequency of epimutations 
discerned in Colorectal, Oesophageal, Lung, Pancreatic 
and Stomach cancers and their effect on transcription, 
gene regulatory networks/pathways as well as providing 
examples of their clinical implications such as survival 
and response to treatment.

Materials and methods
Genome-wide DNA methylation array samples
A total of 729 genome-wide DNA methylation array 
datasets were initially downloaded from publicly avail-
able databases and processed in this study. Raw intensity 
(idats) files produced using the Infinium® HumanMeth-
ylation450 (450  K) BeadChip (Illumina) allowed for 
genome-wide interrogation of 482,000 CpG’s. Raw 
idat files from 500 primary tumours from The Cancer 
Genome Atlas (TCGA) legacy database were down-
loaded. This consisted of 100 samples each from five 
cancer subtypes; Colorectal cancer (TCGA-COAD 
and READ), Oesophageal cancer (TCGA-ESCA), Lung 
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cancer (TCAG-LUAD), Pancreatic cancer (TCGA-
PAAD), and Stomach cancer (TCGA-STAD). In order 
to identify cancer-associated changes in DNA methyla-
tion, 450 K data from 50 healthy samples (10/tissue type) 
from each tissue were used as controls in this study. 40 
were downloaded from TCGA (10 each from Colorectal, 
Oesophageal, Lung and Pancreatic tissue) and 10 healthy 
stomach 450  K datasets were downloaded from Gene 
Expression Omnibus (GEO) under the accession num-
ber GSE127857. Additionally, 450 K data from a second 
independent test cohort of healthy tissue controls from 
47 individuals were downloaded from TCGA (Large 
intestines (n = 16), Oesophagus (n = 8), Lung (n = 16), Pan-
creas (n = 5), and Stomach (n = 2)) and analysed to iden-
tify hypermethylation events at PPEIP gene promoters in 
a population of healthy (non-cancer) tissues. The paucity 
of healthy tissue where 450 K data is available, limited the 
test cohort to 47 samples. 204 cancer cell line 450 K data-
sets were acquired from the Catalogue Of Somatic Muta-
tions In Cancer (COSMIC) database from the Wellcome 
Trust Sanger Institute as detailed in [31]. Raw intensity 
files were downloaded corresponding to the same five 
cancer subtypes as described above; Colorectal (n = 49), 
Oesophageal (n = 35), Lung (n = 61), Pancreas (n = 31) and 
stomach (n = 28) cancer cell lines. Finally, idat files for 25 
embedded 3D cultures (organoid) representing the same 
5 cancer subtypes were downloaded from GEO under 
the accession number GSE144213 (Colorectal n = 11, 
Oesophageal n = 4, Lung n = 1, Pancreatic n = 7 and Stom-
ach (n = 2) .

DNA methylation quality control, normalization and 
filtering
Raw signal intensity values were initially QC’d and 
pre-processed from subsequent idat files in R statisti-
cal environment (v3.6.1) (r-project.org)  [32] using minfi 
Bioconductor package (v1.32.0) [33, 34] and processed 
in batches by tissue, cancer cell model and healthy sam-
ples independently. Quality control steps were applied 
to minimize errors and remove poor probe signals. 
Putative labelling errors were ascertained by examin-
ing methylation status at sex chromosomes of each indi-
vidual. Duplicate samples were discerned by the SNP 
analysis feature in minfi. Vigorous quality control steps 
were performed on all samples and are detailed in [35]. 
Briefly problematic probes such as failed probes (detec-
tion p value > 0.01), cross-reacting probes and probes 
that overlapped single nucleotide variants within +/- 
1  bp of CpG sites were removed. Background correc-
tion and dye-based normalization was performed using 
ssNoob algorithm (single-sample normal-exponential 
out-of-band). Probes hybridising to Chromosomes X and 
Y were removed from the final analysis. DNA methyla-
tion values for each CpG, represented as β-values with 1 

representing fully methylated CpG and 0, fully unmeth-
ylated CpG were used for analysis. To further assess 
sample clusters to identify mislabelled samples based on 
DNA methylation similarity profiles (cancer vs. healthy 
controls) in the TCGA primary tumour dataset, robust 
correlations using multi-step bootstrap resampling and 
Euclidian distance measures for unsupervised hierar-
chical clustering were performed using the R package 
pvclust [36]. Ward.D2 minimum variance method for 
hierarchical clustering formation was produced using 
the R package hclust function [37]. Final clusters were 
plotted using the t-Distributed Stochastic Neighbour 
Embedding (t-SNE) technique using the R package Rtsne 
[38, 39]. For this, fifty thousand β values from across the 
genome in all tissue types were randomly selected in 
5000 iterations to assemble and visualize inherent sample 
similarity. A total of 32 duplicate datasets and mislabelled 
samples (24 primary tumour and 8 healthy controls) were 
identified and removed from this analysis. Therefore, 705 
cancer samples, 42 healthy controls and 47 healthy test 
controls were used in the final analysis (a breakdown of 
all sample ID’s, tissues and cell models used in the analy-
sis is provided in Table  1, Supplementary data S2 and 
S3). All QC, normalization and filtering steps mentioned 
above were performed separately for each cancer subtype 
and cell model. The control samples were ran separately 
to the tumour samples. Downstream analyses were per-
formed under R statistical environment (v3.6.1).

