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Abstract 

Background In the process of finding the causative variant of rare diseases, accurate assessment and prioritiza‑
tion of genetic variants is essential. Previous variant prioritization tools mainly depend on the in‑silico prediction 
of the pathogenicity of variants, which results in low sensitivity and difficulty in interpreting the prioritization result. 
In this study, we propose an explainable algorithm for variant prioritization, named 3ASC, with higher sensitivity 
and ability to annotate evidence used for prioritization. 3ASC annotates each variant with the 28 criteria defined 
by the ACMG/AMP genome interpretation guidelines and features related to the clinical interpretation of the variants. 
The system can explain the result based on annotated evidence and feature contributions.

Results We trained various machine learning algorithms using in‑house patient data. The performance of variant 
ranking was assessed using the recall rate of identifying causative variants in the top‑ranked variants. The best practice 
model was a random forest classifier that showed top 1 recall of 85.6% and top 3 recall of 94.4%. The 3ASC annotates 
the ACMG/AMP criteria for each genetic variant of a patient so that clinical geneticists can interpret the result as in the 
CAGI6 SickKids challenge. In the challenge, 3ASC identified causal genes for 10 out of 14 patient cases, with evidence 
of decreased gene expression for 6 cases. Among them, two genes (HDAC8 and CASK) had decreased gene expression 
profiles confirmed by transcriptome data.

Conclusions 3ASC can prioritize genetic variants with higher sensitivity compared to previous methods by integrat‑
ing various features related to clinical interpretation, including features related to false positive risk such as quality 
control and disease inheritance pattern. The system allows interpretation of each variant based on the ACMG/AMP 
criteria and feature contribution assessed using explainable AI techniques.

Keywords Explainable AI, Clinical genome interpretation, Variant prioritization, Mendelian disorder

Introduction
Rare disorders (RDs), 80% of which have genetic 
causes, are estimated to affect approximately 6% of the 
global population [1]. The advent of next-generation 
sequencing (NGS) has had a profound impact on the 
human genetics/genomics and medical genetics fields 
by revolutionizing the way rare disease diagnostics and 
disease gene discovery are performed [2]. The length of 
the diagnostic odysseys of RD patients can be greatly 
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shortened as genetic variants in all possible disease 
genes can be assessed simultaneously in an unbiased 
manner [3]. However, variant interpretation remains 
difficult, and many variants are still classified as hav-
ing uncertain significance although numerous in-silico 
tools [4] are being developed to predict how damaging 
a variant could be. Rigorous assessments of variants 
require gathering the latest information from various 
public and private databases and assessing the variant’s 
pathogenicity according to the relevance of the patient’s 
symptoms to the reported phenotypes of each gene/dis-
ease [5]. Consequently, diagnosis of genetic disorders 
based on the genome of patients requires enormous 
time and effort from clinical geneticists. To address this 
issue, various tools have been developed to efficiently 
detect causal genes and variants by prioritization.

Variant prioritization based on genotype—phenotype 
knowledge along with variant data is typically used to 
find the causative variant(s) [2]. There are several tools, 
such as Exomiser [6], LIRICAL [7], and AMELIE [8], 
that use clinical phenotype data of patients according 
to Human Phenotype Ontology (HPO) [9] to prioritize 
each candidate variant based on accepted phenotypic 
knowledge.

Exomiser combines variant-based scores and gene-
based scores to calculate a final score using a logistic 
regression model. Variant-based scores are determined 
based on variant frequency and pathogenicity predic-
tion by MutationTaster [10], PolyPhen-2 [11], and SIFT 
[12]. Exomiser filters variants based on criteria such as 
variant type, allele frequency, variant call quality [13], 
and inheritance patterns. Although the variant filter-
ing process helps improve variant prioritization accu-
racy by removing false positives, some diagnoses could 
be missed due to low quality in the variant call format 
(VCF), high allele frequencies, and incomplete pen-
etrance [2].

LIRICAL uses a statistical framework to estimate the 
posterior probabilities of candidate diagnoses based on 
the likelihood ratio (LR). LIRICAL uses in-silico patho-
genicity scores to calculate the LR of the observed gen-
otype and then combines the result with the LR for the 
phenotypes to obtain the posttest probability of each dis-
ease for the given observations.

A unique trait of AMELIE is that it parses 29  million 
PubMed abstracts and hundreds of thousands of full-text 
articles to support the diagnosis. AMELIE uses 27 fea-
tures extracted from 6 different information categories 
necessary for molecular diagnosis. It considers features 
related to inheritance mode, AVADA-extracted variants, 
patient phenotypes, and article and variant types, and 
finally, in-silico pathogenicity scores [14] and gene-level 
intolerance [15, 16]. A logistic regression classifier based 

on those features was trained using simulated patient 
data.

Previous models largely depend on in-silico patho-
genicity scores and known pathogenic variants to assess 
patient genotypes. However, the pathogenicity of genetic 
variants needs to be assessed differently depending on 
the associated gene, disease, and family history according 
to the ACMG/AMP guidelines [17], which are the stand-
ard guidelines for diagnosing patients recommended by 
the American College of Medical Genetics and Genomics 
and the Association for Molecular Pathology. Although 
in-silico prediction can be useful in finding novel patho-
genic variants, other contexts of the variant also need to 
be considered. For example, when in-silico prediction is 
used as supporting (PP) evidence of variant pathogenic-
ity, the patient can be diagnosed by the variant only if 
very strong (PVS) or strong (PS) evidence of pathogenic-
ity is also present. Variant prioritizations without further 
evidence are often either uninterpretable, or not precise 
enough to identify the causative variant in the first place 
[5].

