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Abstract 

Background  Epidemiological studies have revealed a significant association between impaired kidney function 
and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, 
the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation.

Methods  In this study, we conducted a large-scale genome-wide cross-trait association study to investigate 
the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum 
urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted 
from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium.

Results  Using LD score regression, we found moderate but significant genetic correlations between kidney function 
biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were 
found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel 
genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most 
of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune 
system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomi-
zation analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD.

Conclusions  In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney 
function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are 
warranted.
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Introduction
Considerable evidence has suggested a notable correla-
tion between bipolar disorder (BIP) and major depressive 
disorder (MDD) [1–4]. Both mental disorders share com-
mon features such as major depressive episodes. Notably, 
genetic epidemiological [5] and genome-wide linkage 
studies [6] support the notion that there is an overlap in 
genetic risk factors between both disorders. Accumulat-
ing studies showed that both BIP and MDD had signifi-
cant association with impaired kidney function [7–10]. 
For example, Clinical observations have indicated that 
depression was a risk factor for progression of chronic 
kidney disease (CKD) [11, 12]. Additionally, the decline 
of estimated glomerular filtration rate (eGFR) was dis-
covered in patients with BIP in a population from north-
ern Sweden [13]. Another nationwide population-based 
study demonstrated that patients with BIP had increased 
more than 2 folds of incidence of CKD [14].

Conversely, patients with CKD were up to 3 times more 
likely to be hospitalized for mental disorders, especially 
depression, compared to patients with other chronic ill-
nesses including cardiovascular diseases and gastrointes-
tinal diseases [15]. Moreover, impaired kidney function 
biomarkers including declined BUN and eGFRcrea are 
also considered to be independent risk factors for mental 
disorders [16, 17]. A cross-sectional investigation con-
ducted in the United Kingdom revealed a higher preva-
lence of CKD among individuals with mental disorders 
compared to the general population (P < 0.05, n = 4295)
[18]. Mental disorders such as major depression also has 
the potential to affect the CKD patients’ ability to make 
decisions and to understand the complex treatment, such 
as fluid and dietary restrictions [19]. Prior research has 
also unveiled the underdiagnosis and undertreatment of 
depression among patients undergoing hemodialysis for 
end-stage renal disease [20–22]. Despite these findings, 
the underlying mechanism linking impaired kidney func-
tion biomarkers and mental disorders remains unclear, 
presenting a significant challenge in the diagnosis and 
treatment of mental disorders.

Genome-wide association studies (GWAS) have 
unveiled numerous genetic variants associated with kid-
ney function biomarkers and mental disorders [23–27]. 
A recently published mendelian randomization study 
showed kidney damage had a causal effect on cerebral 
cortex [28], indicating a shared genetic architecture 
between impaired kidney function and mental disorders. 
However, it remains unclear whether the overall genetic 
correlation between these 2 types of diseases would be 
attributed to a few loci across the genome.

Therefore, we conducted a large-scale genome-wide 
cross-trait association study with ~ 1,000,000 individuals 
of European ancestry to investigate the genetic overlap 

between 5 kidney function biomarkers (creatinine-based 
estimated glomerular filtration rate (eGFRcrea), cystatin 
C-based estimated glomerular filtration rate (eGFRcys), 
blood urea nitrogen (BUN), serum urate, and urinary 
albumin-to-creatinine ratio (UACR)) and 2 mental dis-
orders (BIP, MDD). Using both linkage disequilibrium 
(LD) score regression and bidirectional Mendelian rand-
omization (MR), we aimed to explore the genetic correla-
tion and causal relationship between the 2 sets of traits. 
Furthermore, we conducted a genome-wide cross-trait 
meta-analysis with GWAS summary statistics to identify 
shared genetic loci and provide insights into the molecu-
lar mechanisms underlying their shared genetic liability 
and potential causal relationship.

Methods and material
Study design and data sources
The workflow of our analysis was shown in Fig. 1. There 
were 4 main parts in our study: genetic correlation, causal 
inference, identification of shared variants and functional 
analysis between 5 kidney function biomarker traits and 
2 mental disorders.