Gene expression profiles
In order to assess the putative consequence of DNA 
methylation on the expression status of all TCGA indi-
viduals that harboured outlier DNA methylation at pro-
moters of Protein Phosphatase Enzymes and interacting 
proteins (PPEIP) and controls, RNA-seq Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM) 
values were downloaded using the R Bioconductor pack-
age TCGAbiolinks [40, 41] for TCGA primary tumours 
and healthy tissues. Transcription profiles were only 
downloaded from matched patients where both DNA 
methylation and RNA-seq data was available. For can-
cer cell lines, gene expression profiles (Transcripts Per 
Kilobase Million or TPM) were downloaded directly 
from the Cancer Cell Line Encyclopedia (https://portals.
broadinstitute.org/ccle) website. No direct analysis was 
performed between the two different types of RNA-seq 
expression counts (FPKM vs. TPM).

Clinical data
Extensive clinical information for all samples from the 
TCGA project (primary tumours) were retrieved from 
TCGA using TCGAbiolinks and integrated into R statis-
tical environment (v3.6.1) for overall survival analyses.

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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Data analysis pipeline
A curated list of 726 unique Protein Phosphatase 
Enzymes and interacting proteins (PPEIP) genes was 
downloaded from Ensembl (http://www.ensembl.org). 
PPEIP were defined as genes that encode a protein with 
previously described phosphatase activity and/or encode 
proteins that form PPEIP subunits, interact with PPEs, or 
potentially alter their function. Of the 726 PPEIP genes 
curated, 203 (28%) lacked a 450 K probe for CpG meth-
ylation profiling at its associated promoter region and 
therefore excluded from this study. The full list of 523 
PPEIP genes can be found in Supplementary data S1. 
Promoter associated probes were defined as 450 K probes 
that measure CpG DNA methylation levels +/- 1500  bp 
and 200  bp from the transcription start site, present in 
the 5’UTR and 1st exon of all PPEIP genes. Probe anno-
tation (such as those located in promoters, CpG island/
shores, enhancers, etc.) was provided by Illumina’s 450 K 
manifest file. Average promoter methylation for each 
PPEIP gene was calculated in all samples. Cancer-associ-
ated epimutations in PPEIP gene promoters were defined 
as absolute increases of 0.66 average beta value in can-
cer cell lines and absolute increases of 0.33 average beta 
value in primary tumour and organoid samples com-
pared to average PPEIP promoter methylation in baseline 

healthy controls. These cut off values were consistent 
with previously published studies where hypermethyl-
ation in cancer cell lines applied a stringent > 0.66 beta 
value cut off for cellular homogeneity [31, 42], while for 
primary tumours and organoids that constitute diverse 
cell types, the cut off is reduced to 0.33 [43, 44]. More-
over, the epigenetic landscape of organoids is inherently 
closer to primary tumours than cancer cell lines [35]. A 
full list of average promoter methylation values for the 
523 PPEIP genes in all 705 cancer cases and 42 baseline 
healthy controls can be found in Supplementary data S9. 
PPEIP epimutations present in the healthy population 
were defined as > 0.33 average beta value in test control 
individuals compared to the average baseline controls. 
This analysis and all downstream applications were per-
formed using R statistical environment.

Epimutation tissue distribution and statistical analysis
In an even epimutation distribution (n = 5007), one would 
expect the number of epimutations to be proportional to 
the number of individuals per tissue set. To test this, we 
calculated the observed epimutation distribution ratio 
(OEDR) for each cancer tissue. The equation is shown 
below. The sample share is the fraction of individu-
als in each tissue tested for epimutations. Epimutation 

Table 1 Breakdown of the Infinium Human Methylation 450 BeadChip (450 K) samples used and excluded in this study. Initial dataset 
refers to the number of cancer patients and control datasets downloaded and pre-processed for 450 K DNA methylation analysis. 
Datasets for analysis is the final number of 450 K patient and control samples analysed in this study. Datasets removed were the 
number of samples excluded after pre-processing and quality control steps, representing incorrect or mislabeled samples.
Tissue dataset TCGA cancer CCL Organoids Controls TCGA healthy test
Dataset source:
Colorectum 100 49 11 10 16
Oesophagus 100 35 4 10 8
Lung 100 61 1 10 16
Pancreas 100 31 7 10 5
Stomach 100 28 2 10* 2
Total: 500 204 25 50 47
Datasets used for analysis:
Colorectum 95 49 11 10 16
Oesophagus 92 35 4 8 8
Lung 94 61 1 10 16
Pancreas 97 31 7 4 5
Stomach 98 28 2 10 2
Total: 476 204 25 42 47
Datasets excluded: 24 0 0 8 0
Colorectum 5 0 0 0 0
Oesophagus 8 0 0 2 0
Lung 6 0 0 0 0
Pancreas 3 0 0 6 0
Stomach 2 0 0 10 0
Total: 24 0 0 8 0
TCGA cancer = Primary tumour samples from The Cancer Genome Atlas data repository, CCL = Cancer Cell Line, Organoids = embedded 3D cultures. Controls = healthy 
tissue samples used as controls to identify cancer-associated hypermethylation at PPEIP gene promoters. TCGA healthy test = separate subset of healthy tissue 
samples used to identify non-cancer associated hypermethylation events in PPEIP gene promoters in the healthy population. * = Stomach samples were downloaded 
from GEO under the accession number: GSE127857 (due to the lack of available samples in TCGA data repository)

http://www.ensembl.org
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share per tissue is the fraction of epimutations observed 
in each tissue and expected to be the same value as the 
tissue sample share in an even distribution model. The 
observed epimutation distribution ratio (OEDR) is the 
tissue sample share / epimutation share. For visualization 
purposes, the OEDR was converted to log2 values. This 
was calculated for each tissue.