Here, we report a comprehensive algorithm that prior-
itizes variants with higher sensitivity than that of previ-
ous tools with the added capability of annotating variants 
with the evidence that was used for prioritization. We 
integrated four types of features into EVIDENCE [18], 
an internally developed variant annotation and clas-
sification tool. First, the Bayesian score [19] was based 
on the 28 criteria defined by the ACMG/AMP variant 
interpretation guidelines. Second, the symptom similar-
ity score [20] quantified the semantic similarity between 
the known symptoms of a specific disorder and those 
observed in the patient. The Bayesian score and symptom 
similarity score were used to prioritize variants based on 
genotype–phenotype knowledge alongside clinical evi-
dence. Third, the 3Cnet score [21], generated by a trained 
deep-learning model, provided the likelihood of a given 
amino acid change impacting the protein function. The 
3Cnet scores added extra refinement to the variant classi-
fication made by the first two scores. Finally, we adopted 
features associated with false positives, such as quality 
control and inheritance patterns, and trained the model 
to avoid risk using machine learning algorithms. Instead 
of filtering variants, the model trained with those features 
could avoid risk of false positives. We named the overall 
process of variant prioritization 3ASC (Fig. 1).

Additionally, based on the techniques used for explain-
able AI (X-AI), such as the mean decrease in accuracy 
(MDA) [22] and Shapley additive explanation (SHAP) 
[23], 3ASC could explain how each feature contributes 
to the assessments of genetic variants. The unique traits 
of 3ASC enable (1) precise variant evaluation based on 
ACMG guidelines; (2) priority reduction of false positives 
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using a machine learning algorithm; and (3) result expla-
nation based on evidence and feature contribution. 3ASC 
showed a recall rate of 93.7% among the top 10 variants, 
which was much more sensitive than Exomiser (81.4%) or 
LIRICAL (57.1%). Because the system annotates ACMG/
AMP criteria for each genetic variant of a patient, clinical 
geneticists can interpret the result as in the CAGI6 Sick-
Kids challenge.

Results
Demographic characteristics of in‑house patients
The demographic characteristics of the patients are 
shown in Table  1. Of 5055 patients in our retrospec-
tive cohort, 2825 were female (55.9%). In addition, 
infant patients accounted for the largest proportion in 
our cohort (n = 1357, 26.8%). Most of their symptoms 
were in the nervous system (n = 2280, 45.1%), followed 
by the musculoskeletal system (n = 1722, 34.1%). There 
were around 122 genetic variants after filtering (see sec-
tion “Methods”) for each patient on average, resulting in 

240,084 unique variants from those patients. For each 
patient, 4458 patients had one causative variant, while 
573 patients had two causative variants and 24 patients 
had three causative variants. The cases with multiple 
causative variants include (1) multiple variants were 
suspected to be causative; (2) causative variants from 
different alleles for recessive diseases; and (3) causative 
variants from different genes for digenic diseases.

Cross validation of ML models compared with the baseline 
model
Fivefold cross validation of different 3ASC models 
showed that using all six features improved the pre-
diction performance (Fig.  2). Using machine learning 
algorithms (3ASC_RF, 3ASC_LR) also improved the 
performance compared to the baseline model (3ASC). 
The random forest models were superior for the top 10 
variants compared to the other models. However, as 
most variants were assessed as minimum scores when 
random forest algorithm was used, approximately 2.5% 

Fig. 1 Overview of 3ASC variant prioritization system. The Bayesian score, symptom similarity, the 3Cnet score, and false risk features were trained 
to build different 3ASC models including the baseline model, logistic regression models, and random forest models. 3ASC prioritizes variants of each 
patient according to the scores, and annotates ACMG criteria to each variant. The user can interpret the prioritization result based on the ACMG 
rules and feature contribution for each variant
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of causative variants had minimum scores so that they 
could not be prioritized properly. Nevertheless, the 
3ASC_RF_ALL model showed a recall rate of 85.6% for 
the first variant, which was considerably higher than 
that of the other models (Table 2). The ROC-AUC of the 
3ASC_RF_ALL model showed 98.2%, which was slightly 
lower than that of the 3ASC_LR_ALL model (98.6%) 
(Fig.  2A). The result was mainly because of the missed 
variants which were assessed as minimum scores for the 
random forest model. On the other hand, 3ASC_RF_
ALL showed outperformed the other models by 0.601 
of PRAUC (Fig.  2B). In regard to the average number 

of variants examined before the recall rate reaches 95%, 
the 3ASC_RF_ALL model could find the causative vari-
ants among top 4 variants, followed by top 5 variants 
for 3ASC_RF_QC and top 7 variants for 3ASC_LR_ALL 
(Fig. 2C). We selected 3ASC_RF_ALL as the best practice 
model because a variant prioritization tool is practically 
used to find the causative variants at the high rank.