To minimize population stratification bias, we included 
individuals of European ancestry in our analyses. We 
obtained summary statistics from publicly available 
GWASs. Regarding kidney function biomarker traits, all 
the summary statistics were based on continuous bio-
markers, including eGFRcrea (N = 1,004,040), eGFRcys 
(N = 460,826), BUN (N = 852,678), urate (N = 288,649), 
and UACR (N = 547,361), from the Chronic Kidney 
Disease Genetics Consortium and UK Biobank. For 
mental disorder traits, we retrieved summary statistics 
from publicly available GWAS studies of the Psychiat-
ric Genomics Consortium (PGC): BIP (N = 51,710), and 
MDD (N = 172,705). Our analysis relied solely on pub-
licly available summary-level data, for which all subjects 
provided informed consent in accordance with the origi-
nal GWAS protocols. Furthermore, the original GWAS 
authors obtained all necessary ethics approvals for their 
studies. Additional information regarding each dataset 
can be found in Additional file 1: Supplementary Table 1.

Linkage disequilibrium score regression (LDSC)
To examine the genetic correlation of kidney func-
tion biomarkers on BIP and MDD, we utilized the 
LDSC software to conduct a genome-wide post-GWAS 
genetic correlation analysis(Bulik-Sullivan et  al., 2015; 
“LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies | 
Nature Genetics,” n.d.) [29, 30]. LDSC estimates the 
genetic correlation between two traits based on the true 
causal effects (ranging from − 1 to 1). In this analysis, 
the GWAS effect size estimate was calculated for each 
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SNP. SNPs in high-linkage disequilibrium regions show 
higher test statistics compared with SNPs in low-link-
age disequilibrium regions. LDSC also provides a self-
estimated intercept to indicate the overlapped between 
studies. To account for multiple testing, we applied 
the false discovery rate (FDR) Benjamini–Hochberg 
method considering a P-value of 0.01 (0.05/5) as the 
significance threshold for LD score regression analysis 
[31].

Multi‑Trait Analysis of GWAS (MTAG)
After evaluating the genetic correlations among all 
traits, we applied MTAG to identify novel loci with 
strong signals for kidney function biomarker trasits and 
mental disorders and to detect shared genetic variants 
between the two traits. MTAG is a statistical method 
that is used to increase power and detect novel loci in 
GWAS studies [32]. It combines summary statistics 
from multiple traits while taking into account the cor-
relation between them, then executes a meta-analysis 
to recognize significant genetic loci. The MTAG esti-
mator is an extension of inverse-variance-weighted 
meta-analysis, which obtains trait-specific association 
statistics by using summary statistics from single-trait 
GWAS. Moreover, MTAG association statistics provide 
additional power and minimal inflation of the FDR for 
each trait examined with high correlation, aligning with 
theoretical expectations [32].

Colocalization analysis
The colocalization analysis is a statistical method used to 
assess the overlap of association loci between two differ-
ent GWAS studies by Bayesian analyses [33]. The method 
aims to ascertain whether the available data substantiate 
the presence of a shared causal variant influencing both 
traits. In instances where a locus exhibits multiple inde-
pendent associations with a given trait, the algorithms 
selectively prioritize the most robust among these dis-
tinct association signals [33]. In our study, we used the 
“coloc” R package to conduct genetic colocalization anal-
ysis between kidney function biomarker traits and men-
tal disorder traits. We calculated the probability that each 
locus is a shared genetic causal variant (PPH4), with loci 
having posterior probabilities greater than 0.5 considered 
colocalized. To provide additional information on the 
genes involved, we used genome browser annotation to 
connect the loci with their nearest gene.