 

OEDR =

(
n of tissue samples

Total n of tissue samples

)

(
Observedn of Epimutations/tissue

Total n of Epinutations

)}Log2

For Parametric tests, Pearson correlation and unpaired 
students t-tests were applied and for non-parametric 
data distributions, Spearmans’ rank correlation and Wil-
coxon rank test were calculated. For enrichment analy-
ses, Fishers exact and Chi-squared tests were used. Data 
normality was assessed using a Shapiro-Wilk test. Linear 
regression models were used to estimate statistical rela-
tionships between DNA methylation and drug sensitiv-
ity. Kaplan-Meier plots and Log-rank (Mantel-Cox) tests 
were used to estimate overall survival (OS) in pancreatic 
cancer individuals with outlier PTPRM expression. Indi-
viduals in the top 25% quartiles of PTPRM expression 
were considered as “high expression” and “low expres-
sion” the bottom 25% quartile. The extreme 25% quartiles 
were used as standard cut off points to allow for robust 
statistical analysis performed through Cox proportional 
hazards regression models. All statistical analyses were 
carried out with the R statistical environment (v3.6.1) and 
p values < 0.05 were considered as statistically significant.

Pathway and transcription factor binding analysis
Biocarta, KEGG and curated wiki pathway analyses were 
carried out to highlight cellular features and cancer net-
works that are putatively affected by hypermethylated 
PPEIP gene promoters. Transcription factor (TF) gene 
target examination using Encode data was also per-
formed to inform on TF regulatory networks. All analy-
ses were performed using the R package Enrichr [45].

Drug sensitivity
IC50 Z scores corresponding to drug sensitivity were 
downloaded from the Genomics of Drug Sensitivity in 
Cancer database (https://www.cancerrxgene.org/). This 
repository provides drug response data and genomic 
markers of sensitivity for 809 cancer cell lines and 198 
compounds as part of their GDSC2 data release [31]. All 
cancer cell lines pertinent to this study were downloaded 
and processed according to tissue type.

A simplified overview of the analysis workflow is pro-
vided in Supplementary Fig. 1.

Results
Pan-cancer promoter hypermethylation analysis of protein 
phosphatase enzymes and interacting proteins
The Infinium HumanMethylation450 BeadChip (450K) 
platform allows for genome-wide CpG methylation anal-
ysis at 485,000 CpG’s located at various genomic regions 
including 98% of all promoters in refseq-annotated genes. 
In order to dispel potential probe representation issues, 
we first analysed the distribution of probes at PPEIP pro-
moters against all other 450K represented genes. 6296 
450K probes informed CpG DNA methylation levels in 
PPEIP promoters (12 probes per gene) and 3260 (52%) 
of those, in CpG islands associated with PPEIP promot-
ers (6 probes per CpG island) (Fig.  1A). In comparison, 
168,664 probes were annotated to all gene promoters 
(9 probes per gene) and 79,008 (47%) to all promoter 
associated CpG islands (4 probes per gene) indicating a 
higher representation of probes for PPEIP gene promot-
ers compared to all other gene promoters (Fig. 1A). The 
definition of “promoter probes” were those probes that 
provided semi-quantitative methylation values for CpG’s 
located within 1500  bp and 200  bp of the transcription 
start site (TSS1500, TSS200), 5’ untranslated region 
(5’UTR) or 1st exon of each gene. The majority of PPEIP 
gene promoter probes were found in the TSS1500 (30%) 
and the least in the 1st exon (13%) (Fig.  1B). Half of all 
PPEIP probes were distributed between the 5’UTR (29%) 
and the TSS200 (21%) (Fig. 1B). The median number of 
probes per gene was 11, and 7 when considering only 
CpG islands in PPEIP promoters (Fig.  1C). The Protein 
Tyrosine Phosphatase gene PTPMT1 was the PPEIP with 
the most probes associated with its promoter (n = 60).

PPEIP promoter hypermethylation profiles reveal distinct 
tissue susceptibility and frequency associated with cancer
Overall, 5007 hypermethylated Protein Phosphatase 
Enzymes and Interacting Proteins (PPEIP) gene promot-
ers (epimutations) were identified in 593 cancer samples 
(84%), a median of 4 cancer-associated epimutations 
per individual (Supplementary Fig.  4B). The distribu-
tion of epimutations across samples was significantly 
imbalanced (P = 2.2 10− 16). Stomach cancer patients 
demonstrated the highest percentage of PPEIP epimuta-
tion distribution of 27% however, stomach cancer cases 
only made up 18% of the total sample number (Supple-
mentary Fig.  2A). This represented the highest ratio of 
epimutation vs. sample share, or observed epimutation 
distribution ratio (OEDR) of 0.59 (expected OEDR = 0) 
(Supplementary Fig.  2B). Lung cancer patients showed 
with the lowest epimutation share with 9%, although 
22% of all samples were from lung malignancies (-1.25 
OEDR) (Supplementary Fig.  2A and B). Colorectal, 
oesophageal and stomach cancers showed positive OEDR 
(0.59–0.25) while lung and pancreatic cancer patients 