3ASC models compared with benchmark models 
by external validation
Using external validation data, the performance of iden-
tifying causative variants in patient genomes was com-
pared between the 3ASC models (Baseline model, best 
practice model) and the benchmark models (Exomiser, 
LIRICAL). The results showed that even the base-
line model outperformed the benchmark models, even 
though the model was not trained using patient data. 
We attempted to reduce the bias in the assessment due 
to the overfitting when we built the external validation 
dataset (see section “Methods”). Although no variant in 
the validation dataset was used to train the 3ASC mod-
els, the best practice model (3ASC_RF_ALL) showed a 
top-5 recall of 85.7% and a top-10 recall of 93.7% (Fig. 3). 
For the same dataset, Exomiser showed a top-5 recall 
of 72.9% and a top-10 recall of 81.4%, while LIRICAL 
showed a top-5 recall of 51.5% and a top-10 recall of 
57.1%. Note that the baseline model (3ASC) showed bet-
ter performance even though no patient data were used 
to train the model.

SickKids causal gene prediction result
In the recent CAGI6 SickKids challenge, predictors were 
asked to prioritize variants based on whole genome 
sequencing (WGS) data and the phenotype descrip-
tions from children who were referred to The Hospital 
for Sick Children’s (SickKids) [24–27]. RNAseq-based 
transcriptome data were also used to assess the impact 
of variants on gene expression and splicing variation. We 
participated in the challenge using the baseline model 
and 3ASC_LR model and were selected as a top-per-
forming team. 3ASC successfully identified causal genes 
for 10 out of 14 WGS patient cases which were identified 
by the assessor of the challenge, researchers from Sick-
Kids Research Institute (Table  3). Although the 3ASC 
models did not assess gene expression according to the 
transcriptome data, they predicted that the causative 
variants in 6 cases might result in decreased expression 
based on ACMG criteria PVS1. Among them, two genes 
(HDAC8 and CASK) had decreased gene expression pro-
files, which indicates that the rule-based prediction of 
3ASC is well aligned with the real-world evidence.

Table 1 Demographic and clinical characteristics of the eligible 
patients

Variables Eligible 
patients 
(n = 5055)

Gender (n, %) Male 2230 (44.1)

Female 2825 (55.9)

Onset age (n, %) Infancy 1357 (26.8)

Neonatal 1257 (24.9)

Childhood 1093 (21.6)

Adult 888 (17.6)

Antenatal 269 (5.3)

Adolescent 183 (3.6)

Elderly 4 (0.1)

Unknown 4 (0.1)

Symptoms (n, %) Nervous system 2280 (45.1)

Musculoskeletal system 1722 (34.1)

Head or neck 1231 (24.4)

Cardiovascular system 1125 (22.3)

Eye 1057 (20.9)

Metabolism/homeostasis 847 (16.8)

Integument 834 (16.5)

Limbs 719 (14.2)

Genitourinary system 714 (14.1)

Growth 794 (15.7)

Ear 637 (12.6)

Digestive system 591 (11.7)

Blood and blood‑forming tissues 408 (8.1)

Endocrine system 384 (7.6)

Immune system 385 (7.6)

Respiratory system 208 (4.1)

Neoplasm 148 (2.9)

Prenatal development or birth 103 (2.0)

Constitutional symptom 118 (2.3)

Breast 35 (0.7)

Cellular 45 (0.9)

Voice 25 (0.5)

Thoracic cavity 1 (0.0)



Page 5 of 14Kim et al. Human Genomics           (2024) 18:28  

Fig. 2 Performance comparison between 3ASC models using cross‑validation. A Average ROC curve. True positive rates from different folds were 
averaged for each false positive rate using interpolation. False positive rates ranging from 0 to 0.1 were plotted because the true positive rates were 
mostly saturated afterwards. B Average PR curve. C Average top‑k recall

Table 2 Top‑k recall rates for different 3ASC models compared with baseline

The best performance is indicated in bold

Models Top 1 Top 3 Top 5 Top 10 Top 20 Top 30 Top 100

3ASC (Baseline) 0.518 0.742 0.825 0.911 0.969 0.986 1.000
3ASC_LR 0.591 0.785 0.862 0.937 0.977 0.991 1.000
3ASC_RF 0.718 0.841 0.889 0.936 0.953 0.960 0.992

3ASC_LR_QC 0.718 0.847 0.915 0.966 0.989 0.995 1.000
3ASC_RF_QC 0.825 0.923 0.955 0.976 0.983 0.985 0.998

3ASC_LR_ALL 0.739 0.861 0.924 0.975 0.993 0.997 1.000
3ASC_RF_ALL 0.856 0.944 0.967 0.981 0.985 0.988 0.998
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Assessment of feature importance
Figure 4A shows SHAP summary plots for the features of 
the best practice model (3ASC_RF_ALL). Relatively high 
ACMG Bayesian score, symptom similarity, variant allele 
frequency (VAF), and 3Cnet score in the dataset showed 
a positive SHAP value that contributed to the model 
predicting a high probability for causative variants. In 
contrast, the variants that did not match the inheritance 

pattern negatively contributed to the prediction score, 
which means the feature could reduce the risk of false 
positives (Fig.  4A). Feature importance was assessed by 
shuffling each feature while other variables remained 
constant (MDA). The symptom similarity score caused 
the greatest decrease in accuracy when shuffled, followed 
by the ACMG Bayesian score (Fig.  4B). Symptom simi-
larity was the most important feature for the prediction, 
followed by the Bayesian score and the 3Cnet score. The 
importance of false risk features, such as variant quality 
score (QUAL), VAF, and inheritance pattern was rela-
tively low, but still they contributed to the prediction 
accuracy.

