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Systematic analysis of IGF2BP family members 2
in non-small-cell lung cancer

Liping Gong', Qin Liu?, Ming Jia? and Xifeng Sun®’

Abstract

Background The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3)
are known to be involved in tumorigenesis, metastasis, prognosis, and cancer immunity in various human cancers,
including non-small cell lung cancer (NSCLC). However, the literature on NSCLC largely omits the specific context of
lung squamous cell carcinoma (LUSC), an oversight we aim to address.

Methods Our study evaluated the differential expression of IGF2BP family members in tumors and normal tissues.
Meta-analyses were conducted to assess the prognostic value of IGF2BPs in lung adenocarcinoma (LUAD) and
LUSC. Additionally, correlations between IGF2BPs and tumor immune cell infiltration, mutation characteristics,
chemotherapy sensitivity, and tumor mutation burden (TMB) were investigated. GSEA was utilized to delineate
biological processes and pathways associated with IGF2BPs.

Results IGF2BP2 and IGF2BP3 expression were found to be upregulated in LUSC patients. IGF2BP2 mRNA levels
were correlated with cancer immunity in both LUSC and LUAD patients. A higher frequency of gene mutations
was observed in different IGF2BP1/2/3 expression groups in LUAD compared to LUSC. Meta-analyses revealed a
significant negative correlation between overall survival (OS) and IGF2BP2/3 expression in LUAD patients but not in
LUSC patients. GSEA indicated a positive association between VEGF and IGF2BP family genes in LUAD, while matrix
metallopeptidase activity was inversely correlated with IGF2BP family genes in LUSC. Several chemotherapy drugs
showed significantly lower IC50 values in high IGF2BP expression groups in both LUAD and LUSC.

Conclusion Our findings indicated that IGF2BPs play different roles in LUAD and LUSC. This divergence highlights the
need for tailored therapeutic strategies and prognostic tools, cognizant of the unique molecular profiles of LUAD and
LUSC.
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Introduction

In 2020, lung cancer emerged as the second most fre-
quently diagnosed cancer and maintained its status as
the primary cause of mortality attributed to cancer [1].
It is categorized into two histological subtypes: small-
cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC). NSCLC, which comprises about 85% of all
lung cancer cases, is primarily classified into lung squa-
mous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) [2, 3]. Significant research efforts have focused
on unreaveling the mechanisms underlying the devel-
opment, progression, and metastasis of NSCLC in an
attempt to decrease its mortality rate [4, 5]. Over the last
decade, advancements in immune and targeted thera-
pies have significantly altered the treatment paradigm
for NSCLC [6-9]. Despite these developments, the effec-
tiveness of targeted therapy is limited, as not all patients
with driver gene mutations benefit from such treatments.
Additionally, only a minority of NSCLC patients exhibit
favorable responses and enhanced long-term survival
following immunotherapy. Consequently, the overall
cure and survival rates for NSCLC, especially in meta-
static stages, remain suboptimal. Identifying new, highly
specific, and sensitive biomarkers, along with novel
molecular targets, is crucial not only for elucidating the
molecular mechanisms of NSCLC but also for improving
treatment outcomes.

Insulin-like growth factor 2 mRNA-binding proteins
(IGF2BPs) are part of an evolutionarily preserved fam-
ily of single-stranded RNA-binding oncofetal proteins.
This family includes IGF2BP1, IGF2BP2, and IGF2BP3
[10, 11]. These proteins have been demonstrated to func-
tion as m6A readers, stabilizing target mRNAs such as
S1PR3 [12], ¢-MYC [13], PEG10 [14], SOX2 [15], LYPD1
[16], YES1 [17], MGATS5 [18], and SRF [19], leading to
various biological effects. IGF2BPs have also been impli-
cated in tumorigenesis across various cancers and their
active involvement in cell functions in tumor-derived
cells, including cell polarization, adhesion, and migration
[11]. IGE2BPs have been found to promote an aggres-
sive phenotype in tumor-derived cells, enhancing tumor
growth and drug resistance [20]. Previous research has
established a correlation between IGF2BP3 and the
promotion of bladder cancer cell proliferation through
the activation of the JAK/STAT signaling pathway [21].
Similarly, IGF2BP1 is known to enhance invasive growth
driven by SRC/MAPK in ovarian cancer cells [22]. In
pancreatic cancer, upregulation of IGF2BP2 promotes
cell proliferation via the PI3K/Akt signaling pathway [23].
In the context of NSCLC, several studies have under-
scored the importance of IGF2BPs in oncogenesis and
cancer development [10]. Researchers have shown that
the ALKBH5-IGF2BPs axis promotes cell proliferation
and tumorigenicity, leading to an unfavorable prognosis
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in NSCLC [24]. Research has reported that circNDUFB2
facilitates the interaction between TRIM25 and IGF2BPs,
resulting in the ubiquitination and degradation of
IGF2BPs, thereby inhibiting the growth and metastasis of
NSCLC [10]. Additionally, IGF2BPs have been found to
be upregulated in LUAD patients, correlating with poor
overall survival. Furthermore, Hao et al. indicated that
IGF2BPs mitigate the detrimental effects of irradiation
on LUAD by upregulating VANGL1 [25].