https://www.cancerrxgene.org/
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showed negative OEDR (-1.25 and − 0.68 respectively) 
(Supplementary Fig. 2B). 593 cancer patients (84%) pre-
sented with at least one hypermethylated PPEIP pro-
moter in 160 (31%) PPEIP genes analysed as compared 
with healthy controls. Oesophagus represented the can-
cer tissue with the highest number of individuals with 
at least one epimutation (98%) (Supplementary Fig. 3A). 
This slight inconstancy with the OEDR stomach cancer 
data can be explained by the individual epimutation fre-
quency in both tissues. 44% of all epimutations detected 
in the top 10% of individuals with the most epimutations 
accumulated were attributed to stomach cancer patients 
compared to only 28% in the oesophagus (Supplementary 
data S4). This suggests that a subset of stomach cancer 
patients accumulate higher quantities of epimutations 
in fewer individuals as compared with oesophageal can-
cer patients where epimutations are procured less inter-
individually but more consistently across individuals. 
Lung cancer patients presented with the least number of 
epimutations (67%) consistent with OEDR data (Supple-
mentary Fig. 3A). 96% of all organoid samples harboured 
at least one hypermethylated PPEIP promoter com-
pared to 86% and 77% of all cancer cell lines and primary 
tumours respectively (Supplementary Fig. 3B). To assess 
the data further, we applied our epimutation detection 
pipeline to 450 K data from a separate test cohort of 47 
control individuals presenting the five analysed tissues 
to identify epimutations in a population of healthy indi-
viduals. 11 individuals (23%) were identified carrying 
79 hypermethylated PPEIP promoters as compared to 
84% in cancer samples. A median epimutation count of 
0 per individual was observed (Supplementary Fig.  4A) 
as compared to 4 in the same tissues in a cancer context 
(Supplementary Fig. 4B). Epimutations we detected were 
overwhelmingly enriched in cancer patients as com-
pared to healthy individuals (P = 7.02 × 10− 18). Interest-
ingly, epimutations detected in healthy samples were only 
observed in two tissues (Oesophagus n = 7 and Pancreas 
n = 4) (Supplementary data S5). This gave us confidence 
that the epimutations we identified through our bespoke 
bioinformatic pipeline were cancer-associated.

Next, we examined the frequency of PPEIP-associated 
epimutations in cancer patients. 5007 epimutations were 
detected in 160 PPEIP genes (Supplementary data S6). 
Of the 160 PPEIP genes, 88 (55%) were considered “rare” 
(observed in < 1% of all cancer cases) and 41 (26%) as 
“recurrent” (identified in > 5% of cancer samples) (Sup-
plementary data S6). Many recurrent genes were known 
tumour suppressors with previously described cancer-
related promoter hypermethylation anomalies (PTPN13, 
DUSP5, [2] PPP1R14A [26], PPP1R3C [27], PTPRM [28] 
and IGFBP3 [46–48] validating the robustness of our 
approach. We also detected several PPEIP genes with 
previously undescribed recurrent methylation changes 

(Fig.  1D). INPP5B (Inositol Polyphosphate-5-Phospha-
tase) is an anti-apoptotic protein with a proliferative 
role in different cancer types [49, 50] and epimutations 
were observed in 130 individuals (Fig. 1D) in all 5 tissues 
(Supplementary Fig.  5). Proline-serine-threonine phos-
phatase interacting protein 2 or PSTPIP2 promoter 
hypermethylation was observed in 37 cases (Fig.  1D) in 
all 5 tissues examined (Supplementary Fig.  6). PSTPIP2 
is required for correct cell cycle function and dysregula-
tion of PSTPIP2 contributes to abnormal proliferation 
and terminal differentiation in megakaryocytes [51]. In 
addition to recurrent differentially methylated promot-
ers, several patients displayed rare, previously unde-
scribed epimutations at PPEIP promoters. For example, 
an epimutation was detected at the promoter of PPP3CC 
(Protein Phosphatase 3 Catalytic Subunit Gamma) in 1 
individual (colorectal cancer). PPP3CC repression has 
been reported to contribute to invasion and growth of 
glioma cells [52]. Loss-of-function genetic mutations 
in PPP1R3B gene have been associated with lung can-
cer [53], similarly, DNA methylation associated tran-
scription silencing mimics loss-of-function properties. 
We observed one individual with oesophageal cancer 
phenotype harbouring an epimutation at the PPP1R3B 
promoter (Fig. 1D). Beta values for each probe and indi-
viduals (cancer and healthy controls) are provided in sup-
plementary data S7.

We examined highly epimutated PPEIP genes and 
their described roles in human malignancies. Collec-
tively, PTPRT, CDH2, EYA4, SLITRK5, NTRK3, ADCY8, 
DNAJC6, PPM1E, FBP2 and GRIN3A were identified as 
those genes where most cancer individuals were observed 
to harbour hypermethylated PPEIP promoters. An even 
distribution of epimutation count was not observed 
across all cancer tissue types, consistent with the OEDR 
data. A breakdown of this is presented in Fig. 1E. PTPRT 
was the most epimutated PPEIP with 43% of all cancer 
cases showing epimutations in this gene. PTPRT is a 
tyrosine phosphatase with a previously described role as 
a tumour suppressor in colorectal cancer [13]. Interest-
ingly, the authors also demonstrated that the most fre-
quent genetically mutated tyrosine phosphatase gene was 
PTPRT in their colorectal cancer (CRC) cohort. In line 
with this finding, PTPRT was also the most epimutated 
gene in our CRC cohort; 76% of all CRC patients carried 
an epimutation. On the contrary, only 21% and 19% of all 
lung and pancreatic cancer patients respectively carried 
an epimutation in PTPRT (Fig. 1E). Several of the high-
est epimutable genes have disparate prevalence of hyper-
methylated promoters between cancer tissue types. Eyes 
absent 4 (EYA4) is a threonine-tyrosine phosphatase [54] 
previously described as a tumour suppressor in multiple 
cancers examined in this study (CRC [55], oesophagus 
[56], lung [57] and pancreas [58]). EYA4 promoter DNA 
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methylation has been reported to be negatively corre-
lated with gene expression and plays an important role in 
cell proliferation inhibition via Wnt and MAPK signalling 
pathways [59]. The frequency of epimutation is highly 
contrasting as 59% of CRC patients carry hypermethyl-
ated EYA4 promoters compared with only 13% of lung 
cancer patients (Fig. 1E). Another example is the NTRK3 
gene. NTRK3 has been described in important cancer 
related pathways that promote both survival and cell pro-
liferation and so its role as an oncogene [60] and tumour 
suppressor [61] is not unexpected. We observed at least 
a twofold difference in individuals with NTRK3 hyper-
methylated promoters between lung cancer (15%) and 
the other 4 cancers (CRC; 36%, stomach; 34%, Oesopha-
gus; 33% and Pancreas 30%) (Fig. 1E).