Case study for a patient with hemophilia A
For individual case, a patient with intracranial hemor-
rhage, hemarthrosis, and Factor VIII deficiency had 
NM_000132.4:c.1569G > T (ClinVar VCV000439678.18), 
and was diagnosed with hemophilia A caused by F8. 
Our model also predicted the 3ASC score of the variant 
(NM_170606.3:c.2961C > G) in KMT2C, as 0.03, although 
the variant was annotated with ACMG Bayesian score 
of 0.9971 (Fig. 5A). By interpretation with SHAP analy-
sis, the SHAP value of VAF for this variant has a negative 
contribution to 3ASC score. This is because our model 
adjusted the score due to the low value of VAF that 
implies potential false calling. Also, the score was under-
estimated because of a low symptom similarity score in 
which patient symptoms differed from another disease.

On the other hand, for the confirmed variant of this 
patient, our model predicted the 3ASC score as 0.86, 
which showed high VAF, ACMG Bayesian score, and 
symptom similarity (Fig. 5B). In detail, we found the high 
ACMG Bayesian score for pathogenicity of the confirmed 
variant was induced from the assignment of ACMG rule 
(PS4, PP3, PM2, PP5, PM4), which is useful information 
for variant interpretation. For hemophilia A, the matched 
inheritance pattern showed positive contribution to pre-
diction score because X-linked recessive pattern coin-
cided with zygosity of patient variant.

Discussion
Some limitations in this study should be improved upon 
in the future. First, the effectiveness of the 3ASC algo-
rithms was not checked against other database sources, 
such as Deciphering Developmental Disorders (DDD) 
[28] or the 1000 Genomes project [29], which are not 
publicly available. Instead, we prepared an external vali-
dation set by dividing in-house patient data according 
to the time we analysed the samples (before and after 1 
September 2022). To address the issue of overfitting, 
we removed all the variants in the external validation 
set from the training data. Note that the baseline 3ASC 

Fig. 3 Top‑k recall comparison with benchmark models using 
external validation. The same set of genes and variants were used 
to compare the performance of variant prioritization without any 
bias. For Exomiser and LIRICAL, gene scores were first used 
to prioritize the most probable causal genes and then variants were 
prioritized using variant scores

Table 3 Results of identification of causative variants for the 
CAGI6 SickKids challenge

The evidence of gene causality is indicated in bold

*log2 transformation for RNAseq read count of the affected sample was 
compared with the distribution of those of 244 other samples (Z-score = − 10.15)

**log2 transformation for RNAseq read count of the affected sample showed 
Z-score of − 2.04

Causal gene Causal variants 
found by 3ASC

PVS1 rule 
applied by 
3ASC

Decreased 
gene 
expression

HDAC8 Found Applied Found*
CASK Found Applied Found**
HMGA2 Found Applied Not found

PDHA1 Found Applied Not found

NKX6‑2 Found Applied Not found

FOXG1 Found Applied Not found

KCNB1 Found Not applied Not found

COL12A1 Found Not applied Not found

EPG5 Found Not applied Not found

H3F3B Found Not applied Not found

ZNF711 Not found Not applied Not found

DSG2 Not found Not applied Not found

SMAD6 Not found Not applied Not found

FBXW7 Not found Not applied Not found
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model was not trained by patient data. The priority 
scores were calculated by multiplication of feature scores 
with the sigmoid function activation. Additionally, by 
using the same set of candidate genes and variants, we 
ensured that the better performance of 3ASC compared 
to benchmark models was attributed to the superiority of 
the prioritization algorithms.

3ASC used several features including pathogenicity 
score derived from several public databases. In particular, 
pathogenicity scores such as the Bayesian score from the 
ACMG/AMP guidelines emerged as a strong predictive 
factor (Fig. 4). To quantify the pathogenicity of a variant, 
one can use a Bayesian score based on the ACMG/AMP 
standard guidelines [17]. Another proposed method is a 
scoring system that calculates pathogenicity as the sum 
of evidence-based scores [30]. However, our model uses 
the first method, which is the posterior probability given 
by the ACMG/AMP-based naive Bayes classifier (Bayes-
ian score). This was the situation when the EVIDENCE 
annotation tool was developed. At that time, the ACMG/
AMP-based scoring system did not exist, so we used the 
posterior probability and incorporated it into our model 

for consistency with the annotation tool. In addition, 
Bayesian systems with scores ranging from 0 to 1 are also 
well known in research and clinical genetics and have 
been used in many studies [31–33]. However, for detailed 
post-hoc analysis in individual prediction, point-based 
system may be suitable as feature, because additive char-
acteristics of point-based system provide intuitive inter-
pretation for each ACMG/AMP strength of evidence 
categories.