Transcriptome‑wide association study analysis (TWAS) 
and Tissue‐specific expression analysis
To investigate the correlation between kidney function 
and mental disorders with regard to transcriptome gene 
expression in specific tissues, we performed a TWAS 
using FUSION software (version 1.4.1) package based 
on 49 post-mortem tissues expression weights from the 
Genotype-Tissue Expression project (GTEx, version8)
[34, 35]. To mitigate the risk of false positives, we applied 

Fig. 1  Overall study design. PGC: Psychiatric Genomics Consortium; UKB: UK Biobank; CKDGen: Chronic Kidney Disease Genetics Consortium; BIP: 
bipolar disorder; MDD: major depressive disorder; BUN: blood urea nitrogen; eGFRcys: cystatin C-based estimated glomerular filtration rate; UACR: 
urine albumin-creatinine ratio; eGFRcrea: creatinine-based estimated glomerular filtration rate
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the FDR Benjamini–Hochberg procedure (FDR < 0.05) 
to correct all gene-tissue pairs based on TWAS P-values 
[31].

To explore the tissue specificity of the phenotype iden-
tified by our study, we conducted an SNP-based tissue 
enrichment analysis using the Functional Mapping and 
Annotation (FUMA) software [36]. FUMA uses gene-
property analyses to test the associations between tissue-
specific gene expression profiles in general GTEx V8 
tissues and GWAS hits. Furthermore, pathway enrich-
ment analyses of a set of genes were also conducted using 
FUMA, involving the Gene Ontology (GO) project and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). 
The GO project consists of three fundamental domains: 
biological process (BP), cellular component (CC), and 
molecular function (MF), while the KEGG is a valuable 
database for exploring genomes, biological pathways, dis-
eases, chemicals, and drugs.

Mendelian randomization analysis
For forward MR, instrumental variables (IV) for two-
sample MR were identified as genetic variants associated 
with BIP and MDD. In the reverse MR, IVs were chosen 
as genetic variants associated with the above mentioned 
5 kidney function traits. To ensure independence of the 
instruments, all genetic variants were clumped using 
PLINK (–clump-p1 5e-8 –clump-p2 1e-5 –clump-r2 0.1 
–clump-kb 1000).

We performed several MR methods to investigate 
potential causal associations of kidney function bio-
marker traits on BIP and MDD. The inverse-variance 
weighted (IVW) method was employed as the primary 
analysis to ensure a precise estimate of the summary-
level data [37]. However, the performance of the IVW 
method is prone to be influenced by invalid instrumental 

variables. Therefore, we first conducted MR-Egger 
regression to account for unmeasured pleiotropy, as 
this method is sensitive to outliers and provides con-
sistent estimates of the causal effect [38]. Moreover, we 
employed the mode-based estimate (MBE) and contami-
nation mixture (ConMix) methods to mitigate the effects 
of weak instrument bias, pleiotropy, and extreme outli-
ers which helped validate the relationship [39, 40]. Given 
that the different MR methods rely on different assump-
tions for valid inferences, we can expect to obtain reliable 
MR results.

Generally, all the analyses were conducted using R 
software 4.0.3. The IVW, MR–Egger, MBE and ConMix 
methods were performed using the “MendelianRandomi-
zation” package.

Results
Genome‑wide genetic correlation of kidney function 
biomarker traits on BIP and MDD
We investigated the genetic correlations between 
mental disorders and kidney function biomarker 
traits using LDSC (Table  1, Additional file  2: Sup-
plementary Table  2). We observed moderate but 
positive genetic correlations (Rg) between BIP and 
eGFRcrea (Rg = 0.079, FDR = 2.75 × 10–3), eGFRcys 
(Rg = 0.078, FDR = 2.75 × 10–3), and UACR (Rg = 0.098, 
FDR = 3.17 × 10–3). We also observed a negative genetic 
correlation (Rg) between MDD and eGFRcys (Rg = -0.099, 
FDR = 3.13 × 10–4).

Cross‑trait meta‑analysis of kidney function biomarker 
traits on BIP and MDD
We applied MTAG for genome-wide cross-trait meta-
analysis to identify genetic loci associated with kid-
ney function biomarker traits and mental disorders. 