Pan-cancer promoter hypermethylation of PPEIP affect 
cellular pathways and networks that favour tumour 
success
To further decipher the role of the 160 cancer-associated 
promoter hypermethylation susceptible PPEIP genes, we 
performed an enrichment analysis for gene networks, 
cellular pathways and transcription factor (TF) binding 
(Fig.  2). For gene network and cellular pathway analy-
sis, three highly cited software were used; Biocarta [62], 
Kyoto Encyclopedia of Gene and Genomes (KEGG) 
[63] and curated WikiPathways [64]. All three software 

demonstrated high overlap of well-known pathways 
described in cancer cells such PI3K-AKT [65], MAPK 
[66] and cellular metabolism [67] (Fig. 2A,C,D). All three 
present actionable targets for anti-cancer drugs [68–70]. 
Other interesting pathways include angiogenesis related 
VEGFA-VEGFR2 signalling [71], regulatory circuits of 
STAT3 signalling pathways [72] as well as gene networks 
involved in aging [73]. We also interrogated transcription 
factor (TF) targets computed from ChIP-seq data from 
the ENCODE project [74]. The genes most affected by 
promoter hypermethylation are also targets for TF that 
are highly mutated in cancer such as chromatin remodel-
ers (EP300, HDAC2, KDM4A among others) (extensively 
reviewed in [75]), cell cycle regulator (SIN3A [76]) and 
cell proliferation (YY1 [77]) (Fig. 2B).

Pan-cancer examination of epimutations in protein 
tyrosine and dual specific phosphatases exhibit 
aberrations in transcriptomic profiles affecting key cellular 
networks related to cancer
A number of Protein Tyrosine Phosphatases (PTPs) have 
been described in human cancers as tumour suppressor 
genes [2] and among the most studied include PTPRM; 
[78, 79], PTPN13; [17] and PTPRG; [80]. Therefore, in 
primary tumours, PTPs would represent a subset of key 
genes where the effects of promoter DNA methylation-
induced transcriptional silencing are detrimental. In 

Fig. 1 Infinium Human Methylation 450K BeadChip (450K) probe distribution and promoter hyper-methylation analysis reveals cancer-associated epi-
mutations occur with varying frequencies in multiple tissues. A. Distribution of 450K probes across all gene promoters (and CpG island-specific) and PPEIP 
promoters (also showing CpG island specific probes). B. % of promoter CpG genomic annotations. TSS1500 = CpG present within 1500 bp from transcrip-
tion start site (TSS), TSS200 = within 200 bp of TSS, 5’UTR = CpG is found within the 5’ untranslated region of the PPEIP and 1stExon = CpG found in the 
first exon of the PPEIP gene. The annotation “others” refers to promoter CpG’s that annotate to other genomic regions (such as gene bodies or introns) of 
overlapping genes. C. Distribution of promoter probes per gene annotated to both CpG islands and non-CpG islands. D. Examples of hyper-methylated 
PPEIP promoters for both recurrent (observed in > 5% of the cancer population) and rare (< 1% % of the cancer population) epimutations. Red lines 
present individuals with outlier epimutations and grey lines, healthy controls. E. Bar graph showing the ten most epimutated PPEIP genes. Numbers on 
the y-axis (and above each bar) represent the % of total cancer individuals in all cancer tissues (ALL) as well as a breakdown of epimutations identified in 
individuals of specific cancer related tissue
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this regard, we closely examined PTPs for methylation 
sensitivity in primary tumours, cancer cell lines and 3D 
embedded cell cultures (organoids). We also performed 
the same analysis in dual-specificity phosphatases 
(DUSP) given their activity and role in cancer [81]. Only 
few individuals presented hypermethylated promoters 
for serine / threonine phosphatases (< 2%) and therefore 
we focused our attention on PTP and DUSP genes. A 
list of PTPs and DUSPs was compiled from Ensembl and 
DNA methylation profiles generated for 43 PTP and 24 
DUSP genes (Supplementary data S8). 17 PTP (40%) and 
7 (29%) DUSP were observed with hypermethylated pro-
moters in 410 (57%) and 102 (14%) cancer cases respec-
tively. Colorectal cancer (CRC) patients demonstrated 
the highest number of PTP epimutations (81%) and pan-
creatic cancer patients the lowest (27%) (Fig. 3A). Stom-
ach cancers presented the highest number of individuals 
with DUSP epimutations (23%) with lung and pancreatic 
malignancies the least (4%) (Fig. 3B). Further analysis into 
the role of PTPs and DUSP revealed PTPRT is the most 
ubiquitously epimutated PTP, 43% of all cancer individu-
als showed hypermethylated PTPRT promoters. DNAJC6 