Recent research has revealed that IGF2BPs may exert
a substantial influence on the immune response within
the tumor microenvironment. Elcheva et al. have demon-
strated that reducing the expression of IGF2BPs enhances
the expression of interferon beta-stimulated genes and
increases the infiltration levels of NK cells and tumor-
associated myeloid cells in melanoma mouse models
[26]. Specifically, IGF2BP2 promotes the polarization
of tumor-associated macrophages (TAMs) towards the
M2 phenotype [27], while IGF2BP3 promotes the polar-
ization of TAMs to an immunosuppressive phenotype.
Moreover, a peptide epitope derived from IGF2BP3 has
been identified to stimulate CD8+T cells, generating
a potent and specific immune response against cancer
cells [28, 29]. IGF2BP3 has also been reported to stabi-
lize PD-L1 mRNA expression, thereby inhibiting the
effects of cytotoxic T cells [30]and suppressing CD8+T
cell infiltration in NSCLC [31]. It also appears to dimin-
ish NK cell-mediated cytotoxicity via facilitating the
decay of the stress-induced ligand ULBP2 mRNA [32].
In addition, a pan-cancer analysis has revealed significant
associations between IGF2BP family expression profiles
and microsatellite instability (MSI), infiltration of certain
immune cells, tumor mutational burden (TMB), and var-
ious immune checkpoint biomarkers [33]. However, most
studies focusing on NSCLC have not included LUSC.
Given the substantial differences in biological behavior
and treatment strategies between LUAD and LUSC, the
specific mechanisms of IGF2BP family members in LUSC
remain unclear. Our study aimed to analyze and compare
the expression and mutations of different IGF2BPs and
their associations with prognostic value, the immunomi-
croenvironment, and drug sensitivity in both LUAD and
LUSC patients. This approach may unveil the molecular
mechanisms that contribute to the NSCLC tumorigen-
esis and identify new prognostic and therapeutic targets.

Materials and methods

Clinical sample

This study utilized a total of 30 samples, which included
10 paraffin-embedded LUAD samples, 10 paraffin-
embedded LUSC samples, and 10 paraffin-embedded
normal lung tissue samples. These samples were col-
lected from the Department of Cancer Center at the Sec-
ond Hospital of Shandong University in July 2023. The
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Institutional Research Ethics Committee of Shandong
University granted ethical approval and obtained each
patient’s consent prior to the research.

Quantitative real-time PCR (qRT-PCR)

Total RNA from the paraffin-embedded tissue samples
was extracted using the RNAprep Pure FFPE kit (TIAN-
GEN, Beijing, China). First-strand DNA synthesis was
performed using Omniscript Reverse Transcriptase
(TIANGEN, Beijing, China), adhering to the manufac-
turer’s instructions. The primers used were as follows:
IGF2BP1 forward primer 5- TGAAGCTGGAGACCC
ACATA-3] reverse primer 5-GGGTCTGGTCTCTTG
GTACT-3’; IGF2BP2 forward primer 5-GTTGGTGCC
ATCATCGGAAAGG -3] reverse primer 5-TGGATG
GTGACAGGCTTCTCTG-3’; IGF2BP3 forward primer
5-GCTCTATCAGTCGGTGCCATCATC-3; reverse
primer 5-GCCTTGAACTGAGCCTCTGGTG-3’; beta-
actin forward primer 5- CTCCATCCTGGCCTCGCT
GT-3] reverse primer 5-GCTGTCACCTTCACCGTTC
C-3' All reactions were conducted in accordance with the
guidelines provided by the manufacturer. These involved
the use of UltraSYBR Mixture (including ROX; Beijing
CoWin Bioscience Co., Ltd.), 250 nM primer (Invitrogen),
and 100 ng of cDNA in a 20 pl reaction volume. Each
individual sample was analyzed in quadruplicate across
three independent tests. The results were standardized
using beta-actin, an endogenous internal control.

Histologic and immunohistochemical analysis

Pathological sections from LUAD (10 sets), LUSC (10
sets), and non-cancer tissue (10 sets) were obtained from
the Second Hospital of Shandong University. The paraf-
fin-embedded tissues were dissected into 4 pm thickness
slices, then deparaffinized with a gradient xylene solution
and rehydrated with a gradient ethanol solution. Follow-
ing this, the slices were subjected to a 10-minute treat-
ment at 37 °C with 3% hydrogen peroxide to suppress the
activity of endogenous peroxidase. Non-specific binding
sites were blocked using 10% bovine serum albumin at
room temperature for an hour. Overnight incubation at
4 °C followed, using rabbit polyclonal antibodies against
IGF2BP1, 2, and 3 (Catalog numbers: 22803-1-AP/11601-
1-AP/14642-1-AP, Proteintech, Wuhan, China) at a
1/200 dilution. This was followed by a 2-hour incuba-
tion with HRP-conjugated secondary antibody at room
temperature. The slices were then stained with 3-diami-
nobenzidine and counterstained with hematoxylin, with
cytoplasmic staining being evaluated. Two independent
pathologists observed and photographed the sections
using a microscope.
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Data collection

The clinical characteristics and gene expression pro-
files (HTSeq-FPKM) for LUAD and LUSC patients were
obtained from the Cancer Genome Atlas (TCGA) data-
base through the GDC hub of the UCSC Xena website
(http://xena.ucsc.edu/public, accessed on July 15, 2023).
In cases where a single patient had multiple samples in
the dataset, the tumor sample from the primary lesion
was selected. The normalized gene expression values
conversion to transcripts per million (TPM) and under-
went logarithmic transformation (log2 (TPM+1)). The
gene symbols were mapped to the ensemble IDs utiliz-
ing the “org.Hs.eg.db” and “clusterProfiler” R packages.
The divergent expression of IGF2BP1/2/3 between tumor
and normal tissues across LUAD and LUSC was analyzed
using TCGA datasets.

cBioPortal is a platform for analyzing multidimensional
cancer genomics. It houses over 200 cancer genomics
studies from TCGA [34]. In our study, we examined the
genomic profiles of the IGF2BP family members, includ-
ing structural variants and copy-number alterations.
Kaplan—Meier plots were utilized to illustrate the genetic
variants within the IGF2BP family and their association
with overall survival (OS) and disease-free survival (DFS)
in patients diagnosed with LUAD and LUSC. To deter-
mine the significance of differences between the survival
curves, the log-rank test was utilized.

The mutation annotation format (maf) file of the simple
nucleotide variation data (workflow type: VarScan2 Vari-
ant Aggregation and Masking) for the TCGA_LUAD and
TCGA_LUSC cohorts was obtained from the Genomic
Data Commons (GDC) database (https://portal.gdc.can-
cer.gov/). The data was processed using the “maftools”
package in R to calculate the total mutation burden of
each NSCLC sample.