In addition, 3ASC also used the predictive score from 
the in-silico prediction tool, 3Cnet, as a feature for vari-
ant pathogenicity. In fact, the use of the in-silico pre-
diction tool is already included in the PP3 Rule within 
the ACMG/AMP guidelines, but we used it as a feature 
again. The strength of evidence of the PP3 rule may be 
underestimated because it is at the supporting level, so 
the ACMG Bayesian has a low value. Therefore, as the 
prediction can be suboptimized with the Bayesian score 
partially derived from PP3, we used in-silico prediction 
directly at the feature level. There are studies suggesting 
that in-silico prediction is more robust than expected, 
suggesting a higher strength [34, 35]. We identified the 

Fig. 4 Feature importance measured using SHAP and MDA. A SHAP force plot of 3ASC_RF_ALL; B Feature importance of 3ASC_RF_ALL

Fig. 5 SHAP plot of Individual variants in a patient with hemophilia A. A Force plot of a false call variant; B Force plot of a confirmative variant
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prioritization score was improved when 3ASC used in-
silico predictive score by conducting ablation tests with-
out the 3Cnet score (Additional file  1: Supplementary 
document 1).

Although the random forest models of 3ASC showed 
the best sensitivity for high-ranking variants, a num-
ber of variants were scored as zero (approximately 
90%). Some of the causative variants (approximately 
2.5%) were also neglected, which resulted in a failure 
to find all positives even after top 100 variants. This is 
because of the class imbalance between positive and 
negative variants. Among hundreds of candidate vari-
ants in the genome of each patient, only 1–3 variants 
cause the genetic disorders, which makes the random 
forests underestimate the pathogenicity of candidate 
variants. Therefore, the random forest models need to 
be adjusted to address the class imbalance. One way to 
do so would be combining the logistic regression mod-
els to prioritize variants in lower ranks.

The 3ASC models we presented in this study focus on 
finding causative variants, but they are not optimized 
to determine whether each patient has a Mendelian dis-
order. The score distribution of causative variants could 
vary depending on the symptoms and the candidate 
diseases of the patients. Therefore, there are certain 
risks determining the pathogenicity based solely on the 
scores of this model. For the practical use, we recom-
mend that clinical geneticists manually examine each 
variant prioritized by this method with the annotated 
ACMG criteria and feature contribution of the model. 
In this study, we chose conventional machine learn-
ing algorithms such as logistic regression and random 
forests. This is mainly because the features for variants 
can be obtained in the form of uniform tabular data. 
For future works utilizing unstructured data regard-
ing variant interpretation, such as the context from the 
literature, deep neural networks might offer better per-
formance and feature flexibility.

Conclusions
3ASC is an automated pipeline for variant prioritiza-
tion that follows the ACMG/AMP guidelines for vari-
ant interpretation. It annotates the ACMG criteria 
based on evidence from various databases with different 
strengths of evidence ranging from supporting evidence 
to very strong evidence. The Bayesian score is then cal-
culated using the annotation, which represents the pos-
terior probability score for the pathogenicity of each 
variant. Unlike other variant prioritization methods, 
which mainly utilize in-silico prediction for the patho-
genicity score, this approach could not only increase the 
sensitivity of the prioritization but also enable precise 

interpretation of the variant pathogenicity. In addition, 
we integrated various features related to false-positive 
variants, such as quality control and inheritance patterns, 
to train machine learning algorithms. The techniques 
of explainable AI were applied to the models so that we 
could examine why each variant had such a high/low pri-
ority based on the feature contribution.

Methods
Patient data preparation
In this study, exome sequencing variant data gener-
ated from 5055 patients at a single reference laboratory 
in South Korea were used. These patients were referred 
from ~ 50 countries between March 16, 2021 and Febru-
ary 10, 2023 because they were suspected to have rare 
genetic disorders and were found with pathogenic or 
likely pathogenic diagnostic variants. Patient samples 
were received as EDTA blood, buccal swabs or extracted 
genomic DNA. All protein coding regions of known 
human genes (~ 22,000) were captured by xGen Exome 
Research Panel v2 (Integrated DNA Technologies, Coral-
ville, Iowa, USA) and sequenced with Novaseq6000 (Illu-
mina, San Diego, CA, USA) as 150 bp paired-end reads. 
Binary base call (BCL) files generated from sequencing 
were converted and demultiplexed to generate FASTQ 
files. The sequencing reads in the FASTQ files were 
aligned to the human reference genome (GRCh37/hg19 
from NCBI, February 2009) using BWA-MEM (v.0.7.17) 
[36]. Aligned BAM files were sorted and extracted using 
the statistical metrics by samtools (v.1.9) [37], Variant call 
format (VCF) files were generated from BAM files fol-
lowing the GATK best practices (GATK v3.8) [38]. Vari-
ants were then annotated with Ensembl Variant Effect 
Predictor (VEP v104) [39] and classified according to the 
ACMG/AMP guidelines using 3billion’s bioinformat-
ics pipeline EVIDENCE as previously described [40]. 
For each patient, variants meeting the following condi-
tions were filtered out: (1) variants with the allele fre-
quency > 5% of in gnomAD 2.0 [41]; (2) likely benign/
benign variants as classified by the ACMG guidelines; 
(3) variants in genes that are not associated with a mono-
genic disorder in Online Mendelian Inheritance in Man 
(OMIM) [42] Human Phenotype Ontology (HPO), 
OrphaNet [43], Clinical Genomic Database (CGD) [46]. 
Finally, a total of 4,840 variants deemed disease-causing 
were submitted to ClinVar [44]. Phenotypes and vari-
ant information of the selected 5055 patients analysed 
throughout the manuscript are presented as in-house 
data.