(23%) and PTPRM (16%) were the second and third most 
epimutated PTP. PTPRT was also found to be the most 
epimutated PTP in 4 of the 5 cancer tissues analysed 
(CRC = 78%, Stomach = 55%, Oesophagus = 42% and Pan-
creas = 19%) and second most epimutated in Lung (21%). 
DNAJC6 was the most epimutated PTP in Lung (43%) 
(Fig. 3C). CRC, stomach and oesophageal cancer showed 
overall high levels of individuals with PTP hypermethyl-
ated promoters. Of the top 10 most epimutated PTPs, 
Stomach (9/10), Oesophageal (7/10) and CRC (6/10) 
showed > 5% of individuals with epimutations in PTPs. 
Pancreas and Lung (2/10) presented with low epimutated 
PTPs (Fig. 3C). To a lesser extent, DUSP genes were also 
found to be highly epimutated (Fig. 3B). DUSP26 was the 
gene with the highest number of individuals with hyper-
methylated promoters (10%), with DUSP5 (6%), DUSP23 
(3%) and DUSP15 (2%) also showing epimutations 
(Fig.  3D). CRC individuals showed the highest number 
of epimutated DUSP26 (19%) followed by Stomach (14%) 
and oesophagus (9%). Again, lung and Pancreas showed 
the least (4% and 1% respectively). DUSP5 was the most 

Fig. 2 PPEIP genes with hypermethylated promoters are involved in several cancer-associated cellular pathways and mechanisms. (A) Biocarta pathway 
analysis for pathway gene enrichment. The shade of green presents the significance of the specific gene-set or term. (B) Enrichment of transcription fac-
tor (TF) binding associated with hyper-methylated PPEIP genes from ChIP-seq experiments of > 300 TFs from the ENCODE project. Bright green presents 
higher number of genes. C-D. Orthogonal cellular pathway analyses from two independent resources; Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Curated wiki. For Figures A-D, the brighter the tone of green, the more significant the term is. In all network images (B-D), the grey lines 
represent gene content similarity
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epimutated DUSP in Stomach (17%), Pancreas (2%) and 
equal to DUSP26 in Oesophageal cancer (9%) (Fig. 3D).

Next, we analysed the effect of epimutations on PTP 
and DUSP gene expression given not all are expressed in 
the 5 tissues. 17 PTP and 7 DUSP were detected to con-
tain at least one cancer-associated hypermethylated pro-
moter. An initial analysis of gene expression in normal 
tissues was conducted using the GTEx portal (gtex.org, 
[82]) in the five tissues analysed in this study to deter-
mine the potential effect of cancer-associated epimuta-
tions on PTP and DUSP transcription. 9 of 17 PTPs and 
5 of 7 DUSP were observed to be expressed at high lev-
els in at least one healthy tissue type (> 5 TPM) (Supple-
mentary Fig.  7A and B). Further investigation revealed 
that 4 PTP (PTPRM, PTPN13, PTPRG and PTPRB) and 
3 DUSP (DUSP23, DUSP5 and DUSP2) were ubiqui-
tous epigenetic outliers in all cancer cell models, highly 
expressed in at least one normal tissue (> 5 TPM) and 
maintained expression in their malignant counterpart 
prior to segregation based on promoter DNA meth-
ylation (Supplementary Fig. 8). Expression profiles from 
primary tumours (TCGA) and cancer cell lines (CCLE) 
for the 4 PTP and 3 DUSP are presented in Fig.  4. In 
each boxplot, gene expression is partitioned by indi-
viduals with hypermethylated promoters (> 0.33 average 

promoter beta value in TCGA and > 0.66 in CCLE vs. 
healthy controls) (see methods for details). A significant 
negative correlation between promoter methylation and 
gene expression was observed in all genes and cell mod-
els. We expect these data to also be representative of can-
cer organoid cell models [35]. Although hypermethylated 
promoters negatively correlate with gene expression in 
our cancer cohort (Fig. 4), one exception was observed in 
the gene DNAJC6, where an increase in promoter meth-
ylation was positively correlated with gene expression 
(Supplementary Fig.  9A and C). DNAJC6 is the second 
most epimutated gene in all cancer samples and the most 
epimutated gene in the lung cancer cohort (43%) (Figs. 1 
and 3). Although a high number of epimutations were 
identified in our analysis cohort, several showed very 
low expression in their pertinent tissues. As mentioned 
above, PTPRT is the most epimutated gene found in this 
study however its expression is extremely low (or non-
existent) in the 5 tissues analysed (Supplementary Fig. 9B 
and D) with the highest expression observed in brain 
tissue (Supplementary Fig.  7A). This interesting finding 
demonstrates that epigenetic dysregulation in cancer 
cells occurs independent of an active transcriptional pro-
gram and may provide important genomic information 
for other tissues.