Correlation between IGF2BP family genes and tumor
immunity

TIMER (https://cistrome.shinyapps.io/timer/) was uti-
lized to assess the mRNA expression and mutation levels
of IGF2BP family genes in LUAD and LUSC, as well as
their associations with immune infiltrating cells (B cells,
CD4+and CD8+T cells, neutrophils, macrophages, and
dendritic cells). The correlations between the expression
of IGF2BP family genes and key genes targeted in immu-
notherapy were also evaluated. The expression levels of
these genes were quantified as log2 TPM. We utilized
the “ESTIMATE” package in R to compute the immu-
nological score, stromal score, and ESTIMATE score to
evaluate the tumor microenvironment of each individual
patient [35]. Throughout these calculations, all parame-
ters in the R equation were set to their default values.
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Meta-analyses

The survival analysis of IGF2BPs was evaluated using the
OSluca program (https://bioinfo.henu.edu.cn/LUCA/
LUCALiIst.jsp) [36], which included 35 expression data-
sets from 5741 lung cancer patients. Patients were
divided into groups (IGF2BPs high vs. IGF2BPs low) by
the median mRNA levels of IGF2BPs. Meta-analyses and
sensitivity analyses were performed using the “meta”
package in R. Hazard ratios and confidence intervals
were calculated.

Gene set enrichment analysis (GSEA)

The biological functions of IGF2BP1/2/3 in LUAD and
LUSC were investigated using GSEA. NSCLC samples
were divided into groups (IGF2BPs high vs. IGF2BPs low)
using the median mRNA levels of IGF2BPs as cutoff val-
ues to undergo the analysis. This analysis was performed
utilizing the “clusterProfiler” package in R, based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO). Only the top five GO functions
and KEGG pathways with the smallest Pvalues were
presented.

Statistical analysis

GraphPad Prism (version 9.5.1, GraphPad Software, Inc.,
San Diego, CA, USA) and R (version 4.0.5, R Foundation
for Statistical Computing, Vienna, Austria) were utilized
to perform all statistical analyses. To evaluate the associa-
tion between IGF2BPs, levels of immune cell infiltration,
and critical immune target genes, Spearman correlation
analysis was utilized. Only two factors with the absolute
value of correlation coefficient over than 0.2 was consid-
ered as relevant factors. To compare the numerical val-
ues of two groups, the Wilcoxon test was utilized. For
multiple comparison adjustments involving data points
that were frequently utilized in hypothesis testing, the
Bonferroni correction was implemented and we used
P, gjus: to address the results. When multiple comparison
adjustment was not needed, P<0.05 was considered sta-
tistically significant. In other cases, only P, < 0.05 was
considered statistically significant. The data analysis pro-
cess of the entire study is shown in Supplemental Fig. 1.

Results

IGF2BP gene expression is elevated in patients with NSCLC
The IGF2BP family genes are located at specific genomic
sites [37]. They encode three proteins (IGF2BP1/2/3) that
are similar in the order and spacing of their domains.
These proteins feature two RNA-recognition motifs in
their N-terminal regions and four hnRNP-K homology
domains in the C-terminal regions [11]. Utilizing the
TCGA database, we analyzed transcriptome-seq data for
the IGF2BP family in NSCLC and corresponding normal
tissues. The mRNA expression levels of IGF2BP1/2/3
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were significantly upregulated in LUSC tissues. In con-
trast, in LUAD, only the mRNA expressions of IGF2BP1
and IGF2BP3 were significantly elevated in tumor tis-
sues compared to adjacent normal tissues. Figure 1A
illustrated these differences in mRNA expression for the
IGF2BP family members across LUAD, LUSC tissues and
normal lung tissues. Specifically, in the LUAD group,
IGF2BP1 (P, < 0.0001) and IGF2BP3 (P, < 0.0001)
were both significantly upregulated compared to the nor-
mal group, while expression of IGF2BP2 was not found
to be statistical difference (P, s = 0.447). In the LUSC
group, all three genes (IGF2BP1, IGF2BP2, and IGF2BP3)
were significantly upregulated compared to the normal
group (P, < 0.0001 for each). Besides, IGF2BPs mRNA
levels in LUSC were higher than those in LUAD (P,
< 0.0001 for each). This analysis included 510 primary
LUAD and 497 primary LUSC samples, compared with
57 and 49 adjacent lung tissues, respectively.

Then, we utilized qRT-PCR and immunohistochemical
staining to evaluate the mRNA and protein expression
levels of IGF2BPs in LUAD, LUSC, and 10 non-cancer
lung tissues. The mRNA expressions of IGF2BP1/2/3 in
LUAD were significantly higher than those in normal
lung tissues (P,gj,s = 0.012, 0.012, and 0.012, respectively)
(Fig. 1B). In LUSC, IGF2BP1/2/3 mRNA levels were also
significantly higher compared to normal lung tissues
(Pygjust = 0.030, 0.018, and 0.018, respectively). The mRNA
expression levels of IGF2BP1/2/3 between LUAD and
LUSC were statistically similar (P,g;,s > 0.999 for each).
Protein expression of IGF2BPs displayed heterogeneity
across LUAD, LUSC, and normal lung tissues (Fig. 1C).
The expression levels of IGF2BP2 and IGF2BP3 proteins
were significantly higher in LUSC compared to nor-
mal lung tissues (P,g, = 0.019 and 0.005, respectively)
(Table 1). In LUAD, the expression rate of IGF2BP2 pro-
tein was not found to be statistically different to normal
tissues (P,gjusc = 0.072). The expression rates of IGF2BP1
protein in both LUAD and LUSC appeared higher than
in normal tissues, yet this difference was not statistically

significant, potentially due to the limited sample size.