Table 1  Genome-wide genetic correlation kidney function biomarker traits on BIP and MDD

Rg: genetic correlation estimate; SE: standard error of genetic correlation estimate; BIP: bipolar disorder; MDD: major depressive disorder; BUN: Blood Urea Nitrogen; 
eGFRcys: cystatin C-based estimated glomerular filtration rate; UACR: Urine Albumin-Creatinine Ratio; eGFRcrea: creatinine-based estimated glomerular filtration rate

Mental disorders Kidney function 
biomarkers

Rg Rg_SE Zs P FDR

BIP BUN − 0.006 0.027 − 0.231 8.18E−01 8.18E−01

eGFRcrea 0.079 0.024 3.252 1.10E−03 2.75E−03

eGFRcys 0.078 0.023 3.429 6.00E−04 2.75E−03

UACR​ 0.098 0.032 3.100 1.90E−03 3.17E−03

urate − 0.035 0.023 − 1.520 1.29E−01 1.61E−01

MDD BUN − 0.017 0.023 − 0.746 4.56E−01 5.70E−01

eGFRcrea 0.020 0.024 0.845 3.98E−01 5.70E−01

eGFRcys − 0.099 0.025 − 4.003 6.26E−05 3.13E−04

UACR​ − 0.030 0.028 − 1.060 2.89E−01 5.70E−01

urate 0.008 0.035 0.232 8.17E−01 8.17E−01
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Shared genetic loci were defined by selecting SNPs with 
cross-trait meta-analysis Pmtag < 5 × 10–8 and single trait 
P < 5 × 10–4.

We identified a total of 69 independent loci that were 
shared among 10 pairs of 5 kidney function biomark-
ers and 2 mental disorders. For BIP, 5 significant shared 
loci were identified associated with BUN, 19 significant 
shared loci were identified associated with eGFRcrea, 
13 significant shared loci were identified associated with 
eGFRcys, 6 significant shared loci were identified associ-
ated with UACR, 4 significant loci were identified asso-
ciated with urate. For MDD, 3 significant shared loci 
were identified associated with BUN, 8 significant shared 
loci were identified associated with eGFRcrea, 11 sig-
nificant loci were identified associated with eGFRcys, 
1 significant locus were identified associated with 
UACR (PMDD = 4.98 × 10–3, PUACR = 8.90 × 10–10, 
Pmtag = 1.22 × 10–8), 6 significant loci were identified 
associated with urate (Table 2). The Manhattan plots of 
MTAG results were listed in Supplementary Figs. 1–10.

In the meta-analysis of BIP with 5 kidney func-
tion biomarker traits, the strongest association signals 
were localized to the MUC1(index SNP: rs2070803, 
Pmtag = 1.63 × 10–82) for BUN, MACROD2 (index 
SNP: rs11697103, Pmtag = 1.43 × 10–77) for eGFRcrea, 
AL589740.1 (index SNP: rs2388334, Pmtag = 3.26 × 10–32) 
for eGFRcys, SNX17 (index SNP: rs4665972, 
Pmtag = 3.26 × 10–32) for UACR, and WDR82(index SNP: 
rs7629072, Pmtag = 2.67 × 10–49) for urate. For the meta-
analysis of MDD with 5 kidney function biomarker traits, 
the strongest association signals were localized to the 
SUFU (index SNP: rs7893954, Pmtag = 1.57 × 10–12) for 
BUN, HLA-B (index SNP: rs2523593, Pmtag = 1.52 × 10–26) 
for eGFRcrea, HLA-B (index SNP: rs2442722, 
Pmtag = 3.15 × 10–43) for eGFRcys, CASZ1 (index SNP: 
rs17035646, Pmtag = 1.22 × 10–8) for UACR, LINC01460 
(index SNP: rs4665390, Pmtag = 2.09 × 10–11) for urate.

Among the 69 loci, we would highlight 4 overlapped 
loci across 10 pairs of all the traits (Additional file 3: Sup-
plementary Table 3). Notably, the first which also the only 
locus (index SNP: rs148696809, Pmtag = 2.09 × 10–11) 
shared by eGFRcrea with both BIP (P = 4.10 × 10–4) and 
MDD (P = 4.36 × 10–9) was in proximity to KRT18P1, 
which is a pseudogene of keratin [40]. Another 3 loci 
were shared by kidney function biomarker traits. The 
second locus (index SNP: rs1260326, Pmtag = 3.18 × 10–6) 
was shared by 4 kidney function biomarkers (BUN 
(P = 1.01 × 10–26), eGFRcrea (P = 1.84 × 10–74), eGFRcys 
(P = 2.81 × 10–17), urate (P = 2.97 × 10–95)) with BIP. SNP 
rs1260326 was mapped to GCKR gene, which typi-
cally suppresses GCK function by binding to GCK in 
the fast phase [41–43]. The third locus (index SNP: 
rs2070803, Pmtag = 1.63 × 10–82) was common to BUN 