Fig. 3 Cancer-associated epimutations are commonly observed in Protein Tyrosine (PTP) and Dual-Specificity Phosphatase (DUSP) gene promoters. A-B. 
Bar graph demonstrating the % of individuals in each cancer subtype that carry at least one cancer-specific epimutation in tyrosine (A, blue) and dual 
specificity (B, green) phosphatase gene promoters. C-D. Bar graph representing the most ubiquitous PTP (C) and DUSP (D) gene promoters that harbour 
cancer-specific hyper-methylated promoters. Numbers above each bar represents % of cancer individuals with epimutations in the genes highlighted on 
the x-axis. The genes represented in (C) and (D) were detected in at least 5 individuals
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PTPRM epigenetic transcription silencing correlates with 
poor clinical outcome and reduced anti-cancer drug 
sensitivity
The role of PTP as tumour suppressors has been 
described in great detail in a number of tissues [2] and 
are targets for anti-cancer therapy [83]. In our cancer 
cohort, PTPRM represented the PTP with highest num-
ber of individuals with epimutations and high median 
expression values in healthy subjects (> 5 TPM). Having 
demonstrated the presence of PTPRM promoter hyper-
methylation associated transcription silencing (Fig.  4A 
and B), we studied if PTPRM epigenetic loss in can-
cer patients had any impact on the clinical outcome in 
these patients. For this, we leveraged complete clinical 
and transcriptomic data from all individuals used in this 
study available in TCGA data repository. We identified 
that PTPRM gene silencing (top 25% quartile expression 
vs. bottom 25%) in pancreatic cancer patients showed a 
significant association with poor overall survival prob-
ability (Log Rank P = < 0.05, hazard ratio [HR] = 1.82; 95% 
confidence interval [CI] = 0.995–4.336; P = < 0.05).

PTPRM is an important component of STAT3 regula-
tion with downstream effects on proliferation and metas-
tasis in lung cancer [84] therefore we speculated whether 
PTPRM epigenetically deficient cancer cells could be 
exploited for therapeutic purposes, specifically drugs that 
target the JAK/STAT cell signalling pathway in other tis-
sues. We downloaded IC50 concentration Z scores from 
GDSC2 (Genomics of Drug Sensitivity in Cancer, data-
set2) database [31] for antitumour drugs that target key 
cancer-related cellular pathways (Fig. 5B). We identified 
4 compounds, AZ960 [85], JAK8517, JAK18709 [86] and 
Ruxolitinib [87], that specifically target proteins in the 
JAK/STAT pathway and compared their drug sensitiv-
ity to PTPRM promoter methylation status in pancreatic 
cancer cell lines. We observed that drug sensitivity was 
significantly proportional to DNA methylation levels of 
the PTPRM gene promoter in pancreatic cancer cell lines 
(rho = 0.3, P = 0.00462) (Fig.  5C) suggesting that PTPRM 
promoter methylation profiles maybe used as a potential 
biomarker for clinical treatment response in pancreatic 
cancer patient therapy.

Fig. 4 Cancer-specific promoter DNA hypermethylation in Protein Tyrosine (PTP) and Dual-Specificity Phosphatase (DUSP) are associated with gene 
expression silencing. A-B. Boxplots representing the effect of hypermethylated promoters of PTP genes in primary tumours (A) and cancer cell lines (B). 
C-D. Boxplots representing the effect of epimutations discerned in promoters of DUSP genes from primary tumours (C) and cancer cell lines (C). Primary 
tumour and cancer cell line gene expression data was downloaded from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) 
projects. Gene expression values are presented as relative units (r.u) and are specific to each project (TCGA = FPKM and CCLE = TPM). Gene names shown 
at the top left-hand corner of each boxplot and blue dots presents individual (and cancer cell lines) expression values where DNA methylation profiles 
were also available. *P < 0.05; **P < 0.01; ***P < 0.001
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Discussion
In this study, we systematically surveyed hypermeth-
ylation profiles of Protein Phosphatase Enzymes and 
interacting protein (PPEIP) gene promoters to highlight 
the role of epigenetic marks that alter transcription of 
tumour suppressor genes and its effects within a clini-
cal setting. In this regard, we detected 5007 hypermeth-
ylation events in 160 PPEIP gene promoters that were 
absent in healthy controls (epimutations). These epi-
mutations were detected in 539 cancer patients (84%) 
across 5 tissues (colorectal, oesophageal, lung, pancre-
atic and stomach) and may disrupt the delicate balance 
of protein phosphorylation in signalling networks and 
promote malignancies. This dysregulation of key genes 
is not uniform across all tissue types. By assaying epi-
mutations in multiple tissues, we observed that stomach 
cancer patients accumulate the highest number of epi-
mutations (Supplementary figure S2) while lung cancer 
cases produce the least. This is an interesting finding as 

epimutations in PPEIP have been described in both tis-
sues, (examples include; [88, 89]) although a cumulative 
comparison across tissues and individuals has not been 
previously reported. This disparity of epimutations may 
relate to their function defined by regulatory signatures 
underlying each tissue (such as active chromatin marks 
H3K4me3 and H3K4me1) that accompany differences in 
DNA methylation patterns by tissue-specific mechanisms 
in malignant cells [90]. This decrease in PPEIP epimuta-
tion susceptibility (OEDR = log2 -1.25) in lung tumours 
suggests that DNA methylation is more tightly controlled 
in lung tumorigenesis and likely reduces the role DNA 
methylation plays in highly mutable signalling pathways 
such as PI3K-AKT, JAK/STAT and MAPK (Fig. 2) in lung 
cancers as compared to other tissues. The oncogenic pro-
grams that establish a favourable molecular environment 
for these signalling pathways likely rely on other genomic 
mechanisms [91]. These findings may have important 

Fig. 5 PTPRM reduced expression via epigenetic silencing is associated with poor survival and reduced sensitivity to JAK/STAT targeted anti-cancer 
therapy in pancreatic cancer patients. (A) Kaplan–Meier curve showing reduced expression of PTPRM in patients with pancreatic cancer was significantly 
associated with shorter overall survival, Log Rank P = < 0.05 (HR = 2; 95% CI = 0.757–4.336; P = < 0.05). Green line represents patients in the top 25-percen-
tile of PTPRM expression and the red line, bottom 25-percentile PTPRM expression in the pancreatic primary tumour cohort. (B) Horizontal bar graph 
demonstrates the cellular pathways targeted by anti-cancer drugs from GDSC2 (Genomics of Drug Sensitivity in Cancer) project. Drugs targeting “other” 
category were excluded. (C) Scatter plot illustrating IC50 concentration of JAK/STAT pathway targeting compounds is significantly proportional to DNA 
methylation of the PTPRM gene promoter in pancreatic cancer cell lines (rho = 0.3, P = < 0.005)
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clinical implications for designing treatment strategies 
that target PPEIP genes and their disrupted pathways.