Evidence system: ACMG Bayesian score
EVIDENCE, the bioinformatics software pipeline, clas-
sifies variant pathogenicity with schema based on the 
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ACMG guidelines incorporating daily automatically 
updated databases, including public databases, in-house 
variant databases and manually curated literature data-
bases [18]. The variant classification schema assigns each 
variant to one of five classification tiers, including benign 
(B), likely benign (LB), pathogenic (P), likely pathogenic 
(LP) and variant of uncertain significance (VUS). It com-
bines and weighs the strength of the evidence, which is 
divided into stand-alone (A), very strong (VS), strong (S), 
moderate (M) and supporting (P) [47, 48]. To exclude 
variants that are obviously not the disease-causing muta-
tions, variants with BA1 evidence whose alleles are abun-
dant in the population, and variants classified as benign/
likely benign were removed from further analysis.

Tavtigian et  al. have proposed a Bayesian statistical 
framework for the ACMG guideline-based variant inter-
pretations to quantitatively explain the five-tier variant 
pathogenicity classification [19]. To create the variant 
pathogenicity feature assigned following ACMG guide-
line, we adjusted the Bayesian statistical framework to 
mutation and calculated the posterior probability score 
for the pathogenicity of each variant according to the 
strength of the evidence. Given the prior probability of 
the variant pathogenicity ( Prior_P ) and odds of patho-
genicity ( OddsPath ) for very strong evidence ( OPVS ), if N 
was the number of criteria with a given strength of evi-
dence category, the posterior probability of the variant 
pathogenicity ( Post_P ) was determined as defined below 
(Eq. 1).

The prior probability of the variant pathogenicity and 
odds of pathogenicity for very strong evidence were given 
to be 0.1 and 350 respectively, as suggested by Tavtigian 
et  al. [19] The calculated posterior probability score for 
the pathogenicity of each variant is used for one of the 
following 3ASC features, called the ACMG Bayesian 
score.

Symptom similarity: gene‑similarity upweighted Resnik 
similarity
Patients with RDs usually assume that one or two genes 
are dysfunctional. If this gene is dysfunctional, the func-
tions that this gene is responsible for will be consist-
ently malfunctioned. For this reason, symptom similarity 
between a patients’ symptoms and those of the disease 
has been widely used to determine the causal genes. 
For this reason, we assumed that symptom similar-
ity could be improved when jointly considered between 

(1)
OddsPath = O

NPP
8

+NPM
4

+NPS
2

+NPVS
1

−NBP
8

−NBS
2

PVS

Post_P =
OddsPath ∗ Prior_P

((OddsPath− 1) ∗ Prior_P + 1)

patient phenotypes and phenotypes in gene. For exam-
ple, patients with dysfunction of the F10 gene encoding 
the vitamin K-dependent coagulation factor X have more 
phenotypes related to coagulation than patients with 
dysfunction of haematopoietic-related genes, or hepatic 
function-related genes (e.g. symptoms of hepatocellu-
lar carcinoma induced by the APC gene or leukemia by 
ABL1).

We calculated symptom similarity using gene-simi-
larity upweighted Resnik similarity, which is a modified 
form of two-sided Resnik similarity that additionally con-
siders the relevance between the patient’s reported phe-
notype and each candidate disease’s known causal gene. 
Phenotypes are represented using HPO terms (version 
2023-01-27), diseases using the union set of monogenic 
Online Mendelian Inheritance in Man (OMIM) and 
Orphanet terms, and genes are represented as defined by 
the Entrez database [49]. Given an HPO phenotype p , a 
set of phenotypes Q , a disease-to-phenotype mapping D 
for the case of disease k , and a gene-to-disease mapping 
G for the case of gene m are defined as shown below.

The gene-upweighted Resnik similarity function 
 Simupweighted is the product of the symptom-gene similar-
ity function  Simgene and the two-sided Resnik similarity 
function  Simtwo-sieded resnik and, such that

and

The set-level semantic similarity between two sets of 
phenotypesQ = {pq,1, . . . , pq,i},D = {pk ,1, . . . , pk ,j}

The one-sided semantic similarity is defined as:

(2)
Q =

{

pq,1, . . . , pq,i
}

Dk =
{

pk ,1, . . . , pk ,j
}

Gm = {Dm,1,, . . . ,Dm,k}

(3)

Simupweighted(Q,Dk) = Simgene(Q,Gm)

∗ Simtwo−sidedresnik(Q,Dk),

whereDk ∈ Gm

(4)Simgene(Q,Gm) = 1+
eSimsym_resnik (Q,Gm)

∑M
m eSimsym_resnik (Q,Gm)

(5)

Simtwo−sidedresnik(Q,D) =
1

2
Simone−sided(Q → D)

+
1

2
Simone−sided(D → Q)

(6)

Simone−sided(Q → D) = avg
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We used the term-level semantic similarity defined by 
Resnik [50].