(P = 3.08 × 10–99) and urate (P = 2.12 × 10–60). SNP 
rs2070803 was mapped to the genes MUC1, which 
play roles in cell surface protein coding and serum 
uric acid levels [44, 45]. The fourth locus (index SNP: 
rs1008438, Pmtag = 1.53 × 10–5) shared by MDD with 
eGFRcrea(P = 7.11 × 10–20) and eGFRcys(P = 2.85 × 10–15) 
was mapped to the genes HSPA1A and HSPA1L, which 
encode for heat shock protein family A members [46, 47].

Colocalization
We further conducted colocalization analysis to inves-
tigate the causal shared genetic variants between 5 
kidney function biomarker traits and 2 mental dis-
order traits. The colocalization analysis showed that 
BUN shared a causal variant (rs9290867) with MDD 
and BIP (PPH4 > 0.5). Additionally, eGFRcys shared 
another genetic variant (rs6114253) with BIP and MDD 
(PPH4 > 0.5, Table 3).

Furthermore, we found an overlap of SNP rs6114253 
between the colocalization and MTAG results. 
Although rs6114253 did not meet our selection 
threshold (single trait P < 5 × 10–4), the MTAG analy-
sis indicated that rs6114253 represented a significant 
signal (Pmtag = 4.05 × 10–296) associated with eGFRcys 
(P = 6.03 × 10–277) in the context of BIP (P = 7.23 × 10–1) 
and MDD (P = 5.94 × 10–1).

TWAS and Tissue‐specific expression analysis
To explore the potential shared gene-tissue associations 
between kidney function biomarker traits and mental dis-
orders, we also conducted a TWAS analysis using GTEx 
V8 gene expression data. Our analysis revealed 2476 
shared tissue–gene pairs (FDR < 0.05) between 5 kidney 
function biomarker traits and 2 mental disorders, most 
of which were observed in the nervous, cardiovascu-
lar, exo-/endocrine system and digestive systems (Addi-
tional files 4, 5, 6: Supplementary Table 4–6). Notably, we 
observed 249 significant tissue–gene pairs for BIP and 
BUN, 489 pairs for MDD and BUN, 536 pairs for BIP and 
eGFRcrea, 396 pairs for MDD and eGFRcrea, 357 pairs 
for BIP and eGFRcys, 448 pairs for MDD and eGFRcys 
(Additional files 6, 7, 8: Supplementary Table  6–8). 
Among these pairs, several notable associations were 
found. For BIP and kidney function biomarker traits, 
the strongest expression–trait association was observed 
at SCGB1B2P (the strongest association at the heart left 
ventricle, FDRTWAS = 3.19 × 10–9), which is a member of 
secretoglobin family [48]. In addition, RPL13 (the strong-
est association at stomach, FDRTWAS = 2.23 × 10–7) and 
LINC00189 (the strongest association at the hypothala-
mus, FDRTWAS = 1.46 × 10–6) were also TWAS signifi-
cant. For MDD and kidney function biomarker traits, the 
strongest expression–trait association was observed at 
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ECHDC1 (the strongest association at the cells cultured 
fibroblasts, FDRTWAS = 3.19 × 10–9), which encodes eth-
ylmalonyl-CoA decarboxylase 1 [49]. Among these 2476 
shared tissue–gene pairs, 3 novel genes: SUFU, IBSP, and 
PTPRJ, were also identified in MTAG.