Association between IGF2BP family and tumor immune
system in NSCLC

We further explored the influence of IGF2BP family genes
on the immune system in NSCLC. We discovered distinct
correlations in LUAD and LUSC. Specifically, IGF2BP2
mRNA levels demonstrated a weakly positive correlation
with the infiltration of CD4+T cells (Cor=0.224, Padjust
< 0.0001), and neutrophils (Cor=0.276, P,g;,s < 0.0001)
in LUAD. Conversely, in LUSC, IGF2BP2 mRNA lev-
els were weakly negatively correlated with CD8+T cells
(Cor=-0.222, P, g, < 0.0001), neutrophils (Cor=-0.236,

P,gjust < 0.0001), and dendritic cells (Cor=-0.216, P, g, <
0.0001), as illustrated in Fig. 2B. However, no significant
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Fig. 1 The expression of diverse IGF2BP family members in tumor and normal tissues. (A) The mRNA expression levels of IGF2BP family genes in tumor
tissues and adjacent normal tissues from TCGA datasets. (B) QRT-PCR results histograms showed that the expression of IGF2BPs mRNA in LUAD, LUSC and
normal tissues in collected samples. (C) The protein expression of IGF2BPs in collected samples
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Table 1 IGF2BPs expression by IHC in NSCLC and normal lung tissue

P

IGF2BP3

Pb

pa

IGF2BP2

pa

IGF2BP1

Num

Type

0.006

+

0.009

+

0.271

+

LUAD vs.NT 0.927
LUSC vs. NT 0.005

LUAD vs.NT 0.072
LUSC vs. NT 0.019

LUAD vs. NT 0.999
LUSC vs. NT 0.363

10

LUAD
LUSC

NT

(2024) 18:63

10

LUAD vs. LUSC 0.057

8

LUAD vs. LUSC 0.999

7

LUAD vs. LUSC 0.987

10

%:Pvalue for chi-square test

b:Adjusted Pvalue for partitions of chi-square test

Abbreviations: LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, NT: normal lung tissue. The results were in bold, if P<0.05
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associations were observed between the mRNA expres-
sion levels of IGF2BP1 and IGF2BP3 and various
immune cells in NSCLC (Fig. 2A, C). Additionally,
changes in immune cell infiltration levels in LUSC were
found to be associated with the copy number variations
of IGF2BP2. High amplification of the IGF2BP2 gene was
inversely related to the infiltration of B cells, CD8+T
cells, CD4+T cells, macrophages, neutrophils, and den-
dritic cells (P,g;, = 0.047, 0.001, 0.017, 0.010, <0.0001,
and <0.0001, respectively) (Supplemental Fig. 2B).
This trend was not evident in LUAD. For IGF2BP1 and
IGF2BP3, no significant correlation was found between
their copy numbers and immune cell infiltration lev-
els in either LUAD or LUSC (Supplemental Fig. 2A, C).
Furthermore, immune scores, which reflect the immune
microenvironment, were analyzed in relation to IGF2BP
family genes. In LUSC, immune scores including Stromal
score, Immune score and ESTIMATE score were lower in
the high-expression groups of IGF2BP2 (P, < 0.0001
for each) (Fig. 2E) and IGF2BP3 (PadjuSt =0.030, < 0.0001,
and <0.0001, respectively) (Fig. 2F) compared to the low-
expression groups. However, no significant differences in
immune scores were observed between these groups in
LUAD (Fig. 2D, E, F).

We further investigated the relationship between
the mRNA expression of IGF2BP family genes and key
immunotherapy targets, focusing on their potential
roles in immunotherapy response efficacy. In LUAD, we
observed IGF2BP2 expression showed a weakly posi-
tive correlation with several immunotherapy targets,
including PD-1 (Cor=0227, P4, < 0.0001), PD-L1
(Cor=0.303, P,gj, < 0.0001), LAG-3 (Cor=0.234, P, g, <
0.0001), and TIGIT (Cor=0.225, P,gj,s < 0.0001) (Supple-
mental Fig. 3A-C). In contrast, IGF2BP2 expression was
only weakly negatively associated with the expression of
TIM-3 (Cor=-0.215 P,y < 0.0001) in LUSC (Supple-
mental Fig. 3D-F). These findings indicated varied asso-
ciations between IGF2BP family gene expression and
immunotherapy targets in LUAD and LUSC, suggesting
potential implications for immunotherapy responses in
these cancer subtypes.

Correlation between IGF2BP family and tumor mutation
burden

TMB was evaluated as a biomarker for immunotherapy
response in NSCLC. Patients with LUAD and LUSC were
categorized into low and high expression groups based
on the median expression levels of IGF2BP family genes.
We then compared the frequency of gene mutations
across these groups. In LUAD, high expression groups of
IGF2BP1 and IGF2BP3 demonstrated significantly higher
TMBs (IFG2BP1 3.63 vs. 2.14/MB, P<0.0001; IFG2BP3
3.75 vs. 2.18/MB, P<0.0001) (Fig. 3A, C,D, F). LUSC also
exhibited similar patterns (IFG2BP1 3.90 vs. 3.33/MB,
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levels of immune cells (CD8+T cell, CD4+T cell, B cell, macrophage, neutrophil and dendritic cell) and IGF2BP1 (A), IGF2BP2 (B) IGF2BP3 (C) mRNA expres-
sion levels in LUAD and LUSC. Association between ESTIMATE immune scores and IGF2BP1 (D), IGF2BP2 (E) IGF2BP3 (F) mRNA expression levels in LUAD

and LUSC from TCGA dataset.*P< 0.05; **P< 0.01; ***P<0.001

P=0.002; IFG2BP3 3.86 vs3.42 /MB, P=0.0004) (Fig. 4A,
C, D, F). For IGF2BP2, a higher TMB was only observed
in the high expression group in LUAD (3.17 vs. 2.56/MB,
P=0.024) ( Fig. 3B, E).