3Cnet: variant pathogenicity predicted by a deep neural 
network
A deep neural network trained with evolutionary 
constraints, 3Cnet [21], was used to predict variant 
pathogenicity and add extra refinement to variant pri-
oritization. The 3Cnet score indicates the probability of 
variants being pathogenic according to the amino acid 
change in the context of the protein sequence. There are 
three different sources of data representing the patho-
genicity of the variants, which we named as clinical, 
common, and conservation data. The clinical data indi-
cate the known pathogenic or benign variants reported 
in the ClinVar database. Common variants are variants 
with high allele frequency, considered as benign vari-
ants. Conservation data are the artificial variants gener-
ated based on evolutionary constraints imposed upon 
each gene. The 3Cnet network was trained using those 
pathogenicity data based on multitask learning so that 
overfitting of the network could be avoided. Variants 
must be represented in terms of HGVSp annotation 
[51] to be evaluated by 3Cnet. In this study, we utilized 
the VEP annotator to obtain the HGVSp annotation for 
each variant. For those variants that cannot be anno-
tated to HGVSp or evaluated using 3Cnet, we imposed 
the average score (~ 0.206) of the 216,960 variants from 
in-house patient data. The types of variants that can be 
evaluated by the 3Cnet include missense, deletion, inser-
tion, INDEL, duplication, extension (both 5 prime and 3 
prime), frameshift, stop gain, start loss, and synonymous 
variants. Codes for 3Cnet are freely available to non-
commercial users (https:// github. com/ Kyoun gYeul Lee/ 
3Cnet/).

QC‑related features: variant calling quality factors
We added the features related to variant calling quality 
from VCFs (QC-related features). Although 3ASC can 
predict a highly pathogenic variant, it would be a false 
positive to confirm an artefactual variant as a disease-
causing variant. Based on this motivation, we modeled 
the machine learning system to adjust the risk by adding 
Variant Allele Frequency (VAF) and the variant quality 
score (QUAL) in VCF as features. VAF is the percentage 
of sequence reads observed to match specific DNA vari-
ants divided by overall coverage at that locus [52]. Low 
VAF value may be potential errors due to incorrect base 
calls or alignment. In addition, the variant quality score 
(QUAL) is generated during variant calling. For example, 
QUAL = 20 means there is 1% of probability that there is 

no variant at the site, and QUAL = 50 indicates 0.00001 of 
probability.

Disease inheritance pattern: incomplete zygosity
In addition to the pathogenicity of variants and disease 
similarity, the disease inheritance pattern of genetic 
variants for RDs was elucidated. For clinical reporting, 
variant interpretation to identify disease-causing vari-
ants includes the match between the disease inheritance 
pattern, and the zygosity of the allele [53]. We imple-
mented this by comparing the zygosity of patient vari-
ants with inheritance patterns from OMIM, OrphaNet, 
and CGD. We treated this feature as a Boolean value, true 
for unmatched inheritance pattern between disease and 
zygosity of the patient variant; false for matched inherit-
ance pattern between them.

3ASC models
We defined various models to prioritize genetic variants 
based on the features related to the clinical interpreta-
tion of variants. We started with the baseline model, 
which was a simple combination of the Bayesian score, 
symptom similarity, and the 3Cnet score without train-
ing patient data to optimize the model. By doing so, we 
could guarantee that the model was not overfitted to 
the in-house patient data. The baseline model used sim-
ple multiplication of the scores with sigmoid activation 
for symptom similarity and the 3Cnet score. For robust 
prediction from variant with dissimilar disease which 
has low value of symptom similarity, we heuristically 
chose the subtraction value of 2.0 from the distribution 
of symptom scores. Additionally, 3Cnet scores were also 
transformed by a sigmoid function to avoid degradation 
of false-negative variants that have 3Cnet scores of zero 
but still have the possibility of causing diseases. Hun-
dreds of variants from each patient were scored by the 
final 3ASC scores and prioritized accordingly (Eq. 7). As 
the Bayesian score and symptom similarity score would 
be different depending on the candidate disease for each 
variant, the maximum 3ASC score was selected to meas-
ure variant-level prediction performance.

To further optimize the model so that it could pri-
oritize the variants with higher sensitivity, we trained 
machine learning models using in-house patient data. 
First, we trained logistic regression models with the 

(7)

σ(x) = 1/(1+ exp(−x))

3ASC score = Bayesian score

× σ
(

Symptom similarity− 2
)

× σ(3Cnet score)

https://github.com/KyoungYeulLee/3Cnet/
https://github.com/KyoungYeulLee/3Cnet/
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Bayesian score, symptom similarity, and the 3Cnet score 
as input features. Based on the LogisticRegression clas-
sifier defined in the scikit-learn python package, we set 
the class_weight option as “balanced” and the max_iter 
option as 500. We also trained random forest models 
using the same features. RandomForestClassifier from 
the scikit-learn package was used with the n_estima-
tors option set as 500 and the class_weight option set as 
“balanced”. Other options for those models remained as 
default.