The role of phosphatases, in particular Protein Tyro-
sine Phosphatases or PTP (and to a less extent, Dual Spe-
cific Phosphatases, DUSP), as tumour suppressors have 
been studied for decades and are emerging targets for 
novel technologies for oncogenic therapy [81, 92]. 57% 
of all cancer patients revealed epimutations in PTP genes 
and were overwhelmingly enriched in Colorectal Cancer 
probands (81%) as compared to pancreatic cancer (23%). 
Interestingly, epimutations in PTPRT were discerned in 
the most individuals despite very low expression in all 
tissues analysed (Supplementary Fig. 7A and 9B and D). 
This finding provides evidence that abnormal promoter 
hypermethylation mechanisms target certain tumour 
suppressors independent of their transcriptional activity. 
PTPRT is a negative regulator of signal transducer and 
activator of transcription 3 (STAT3) and therefore pro-
moter hypermethylation events in addition to deleteri-
ous genetic mutations may be utilized as biomarkers to 
inform on potential neoplasm growth in multiple tissues, 
responsiveness to STAT3 inhibitors [93] and predictors 
of standard treatments against cancer [94]. In contrast, 
we discerned 4 PTP and 3 DUSP genes where epimuta-
tions consistently resulted in transcription silencing in all 
cell models (Fig. 4). All 7 genes have been implicated in 
several cancer-specific cellular programs as tumour sup-
pressors and DNA methylation profiles associated with 
these genes may have compelling clinical implications 
[2]. For example, PTPRM epimutations were observed in 
the most cancer cases of the 7 genes (16%) in all 5 tis-
sues. PTPRM is a receptor PTP and its intracellular 
compartment is responsible for phosphatase activity, 
whereas the extracellular section serves in cell–cell and 
cell–matrix contact [3]. STAT3 inactivation is catalysed 
by PTPRM dephosphorylation and leads to cancer cell 
death, therefore errors incurred in STAT3 dephosphor-
ylation, such as promoter hypermethylation induced 
PTPRM transcriptional silencing, may lead to cancer 
initiation and progression with poor clinical prognosis 
[84, 95]. Furthermore, our data demonstrated that low 
PTPRM expression is associated with poor overall sur-
vival (Fig.  5A) and PTPRM methylation marks maybe 
used as biomarkers for JAK/STAT targeting anti-cancer 
drugs response. Additionally, the other epimutated genes 
showed equally intriguing roles in cancer. For example, 
in breast cancer, PTPN13 was reported to inhibit can-
cer aggressiveness by Src dephosphorylation [96] which 
is upregulated in tamoxifen-resistant ER-positive breast 
cancer patients [97], or DUSP4 repressed expression was 
identified as a mechanism of neoadjuvant drug chemore-
sistance and frequently depleted in chemotherapy refrac-
tory breast tumours [98]. Together, this highlights the 
role of epimutations in PTP and DUSP genes as putative 

cancer biomarkers for diagnosis, prognosis and treat-
ment response.

Interestingly, we identified one example where hyper-
methylated promoters resulted in an increase of tran-
scription (Supplementary Fig.  9A and C). DNAJC6 was 
the second most epimutated PTP gene in cancer patients 
and the most in lung cancer patients (Fig. 3C). A litera-
ture search revealed DNAJC6 possesses oncogenic prop-
erties and promotes hepatocellular carcinoma (HCC) 
progression through induction of epithelial–mesenchy-
mal transition. Overexpression of DNAJC6, as shown 
with increased promoter methylation in cancer subjects, 
was observed to enhance cell proliferation and invasion 
suggesting DNAJC6 hypermethylation may be assayed as 
a putative biomarker for poor outcome in HCC [99].

Conclusions
Overall, our data illustrates the cellular and clinical rel-
evance of DNA hypermethylation in a subset of PPEIP. 
We have broadened our knowledge of PPEIP epimuta-
tions across previously undescribed genes and tissues 
as well as providing an insight into epimutation sus-
ceptibility and distribution and its subsequent role in 
tumourigenesis and treatment. Considering the clinical 
implications, this type of phosphatase-wide analysis of 
promoter hypermethylation would benefit patients with 
other cancer types with high levels of phosphatase activ-
ity such as brain and neuroblastomas (Supplementary 
Fig. 7). With advances in single cell sequencing technolo-
gies, targeting epimutations in phosphatase enzymes will 
reveal precise signalling pathways and transcriptional 
programs in clonal sub-populations of tumour cells pre-
viously undetectable with bulk technologies and vastly 
improve cancer therapeutics. Together, it’s seductive to 
posit that the emergence of epi-drugs that rehabilitate 
genes inactivated through epigenetic mechanisms [100] 
hold promise for re-activating tumour-suppressing cellu-
lar programs through genes such as PTPRM, that leads to 
improved treatment strategies and reduction in mortality 
of high-risk patients.
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