In LUAD, groups with high IGF2BP1 expression
showed more mutations in SCN1A, NOVA1, BRINP3,
RP1L1, BTAF1, TIE1, and CSMD2 compared to the low
expression group (Supplemental Fig. 4A). In the high
IGF2BP2 expression group, TP53 and RIMS2 mutations
were more common, while KEAP1 mutations were less
frequent (Supplemental Fig. 4B). Sixteen genes (TP53,
TPN, FAM135B, LAMA2, CAD, GRIA4, KRAS, POLE,
MYLK, SCN1A, ASTN2, SMARCA4, ITGAX, PIK3R4,
CFHR5, BTAF1, and KCNG1) showed mutations that
were significantly different between groups with high and
low IGF2BP3 expression (Supplemental Fig. 4C). KRAS

mutations were more common in the group with low
IGF2BP3 expression.

In LUSC, the differences in gene mutations between
low and high expression groups of IGF2BP family genes
were less pronounced than those observed in LUAD. Spe-
cifically, the high expression group of IGF2BP1 in LUSC
demonstrated increased mutation frequencies in LIRB3,
ZCCHC5, and KLK15 and a decreased frequency in
OR4C6 mutations compared to the low expression group
(Supplemental Fig. 5A). In the high IGF2BP2 expression
group, mutations in TMC3 were more frequent, while
mutations in CFHR2 were less common compared to the
low expression group (Supplemental Fig. 5B). There were
more TP53 and TIMD4 mutations in the IGF2BP3 high
expression group than in the IGF2BP3 low expression
group in LUSC (Supplemental Fig. 5C).
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Fig. 3 Analysis of mutation burden in different IGF2BPs expression groups in LUAD. Mutation landscape of LUAD tumor samples with low and high
IGF2BP1 (A), IGF2BP2 (B), and IGF2BP3 (C) expression. Comparison of total tumor mutation burden of different IGF2BP1 (D), IGF2BP2 (E), and IGF2BP3 (F)
expression groups in LUAD. Stars indicate a significant difference between groups. *P<0.05; **P<0.01; **P<0.001
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High IGF2BP1 expression group

Altered in 239 (99.17%) of 241 samples.
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Fig. 4 Analysis of mutation burden in different IGF2BPs expression groups in LUSC. Mutation landscape of LUSC tumor samples with low and high
IGF2BP1 (A), IGF2BP2 (B), and IGF2BP3 (C) expression. Comparison of total tumor mutation burden of different IGF2BP1 (D), IGF2BP2 (E), and IGF2BP3 (F)
expression groups in LUSC. Stars indicate a significant difference between groups. *P<0.05; **P < 0.01; ***P<0.001
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Prognostic features of the IGF2BP family in lung cancer
patients

We conducted a meta-analysis to assess the prognostic
values of IGF2BP family genes in lung cancer patients
using data from publicly available lung cancer data-
sets, the OSluca program [36]. Detailed information
about those datasets in OSluca program was provide in
Supplemental Table 1. Since IGF2BPs was not included
in arrays of all datasets and some datasets only include
LUAD or LUSC, there were discrepancies between data-
sets in analyzing processes. Fixed models were used in
the analyses because all hypothesis tests for homogene-
ity were not significant. The results revealed divergent
correlations between overall OS and IGF2BP LUSC fam-
ily genes in LUAD and LUSC. In LUAD patients, OS
was negatively correlated with IGF2BP family genes.
Conversely, in LUSC patients, IGF2BP2 and IGF2BP3
mRNA expressions were positively correlated with OS.
The pooled analysis of OS demonstrated significant dif-
ferences between different expression groups of IGF2BP1
(HR=1.160, 95% CIL: 1.001-1.343, P=0.047; 1*=40%,
Py,. = 0.053, Fig. 5A), IGF2BP2 (HR=1.236, 95% CI:
1.091-1.400, P=0.001; 1*°=29%, P,,,,, = 0.119, Fig. 5B) and
IGF2BP3 (HR=1.338, 95% CI: 1.204-1.456, P<0.0001;
12=26%, P,,,, = 0.145, Fig. 5C) in LUAD, with slight het-
erogeneities observed in fixed effects models. For LUSC,
IGF2BP2 (HR=0.847, 95% CI: 0.719-0.997, P=0.047;
1>=0%, P,,,, = 0.955, Fig. 6B) and IGF2BP3 (HR=0.838,
95% CIL: 0.711-0.988, P=0.035; 1’=0%, P,,, = 0.903,
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Fig. 6C) also exhibited minimal heterogeneity in fixed
effects models.

To assess the individual study’s impact on the pooled
estimate, sensitivity analyses were performed. This
involved excluding one study at a time and recalculat-
ing the pooled HR estimates for the remaining studies.
There were no significant differences between the groups
for IGF2BP1 (Fig. 5D), IGF2BP2 (Fig. 5E) and IGF2BP3
(Fig. 5F) in LUAD. The similar results were observed
for IGF2BP2 (Fig. 6E) and IGF2BP3 (Fig. 6F) in LUSC,
affirming the reliability of our results.

Publication bias was assessed using funnel and radial
plots. These plots did not reveal any significant publica-
tion bias for the HR of OS (Supplemental Fig. 6 and Sup-
plemental Fig. 7), suggesting low publication bias in this
meta-analysis.

We further investigated whether IGF2BP family genes
have varying survival effects in LUAD patients with or
without EGFR-sensitive mutations, considering the dis-
tinct treatment responses and OS observed in these sub-
groups. This analysis was conducted using TCGA LUAD
samples with comprehensive mutation data. No signifi-
cant differences in OS were observed between high and
low mRNA expression groups of IGF2BP family genes in
LUAD patients, regardless of their EGFR mutation status
(Supplemental Fig. 8). Table 2 detailed the analysis of het-
erogeneities in the correlation between IGF2BPs mRNA
expression and OS among LUAD patients with or with-
out EGFR-sensitive mutations. The analysis indicated no
significant heterogeneities, suggesting that the impact
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Fig. 5 Meta-analyses of prognostic value of IGF2BP family genes in LUAD. Pooled analysis of cox regression analysis between IGF2BP1 (A), IGF2BP2 (B),
IGF2BP3 (C) expression and OS in fixed effects models in LUAD patients. Sensitivity analyses through omitting each study evaluating prognostic value of

IGF2BP1 (D), IGF2BP2 (E), IGF2BP3 (F)
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Fig. 6 Meta-analyses of prognostic value of IGF2BP family genes in LUSC. Pooled analysis of cox regression analysis between IGF2BP1 (A), IGF2BP2 (B),
IGF2BP3 (C) expression and OS in fixed effects models in LUSC patients. Sensitivity analyses through omitting each study evaluating prognostic value of

IGF2BP1 (D), IGF2BP2 (E), IGF2BP3 (F)

of IGF2BP family gene expression on OS is consistent
across LUAD patients, irrespective of their EGFR muta-
tion status.