QC-related features and inheritance pattern features 
were also included for other machine learning models 
(Table  4). We validated and compared the performance 
of each model using fivefold cross-validation. As a result, 
a random forest model trained with the Bayesian score, 
symptom similarity, the 3Cnet score, QC-related fea-
tures, and inheritance pattern features showed the best 
performance. We defined these models as the best prac-
tice model (3ASC_RF_ALL). Finally, the performance 
of the baseline model and the best practice model was 
compared with that of benchmark models using external 
validation.

Benchmark models
Based on the benchmark tests and code availabil-
ity mentioned from the previous literature [54], we 
selected Exomiser and LIRICAL as benchmark mod-
els to compare the variant prioritization performance. 
Exomiser version 13.0.1 with data version 2109 was 
executed using Java version 18.0.1.1. VCF file paths 
and HPO values were substituted at runtime. Fur-
ther details regarding its configuration can be found 
in Additional file 2: Supplementary document 2. LIRI-
CAL 1.3.4 was also executed using Java 18.0.1.1. VCF 
file paths and HPO values were substituted at runtime. 
We used hg19 for the genomeAssembly and Exomiser 
database version 2109_hg19. To prevent bias caused 
by data preprocessing, the same set of genes and vari-
ants parsed and filtered from the VCF files was used for 

all the models. Both Exomiser and LIRICAL calculate 
gene scores and variant scores separately. For exam-
ple, Exomiser generates a gene score file and a variant 
score file for each VCF file. The final combined score 
is given in the gene score file at the column named 
“EXOMISER_GENE_COMBINED_SCORE”. The vari-
ant score of the Exomiser is given in the variant score 
file at the column named “EXOMISER_VARIANT_
SCORE”. On the other hand, LIRICAL generates a sin-
gle result file for each VCF file with genes prioritized 
by the posttest probability given at the column named 
“posttestprob”. At the column named “variants”, the 
pathogenicity score for each variant is given. As those 
scores would be different according to the candidate 
diseases, the maximum scores were used for each gene 
and variant. We first prioritized genes based on gene 
scores and then prioritized variants for each gene using 
variant scores. By doing so, we ensured that the prior-
itization performance of the 3ASC models and bench-
marks models could be compared based on the same 
number of candidate genes and variants.

Model comparison and interpretation
Top-k recall, a common metric for recommendation 
systems, was used to evaluate model performance. 
Top-k recall refers to the proportion of hits, where a 
hit indicates the predicted rank of the causative variant 
among other variants of the patient is within a prede-
fined cutoff k. For example, if a model found one causa-
tive variant within rank 5 among 2 causative variants of 
the patient, the top-5 recall for the patient become 0.5 
(1 hit and 1 miss). Some patients with dual diagnosis 
may have multiple confirmed causative variants, which 
lead to the number of hits for a patient may exceed the 
cutoff k. In such cases, the recall rate cannot reach 1 
even if the prioritization is perfect, because the ranks 
of a few causative variants always exceed the cutoff. To 
address the issue, we revised the denominator of the 
recall as the minimum value between the number of 

Table 4 Various 3ASC models with different algorithms and features

Model name Algorithms Data training Bayesian score Symptom 
similarity

3Cnet score QC‑related 
features

Inheritance 
pattern

3ASC (Baseline) Multiplication No Yes Yes Yes No No

3ASC_LR Logistic regression Yes Yes Yes Yes No No

3ASC_LR_QC Logistic regression Yes Yes Yes Yes Yes No

3ASC_LR_ALL Logistic regression Yes Yes Yes Yes Yes Yes

3ASC_RF Random forest Yes Yes Yes Yes No No

3ASC_RF_QC Random forest Yes Yes Yes Yes Yes No

3ASC_RF_ALL Random forest Yes Yes Yes Yes Yes Yes
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causative variants or cut-off k for each patient. Then, 
Top-k recall is averaged across patients for the same 
cutoff k.

To evaluate the consistency in the model’s perfor-
mance, fivefold cross-validation (training set: 80%, 
test set: 20%) was performed by randomly dividing 
patients into fivefold. Firstly, before constructing the 
fivefold dataset, we split the specific date (2022-09-
01) on which the sample was analysed, and we further 
excluded the variants shared by both training and test 
samples in the training dataset to avoid overfitting of 
the model. We used 4,141 of patient’s data as 5 folds for 
cross validation, and 914 of patient’s data as external 
validation dataset. The performance of the 3ASC mod-
els, including the baseline model and the best prac-
tice models, was then compared with that of Exomiser 
and LIRICAL based on top-k recall rates. In addition, 
despite cross-validation, the same type of causal gene 
may be the training data and test data, potentially lead-
ing to performance gains due to data leakage. We con-
structed 5 folds based on genes, separating patients 
with no overlapping genes between each fold (Addi-
tional file 3: Supplementary document 3).

Calculation of feature contribution
For reliable AI, we conducted post hoc analysis with 
model-agnostic X-AI (eXplainable AI) techniques, 
including SHAP (Sapley additive explanations) and 
permutation feature importance. SHAP provides an 
importance value (SHAP value) of each feature for a 
particular prediction by estimating the conditional 
expectation of features [55]. In addition, permuta-
tion feature importance was measured by the mean 
decrease in accuracy (MDA), which refers to the mag-
nitude of the average decrease in accuracy by shuffling 
values in a column.
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