To gain further insights into the enriched expression of 
shared genes between the 5 kidney function biomarker 
traits and the 2 mental disorder traits, we further con-
ducted a tissue-specific enrichment analysis. A total 
of 5 tissues were found with an enriched expression of 
shared genes between 5 kidney function biomarker traits 
and 2 mental disorder traits. The mainly enriched tis-
sues contained the kidney cortex, kidney medulla, liver, 
pancreas, and skeletal muscle. We found that common 
pathways in KEGG and GO for genes shared between 5 
kidney function biomarker traits and 2 mental disorder 
traits included ribonucleotide binding, biosynthetic pro-
cess, gene expression, mitochondrion, cell differentiation 
and immune systems diseases (Additional files 7, 8, 9, 10: 
Supplementary Table  7–10, Additional file  12: Supple-
mentary Fig. 11–20).

Mendelian randomization results
Under the primary genome-wide significance P-value 
threshold of P < 5 × 10–5, a total of 447, 340, 300, 680, 374, 
74, 258 instrumental SNPs were retained for BIP, MDD, 
BUN, eGFRcrea, eGFRcys, UACR, and urate, respectively 
(Additional file 11: Supplementary Table 11).

The bidirectional Mendelian randomization revealed 
causal relationships of eGFRcys (ORMBE = 1.517, 95% CI: 
1.057 – 2.178, P = 2.40 × 10–2) and UACR on BIP, as well 
as MDD on eGFRcys, which are consistent with the pre-
vious LDSC results. Additionally, Bidirectional MR anal-
ysis also revealed causal relationships of urate on BIP, as 
well as MDD on eGFRcrea. Furthermore, we also found a 
bidirectional causal relationship between MDD and urate 
(forward BetaMBE = – 0.538, 95% CI: -0.795 – (-0.282), 
P = 3.98 × 10–5; reverse ORMBE = 0.923, 95% CI: 0.891 – 
0.957, P = 1.00 × 10–3). However, the MR results showed 
no significant causal relationship of BIP on eGFRcrea, 
eGFRcys, UACR, and urate (all P > 0.05). Also no siginifi-
cant assosiation of BUN, eGFRcrea, and UACR on MDD 
(all P > 0.05, Fig. 2).

Discussion
To our knowledge, this is the first study to identify 
genome-wide genetic correlation and shared genetic 
variants of kidney function biomarker traits on BIP and 
MDD. Our findings reveal significant causal relationships 
between these traits. Cross-trait meta-analysis identi-
fied 5 to 19 independent significant loci that were found 
shared among 10 pairs of 5 kidney function biomark-
ers traits and 2 mental disorders. we would highlight 4 

Table 3  Cross-trait SNPs between 2 mental disorder traits and 5 
kidney function biomarker traits that colocalized (PPH4 > 0.5)

Exposure Outcome SNP SNP.PP.H4 Gene

BUN BIP rs9290867 0.71958943 LPP-AS2

BUN MDD rs9290867 0.73130115 LPP-AS2

eGFRcys BIP rs6114253 0.76291143 CST1

eGFRcys MDD rs6114253 0.66571008 CST1

Fig. 2  Bidirectional MR results using mode-based estimate (MBE) method. a Forest plot of the main MR study investigating the causal effect 
of 2 mental disorders on 5 kidney function biomarker traits using the MBE method. b Forest plot of the main MR study investigating the causal 
effect of 5 kidney function biomarker traits on 2 mental disorders using the MBE method. A P-value of MBE < 0.05, B P-value of ConMix < 0.05, C 
P-value of MR-Egger < 0.05. BIP: bipolar disorder; MDD: major depressive disorder; BUN: blood urea nitrogen; eGFRcys: cystatin C-based estimated 
glomerular filtration rate; UACR: urine albumin-creatinine ratio; eGFRcrea: creatinine-based estimated glomerular filtration rate
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overlapped loci across 10 pairs of all the traits, including 
GCKR, MUC1, HSPA1A and KRT18P1. Furthermore, 
we found 3 novel genes identified by both MTAG and 
TWAS, including PTPRJ, IBSP and SUFU. TWAS analy-
sis showed that the shared genes between kidney func-
tion biomarkers and mental disorders might express via 
the nervous, cardiovascular, exo-/endocrine system and 
digestive systems. Pathway analysis showed the immune 
system could play a role between function biomarkers 
and mental disorders.