Genetic mutations in the IGF2BP family and their
associations with OS and DFS for NSCLC patients
Epigenetic alteration plays a crucial role in early malig-
nancies [38]. Therefore, we assessed the role of epigenetic
alterations, with a focus on the IGF2BP family genes and
their association with OS and DFS in LUAD and LUSC.
The analysis utilized data from cBioPortal for LUAD and
LUSC (TCGA, Firehose Legacy). Our findings revealed
that alterations in IGF2BP family genes occurred in 57
out of 507 LUAD patients (11.2%) and 180 out of 496
LUSC patients (36.3%). The mutation rates for IGF2BP1,
IGF2BP2, and IGF2BP3 in LUAD were 3%, 4%, and 5%
respectively (Supplemental Fig. 9A). The mutation rates
for these genes in LUSC were 2.8%, 35%, and 3% respec-
tively (Supplemental Fig. 9E).

Further analysis was conducted on the relationship
between IGF2BP family members based on their mRNA
expression (RNA Seq V2 RSEM), using Pearson’s cor-
relation. The results revealed a positive correlation
between IGF2BP3 and IGF2BP1 (P=0.003) and IGF2BP2
(P<0.001) in LUAD (Supplemental Fig. 9B). In LUSC, a
positive correlation was observed between IGF2BP1 and
IGF2BP2 (P=0.008) (Supplemental Fig. 9F).

Additionally, we examined the correlation between
genetic alterations in the IGF2BP family and OS and DFS
in lung cancer patients. Kaplan-Meier plots and log-rank

tests were performed. The results indicated that genetic
alterations in the IGF2BP family genes were not signifi-
cantly correlated with OS and DEFS in both LUAD and
LUSC (Supplemental Fig. 9C, D, G, H).

GO and KEGG Enrichment Analysis of IGF2BP Family in
NSCLC patients

Acknowledging the contrasting features of IGF2BP2 and
IGF2BP3 between LUAD and LUSC, we utilized GSEA
to elucidate underlying biological functions and signal-
ing pathways. The GO analysis indicated a positive asso-
ciation of cell cycle, DNA replication, and chromosome
segregation processes with all IGF2BP family genes in
LUAD (Fig. 7A). Similar trends were noted for IGF2BP1
and IGF2BP3 in LUSC, with RNA transport and local-
ization being upregulated in the IGF2BP2 high expres-
sion group (Fig. 8A). Additionally, the negative regulation
of VEGF production inversely correlated with IGF2BP
genes in LUAD (Fig. 7B), suggesting that high expres-
sion of these genes might accelerate cancer progression
via enhanced VEGF production, potentially explain-
ing the poorer overall survival in LUAD patients with
high IGF2BP expression. In LUSC, processes related to
matrix metallopeptidase, crucial in cancer invasion and
metastasis, were negatively correlated with IGF2BP genes
(Fig. 8B), which may account for the better overall sur-
vival in LUSC patients with high IGF2BP expression. The
KEGG analysis revealed the upregulation of the cell cycle
pathway in high expression groups of all three IGF2BP
family genes in both LUAD and LUSC (Figs. 7C and 8C),
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Table 2 Associations of IGF2BPs with OS in LUAD patients with or without EGFR mutations

Overall survival (OS)

IGF2BP3 (Event/

No.)
Low

Overall survival (OS)

IGF2BP2 (Event/

No.)
Low

Overall survival (OS)

IGF2BP1 (Event/

No.)
Low

Variables

P hom

HR (95% ClI) P?

High

Phom

HR (95% ClI)

High

P, hom

HR (95% CI) P

High

(2024) 18:63

EGFR mutations

No

1.16 (048-2.83)  0.738

11/28
2/1

9/28

0.785

1.13(047-2.73)

11/28

/11

9/28

0.75

1.17 (0.45-3.03)

12/28
3/11

8/28
2/12

0.382

0415

0.39(0.04-3.78)

3/12

0.720

0.394

0.23 (0.000004-135.57)

4/12

0.981
Abbreviations: LUAD, lung adenocarcinoma; Cl, confidence interval; HR, hazards ratio; hom, heterogeneity test. The results were in bold, if P<0.05

0.900

1.14(0.16-8.15)

Yes
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yet no downregulated KEGG pathways were identified in
these groups.

IGF2BP family genes and chemotherapy sensitivity

Given the established association between IGF2BP
family genes and prognosis, we further explored their
relationship with chemotherapy sensitivity. Using the
“pRRophetic” R package, we calculated the IC50 to pre-
dict the response to various chemotherapy drugs (cis-
platin, docetaxel, paclitaxel, gemcitabine, vinorelbine,
and etoposide). The IGF2BP2 high expression group in
LUAD demonstrated increased sensitivity to all six che-
motherapy agents (Fig. 9B) (P, < 0.0001 for each).
A similar trend, barring gemcitabine, was observed in
LUSC (Fig. 9E). IGF2BP1 exhibited a positive correlation
with sensitivity to docetaxel (P,;,,, < 0.0001) and pacli-
taxel (P < 0.0001) in LUAD (Fig. 9A) and to cisplatin

adjust
(P, gjuse < 0.0001), gemcitabine (P,;,,, < 0.0001), and eto-
poside (P4, < 0.0001) in LUSC (Fig. 9D). Additionally,

IGF2BP3’s high expression group in LUAD showed lower
IC50 values for cisplatin (P < 0.0001), docetaxel

adjust
(Padjust < 0.0001) and paclitaxel (P < 0.0001) (Fig. 9C),

adjust
while in LUSC, this group exhibited lower IC50 values for
cisplatin (P, ;,,, < 0.0001), gemcitabine (P, = 0.009),
vinorelbine (P, < 0.0001), and etoposide (P, <

0.0001) (Fig. 9F). These findings indicated a potential role
for IGF2BP family genes on chemotherapy efficacy.

Discussion

The highly conserved proteins IGF2BP1, IGF2BP2, and
IGF2BP3 are members of the IGF2BP family, which is
recognized for its RNA-binding capabilities that affect
the fate of the transcript targets it binds. These proteins
exhibit a 56% amino acid sequence identity, with a higher
degree of similarity within their protein domains, sug-
gesting shared biochemical functions [11]. IGF2BPs play
crucial roles in the progression, metastasis, prognosis,
and cancer immunity of several human cancers [39, 40],
including NSCLC [41]. IGF2BP1, identified as an m6A
reader, has been shown to stabilize TK1 [42], BUBI1 [43],
and SIK2 [44], contributing to the malignant behav-
ior of NSCLC. Furthermore, it engages with CDCA4 to
modulate the proliferation of LUAD through the PI3K/
AKT signaling pathway [45]. This interaction is also
implicated in the IGF2BP1/Netrin-1 axis, which plays
an oncogenic role in high glucose-treated NSCLC cells
[46]. In addition, Zhu et al. identified a positive feedback
loop, c-Myc/MNX1-AS1/IGF2BP1, which was found to
accelerate cell-cycle progression and enhance the sus-
tained proliferation of lung cancer cells [47]. IGF2BP2 is
known to stabilize the IncRNA MALAT1, enhance ATG2
expression, and promote NSCLC proliferation [48]. Zhu
et al. noted that IGF2BP2 stabilizes TGFBR1, accelerat-
ing NSCLC stemness [49]. Additionally, the IGF2BP2/
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Fig. 7 Gene Set Enrichment Analysis of GO and KEGG pathways in LUAD between different IGF2BPs expression groups. (A) Results of GO functions posi-
tively associated with IGF2BP1, IGF2BP2 and IGF2BP3 in LUAD. (B) Results of GO functions negatively associated with IGF2BP1, IGF2BP2 and IGF2BP3 in
LUAD. (C) Results of KEGG pathways between different IGF2BPs expression groups in LUAD

LATS]1 axis has been found to promote the growth of
lung adenocarcinoma [50]. Regarding IGF2BP3, recent
studies indicate its role in regulating metabolic repro-
gramming and promoting resistance to EGFR inhibitors
in NSCLC [51]. IGF2BP3 overexpression stabilizes anti-
ferroptotic factors like SLC3A2 and ACSL3, inhibiting
ferroptosis in lung adenocarcinoma cells [52]. Further-
more, IGF2BP3 contributes to lung adenocarcinoma pro-
gression by modulating the PI3K/AKT signaling pathway
[53] and promoting partial EMT and metastasis through
the MCM5/Notch axis [54]. Targeting IGF2BPs has been

suggested in several studies as a strategy to inhibit malig-
nant behaviors of cancers in vitro [55-58].

Despite the extensive research on IGF2BP family genes,
there has been a lack of studies specifically addressing
these genes in LUSC, a cancer type with distinctly differ-
ent biological behaviors compared to LUAD. To address
this gap, we analyzed the expression, mutation, immune
involvement, resistance to thermotherapy, and prognos-
tic roles of different IGF2BP family members in LUSC,
with comparative insights from LUAD. Our findings
revealed that mRNA expression levels of IGF2BP1 and 3
were significantly upregulated in both LUAD and LUSC
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Fig. 8 Gene Set Enrichment Analysis of GO and KEGG pathways in LUSC between different IGF2BPs expression groups. (A) Results of GO functions posi-
tively associated with IGF2BP1, IGF2BP2 and IGF2BP3 in LUSC. (B) Results of GO functions negatively associated with IGF2BP1, IGF2BP2 and IGF2BP3 in
LUSC. (C) Results of KEGG pathways between different IGF2BPs expression groups in LUSC

tissues. This observation was corroborated by analyses of
our own collected NSCLC samples. Furthermore, immu-
nohistochemical analysis conducted on our samples indi-
cated potential overexpression of IGF2BP family genes
in both LUSC and LUAD compared to healthy lung tis-
sues. These results align with previous studies [48] and
suggest that IGF2BPs may play significant roles in the
pathogenesis of LUSC as well. However, there were also
inconsistent results between analyses of TCGA datasets
and of our own collected NSCLC samples. TCGA data-
sets showed that IGF2BPs mRNA levels in LUSC were
higher than those in LUAD, which was not validated by

our own samples. In addition, we observed IGF2BP2
mRNA levels in LUAD were higher compared to normal
lung tissues, but TCGA samples showed that there was
not significantly different in IGF2BP2 mRNA expres-
sion levels between LUAD and adjacent normal lung tis-
sues. We tried to explain those difference using a power
analysis by PASS software (version 11, NCSS Data Net-
work, Inc. New York, NY, USA) and found that we only
get the power of 0.385 to find the mean difference of 1 at
the conventional 0.05 alpha error probability by our sam-
ple size. That is to say, those inconsistent results above
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Fig. 9 IGF2BPs in the role of chemotherapy in NSCLC. The correlation between different IGF2BP1 (A), IGF2BP2 (B), IGF2BP3 (C) mRNA expression groups
and estimated IC50 value of cisplatin, doxorubicin, paclitaxel, gemcitabine, vinorelbine and etoposide in LUAD from TCGA dataset. The correlation be-
tween different IGF2BP1 (D), IGF2BP2 (E), IGF2BP3 (F) mRNA expression groups and estimated IC50 value of cisplatin, doxorubicin, paclitaxel, gemcitabine,
vinorelbine and etoposide in LUSC from TCGA dataset. Wilcoxon signed-rank tests were used to compare the estimated IC50 value of chemotherapy
between groups