Impaired kidney function biomarkers such as declined 
BUN and eGFRcrea, have been identified as independent 
risk factors for mental disorders. In LDSC analysis, we 
found significant genetic correlations of BIP with eGFR-
crea, eGFRcys, and UACR, as well as between MDD and 
eGFRcys. The further conducted bidirectional Mende-
lian randomization confirmed causal relationships of 
eGFRcys and UACR on BIP, as well as MDD on eGFRcys, 
supporting the findings from LDSC analysis. Moreover, 
bidirectional MR analysis also revealed causal relation-
ships of BUN and urate on BIP, which align with the pre-
vious epidemiological evidence [50]. For serum urate, 
the results suggested that the lower urate had a genetic 
causal effect on a higher risk of BIP at the population 
level, which supported previous observational studies 
[51]. Consequently, our results underscore the impor-
tance of diligent monitoring for patients with decreased 
urate levels, not only for other chronic and metabolic 
complications but also for indications of BIP. This neces-
sitates comprehensive assessments, including physical 
examinations and psychological evaluations, to facilitate 
early detection and intervention. Furthermore, we also 
found a bidirectional causal relationship between MDD 
and urate, which is consistent with previous studies. For 
example, a previous clinical cross-sectional study sug-
gested that low levels of serum urate are associated with 
a higher prevalence of depression [50], while another 
genetic correlation study demonstrated that urate could 
have a deleterious effect on general cognitive function 
[52].

Among 69 significant loci identified by cross-trait 
meta-analysis using MTAG, we highlighted 4 overlapped 
loci among 10 pairs of 5 kidney function biomarkers 
traits and 2 mental disorders, including the genes GCKR, 
MUC1, HSPA1A and KRT18P1. For GCKR, our analy-
sis found it was shared by BIP with BUN, eGFRcrea, 
eGFRcys and urate, which was agreed by many previous 
studies. For example, individuals with the T/T genotype 
of GCKR rs1260326 were at a significantly higher risk 
of CKD [41]. Despite limited evidence linking GCKR 
to BIP, it was observed that the GCKR encoding glu-
cokinase regulatory protein which is present in human 
brains, including in the ventromedial and arcuate nuclei 

of the hypothalamus, indicating its role in glucose sens-
ing in the central nervous system [53]. MUC1 was found 
common to BUN and urate in MTAG, which consistent 
to the previous evidence of MUC1 associated with urate, 
UACR and eGFRcrea [44, 45, 54, 55]. MUC1 was also 
found related to central nervous system diseases such as 
multiple sclerosis [56]. HSPA1A was found to be associ-
ated with a poorer response to antidepressants in MDD 
(P = 0.005) [57]. Our study found HSPA1A was common 
to eGFRcrea, eGFRcys and MDD in MTAG, indicating 
a potential mechanism through which renal dysfunction 
affects MDD via HSPA1A. KRT18P1 was also associated 
with MDD and neuroticism reported by previous GWAS 
study [58]. The colocalization analysis revealed a shared 
causal variant (rs9290867) between BUN with MDD and 
BIP (PPH4 > 0.5). This variant is mapped to LPP-AS2, a 
long non-coding RNA that was recently found associ-
ated with glioblastoma. Additionally, the genetic variant 
(rs6114253) in proximity to CST1, which encodes Cys-
tatin SN, was found to be shared between eGFRcys and 
both BIP and MDD. Further studies are needed to inves-
tigate the role of these genes in impaired kidney function 
and mental disorders.

In the TWAS analysis, we identified 2476 shared tis-
sue–gene pairs between kidney function biomarker 
traits and 2 mental disorders. Among them, we would 
like to highlight 3 novel genes which were significant 
both in MTAG and TWAS results, including PTPRJ 
(Pmtag = 2.91 × 10–8, PTWAS_BIP = 2.08 × 10–3, PTWAS_eGFR-

crea = 5.16 × 10–4), IBSP (Pmtag = 4.41 × 10–11, PTWAS_

BIP = 3.44 × 10–2, PTWAS_BUN = 5.85 × 10–4) and SUFU 
(Pmtag = 1.57 × 10–12, PTWAS_MDD = 3.49 × 10–2, PTWAS_

eGFRcys = 1.57 × 10–6). PTPRJ and IBSP were both found 
to be share between BIP and kidney function biomarker 
traits (eGFRcrea, BUN) in brain cortex, PTPRJ encodes 
a receptor-type protein tyrosine phosphatase[60]. Studies 
have shown that PTPRJ was associated with N-Acetyl-
aspartyl-glutamate, which could regulate peptide neuro-
transmitters in the mammalian nervous system [61, 62]. 
Therefore, PTPRJ could be a potential target for mental 
disorders. IBSP is a member of the small integrin-binding 
ligand N-linked glycoprotein family [63, 64]. Few studies 
have reported that IBSP was found to be associated with 
the nervous system and kidney function. Our study sug-
gested that IBSP could be a potential site for regulating 
renal function and mental disorders. SUFU was shared 
between MDD and eGFRcys in brain basal ganglia, which 
is a negative regulator of hedgehog signaling. The muta-
tion of SUFU predisposes to the sonic hedgehog medul-
loblastoma [65]. GO biological process shows that SUFU 
plays an important role in the regulation of cell differ-
entiation which corroborates the reports of previous 
studies [65–67]. SUFU was also reported to be altered 
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in low-grade or high-grade meningioma or were in the 
same pathways as known meningioma drivers [68].

Post-GWAS functional analyses provided biological 
insights into the shared genes between kidney function 
and mental disorders traits. GTEx tissue enrichment 
analysis identified shared genes that were significantly 
enriched in several tissues, including the kidney cortex, 
kidney medulla, liver, pancreas, and skeletal muscle. 
KEGG pathway analysis showed that a set of 115 genes 
is enriched in immunity‐related signaling functions, con-
sistent with the immune system being the major driver 
of mental disorders [69–73]. Epidemiologic and genetic 
studies have suggested the existence of a kidney-brain 
axis, where kidney damage causally influences the brain 
cortical structure [28, 69, 74]. This comprehensive evalu-
ation of genetic correlation and causality between men-
tal disorders and kidney function provides new insights 
into the shared loci and biological mechanisms underly-
ing this comorbidity. The importance of impaired kidney 
function as a predictor for the risk of mental disorders is 
increasingly being recognized [75].

This study has several notable strengths. Firstly, it 
is the first analysis to identify the shared genetic archi-
tecture of kidney function and mental disorders using a 
large-scale observational GWAS dataset (sample size up 
to 1,004,040). Secondly, by employing multiple test cor-
rection such as FDR, we minimized the influence of con-
founding factors, which may improve the reliability of 
our findings. Lastly, we identified 3 novel independent 
loci (PTPRJ, IBDP, and SUFU) that are associated with 
both kidney function and mental disorders using multi-
comics statistical methods such as MTAG and TWAS, 
which may contribute to a better understanding of the 
underlying mechanisms.

We also acknowledge several potential limitations in 
this study. Firstly, the 5 kidney function biomarker traits 
may not capture the full spectrum of the impairment of 
kidney function. Nevertheless, we attempted to capture 
renal function from multiple perspectives by using vari-
ous blood and urine indicators. Secondly, horizontal plei-
otropy may exist between exposure and outcome, which 
could reduce the statistical power of traditional MR 
analysis. Consequently, we employed robust MR meth-
ods such as MBE and ConMix, to strengthen the valid-
ity of our findings. Thirdly, the study population in this 
research was predominantly of European ancestry. There-
fore, the results of this study should be interpreted with 
caution when considering other ancestral populations.

Conclusions
Understanding the genetic overlap between kidney func-
tion biomarkers and mental disorders may be beneficial to 
the management of both conditions. Our study provides 

evidence of significant genetic correlations and causal rela-
tionships between kidney function biomarkers and mental 
disorders. Shared genetic variants were mapped to improve 
resolution and identify potential shared causal variants 
with exonic missense polymorphisms. We also found mul-
tiple potential common biological mechanisms, which can 
advance our understanding of the connection between kid-
ney function biomarkers and mental disorders. Such shared 
genes and pathways might serve as common drug targets in 
impaired kidney function, BIP and MDD.
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