Gong et al. Human Genomics (2024) 18:63

probably owing to our limited sample size and need to be
determined by large sample size evaluation in the future.
Immunotherapy has been a transformative approach
to treating various solid malignant tumors, including
NSCLC. Recent research has shown that the IGF2BP
family genes play significant roles in regulating the tumor
microenvironment [39], immune evasion [31, 59], and
anti-tumor immunity [10]. To delve deeper into these
aspects in LUAD and LUSC, we investigated the associa-
tion between IGF2BP1/2/3 and cancer immunity using
the TCGA dataset. The result revealed that IGF2BP2
mRNA expression levels correlate with the infiltration
levels of several immune cells and the expression of sev-
eral immunotherapy target genes in both LUAD and
LUSC. However, the relationship between IGF2BP2 and
those immune factors were opposite between LUAD and
LUSC. The copy number variations of IGF2BP2 were
linked with diverse immune cell infiltration levels in
LUSC. Significantly higher TMBs were observed in high-
expression groups of IGF2BP1, IGF2BP2, and IGF2BP3
in LUAD. In contrast, in LUSC, only high-expres-
sion groups of IGF2BP1 and IGF2BP3 showed similar
trends. We also noted more gene mutations in different
IGF2BP1/2/3 expression groups in LUAD compared to
LUSC. This suggests a more complex interaction between
IGF2BP family genes and cancer genomics in NSCLC.
Previous research has established a correlation
between IGF2BP1, IGF2BP2, and IGF2BP3 and poor
prognosis in NSCLC patients [41, 48]. To delve deeper,
we conducted a meta-analysis to compare the prognos-
tic value of the IGF2BP family genes in LUAD and LUSC
patients. The results showed that OS in LUAD patients
is negatively correlated with IGF2BP family genes, con-
sistent with previous findings. In contrast, LUSC patients
exhibited a positive correlation between IGF2BP2 and
IGF2BP3 mRNA expression and OS. We also observed
that the survival differences attributed to IGF2BP fam-
ily genes in LUAD patients were not significantly affected
by the presence or absence of EGFR-sensitive mutations.
This suggests that EGFR mutation pathways do not influ-
ence the biological functions of IGF2BP family genes in
LUAD. Additionally, no association was found between
genetic mutations in IGF2BP family genes and OS in
NSCLC patients. GSEA revealed that expression of genes
that involve to cell cycle, DNA replication, and chromo-
some segregation processes were positively associated
with IGF2BP family genes in both LUAD and LUSC.
VEGF production was inversely associated with IGF2BP
family genes in LUAD. Conversely, biological processes
related to matrix metallopeptidase were negatively cor-
related with IGF2BP family genes in LUSC. These results
suggest that high expression of IGF2BP1/2/3 may pro-
mote VEGF production, accelerating cancer progression
in LUAD. On the other hand, high expression of IGF2BPs
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in LUSC might inhibit matrix metallopeptidase activity,
thereby preventing invasion and metastasis. This hypoth-
esis could partly explain the observed survival differences
between LUAD and LUSC patients with high IGF2BP
expression. However, further in vitro and in vivo studies
are necessary to substantiate these findings.

To determine the role of IGF2BPs in chemotherapy
resistance in NSCLC, we examined the correlation
between their expression and the IC50 of six common
chemotherapy drugs (cisplatin, docetaxel, paclitaxel,
gemcitabine, vinorelbine and etoposide) used in NSCLC
treatment. Our findings suggest that docetaxel and pacli-
taxel exhibit significantly lower IC50 in high IGF2BPs
expression groups in LUAD, while cisplatin and etopo-
side exhibit significantly lower IC50 in high IGF2BPs
expression groups in LUSC. These results align with
GSEA results, which revealed that tumors with high
IGF2BP family gene expression showed activated cell
cycle, DNA replication, and chromosome segregation
processes, thereby enhancing sensitivity to several che-
motherapy drugs. Recent study also reported IGF2BPs
overexpression lead to docetaxel chemosensitivity
enhancement in advanced prostate cancer [60], which is
consistent with our results. However, there was also stud-
ies indicating that knockdown of IGF2BP3 increase the
platinum sensitivity, but not taxol sensitivity in ovarian
cancer cells [61]. Those phenomenon may due to differ-
ent tumor background.

It is important to recognize the potential limitations
of our study. Firstly, this was a retrospective analysis pri-
marily based on public datasets, and our findings neces-
sitate validation in larger, prospective studies. Secondly,
the mechanisms through which IGF2BPs confer sur-
vival benefits in LUSC remain incompletely understood.
Whether the negative regulation of matrix metallopepti-
dase, which could potentially inhibit LUSC invasion and
metastasis, plays a role in this phenomenon needs to be
further investigated through experimental verification in
future studies.

Conclusion

In this study, we investigated the expression and prog-
nostic significance of the IGF2BP family in NSCLC. This
research contributes to a deeper understanding of the
molecular heterogeneity and complexity in LUSC and
LUAD, paving the way for novel approaches in the diag-
nosis and treatment of NSCLC. Our findings also dem-
onstrate that overexpression of IGF2BP2 is significantly
associated with cancer immunity in NSCLC patients.
Interestingly, mutations in the IGF2BP family did not
result in significant differences in OS or DFS in LUAD
and LUSC patients. Moreover, higher mRNA expres-
sions of IGF2BP2 and IGF2BP3 were positively correlated
with OS in LUSC, yet showed a negative association with
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OS in LUAD. GSEA indicated that matrix metallopep-
tidase activity and VEGF production might be involved
in these differential outcomes. These insights suggest
that IGF2BP1, IGF2BP2, and IGF2BP3 may have distinct
roles in LUAD and LUSC. Therefore, any new therapeu-
tic strategy targeting the IGF2BP family genes in NSCLC
must be approached with caution, especially considering
the varied mechanisms at play in different histological
subtypes. Further research is required to fully elucidate
these mechanisms.
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