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Abstract
Background  Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host 
gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its 
molecular mechanisms remain elusive.

Methods  We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the 
Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics 
tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning 
were used to analyze prognostic genes and their relationship with drug sensitivity.

Results  We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the 
tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic 
genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in 
cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes 
were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with 
sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets.

Conclusions  Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its 
molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may 
open up new doors for cancer prevention and treatment.

Keywords  Human cytomegalovirus pathway, Pan-cancer, Immune infiltration, Tumor mutation burden, 
Bioinformatics
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Background
Cancer, the predominant cause of mortality worldwide, 
accounts for approximately 19  million new diagnoses 
and close to 10  million fatalities annually [1]. Intrigu-
ingly, a noticeable shift towards a younger demographic 
in cancer incidence has been observed in recent years [2]. 
Confronted with the relentless escalation in both can-
cer incidence and mortality, mitigating this burden has 
emerged as a cardinal objective within the global public 
health sphere.

Human Cytomegalovirus (HCMV), a β-herpesvirus 
ubiquitous in the human population, exhibits a high 
infection rate of up to 90% [3, 4]. HCMV infection is 
prevalent worldwide, with susceptibility patterns dif-
fering between developing and developed countries. In 
developing nations, young people are more susceptible 
to HCMV, whereas in developed countries, the elderly 
are at a higher risk of infection [5]. Its main transmis-
sion occurs through saliva, semen, urine, breastfeeding, 
placental transfer, blood and organ transplantation [6, 7]. 
Characterized by a genome of 235 kbp, it stands out as 
the largest among all herpes viruses, featuring a double-
stranded DNA structure, and encode at least 700 open 
reading frames [8, 9]. Most of the genetic products are 
closely related to HCMV infection and prevalence [4].

The majority of people infected with primary HCMV 
are asymptomatic, and only a small number of people 
will develop mononucleosis syndrome after infection, 
with fever, sweating, abnormal liver function and dis-
comfort and other symptoms [10, 11]. The natural course 
of HCMV infection is complex, with primary infection 
occurring when an immune compromised individual is 
first infected, followed by an incubation period. When 
the infected person is exposed to HCMV again, it will be 
repeated infection, which is called reinfection. HCMV 
persists throughout the host’s lifetime, and most people 
carry it in a latent state, but there is also a risk of it being 
reactivated [12–14]. In addition, HCMV can also cause a 
variety of diseases such as systemic lupus erythematosus, 
systemic sclerosis, pneumonia, atherosclerosis, mental 
disorders and so on [15–19]. Compare this with the dis-
eases mentioned above, as the apoptosis disorder induced 
by HCMV infection is more closely related to cancer and 
prompts biological responses that closely mimic those 
supporting chronic inflammation, leukocyte dysfunction, 
angiogenesis, and wound healing, potentially making it 
a promoter of a malignant tumor [4, 20, 21]. Numerous 
studies have found that HCMV may be associated with 
various types of cancer, such as hepatocellular carcinoma 
[22], breast cancer [23], gastric cancer [24], cervical can-
cer [25], colorectal cancer [26], ovarian cancer [27], pros-
tate cancer [28], lymphoma [29], and glioblastoma [30]. 
Importantly, due to the host immune evasion mechanism 
of HCMV, it profoundly influences the development of 

the tumor microenvironment. This influence not only 
alters the tumor microenvironment but is also associated 
with poor prognosis, metastasis, and drug resistance [14, 
31]. However, the specific molecular mechanism of how 
HCMV is involved in the regulation of tumour develop-
ment remains to be further elucidated.

In this study, we comprehensively analyzed the expres-
sion of HCMV pathway genes across cancers using the 
Cancer Genome Atlas (TCGA) and The Genotype-Tissue 
Expression (GTEx) databases. Importantly, we revealed 
the relationships between HCMV pathway gene expres-
sion and prognosis, genomic mutations, tumor microen-
vironment (TME), and chemo- and immunotherapy drug 
sensitivity. Additionally, through comprehensive bioin-
formatics analysis, we identified hub genes in the HCMV 
pathway that may play crucial roles in regulating cancer 
progression.

Methods
Data collection and screen
We obtained pan-cancer TCGA and GTEx transcrip-
tomic expression data (log2(TPM + 0.001)), as well as 
clinical data, from the UCSC Xena database (https://
xena.ucsc.edu/). Additionally, we acquired pan-cancer 
mutation data from the TCGA database (https://portal.
gdc.cancer.gov/). Subsequently, we procured genes asso-
ciated with the Human cytomegalovirus infection path-
way from the KEGG database (https://www.genome.jp/
kegg/). In clinical data, we first eliminated missing values 
and then matched the tumor samples accordingly. Subse-
quently, we extracted pathway genes and further analyzed 
the differential expression between various cancerous 
tumors and normal tissues using the Wilcoxon test. All 
analyses are based on R (version: 4.2.2). We established 
the following inclusion and exclusion criteria: the num-
ber of normal controls for each cancer must be greater 
than or equal to 5, and a P-value less than 0.05 was con-
sidered statistically significant.

Differential expression analysis
Limma-Voom: the model consistently performed well 
on various benchmark datasets, providing a reasonable 
balance between error discovery (FDR) and recall rates, 
which is comparable to or better than that of count-based 
RNA-seq methods [32, 33]. Consequently, we employed 
this method to further compare the gene expression lev-
els in normal and cancer tissues. We set the threshold 
values at adjust P Value < 0.05 and |logFC| ≥ 1, thereby 
identifying genes with significant differential expression.

Immune cell infiltration
For the analysis of immune infiltration, we employed the 
CIBERSORT R package, setting perm to 1000. This tool, 
extensively utilized for investigating the proportions of 
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22 subtypes of human immune cells, leverages a machine 
learning technique known as Support Vector Regression 
(SVR) to enhance deconvolution performance through 
an amalgamation of feature selection and robust math-
ematical optimization techniques, notably outperform-
ing other methods in terms of accuracy when it comes to 
resolving closely related cell subsets and mixtures with 
unknown cell types [34].

Tumor microenvironment
ESTIMATE: A methodology that utilizes gene expres-
sion features to infer the proportion of stromal and 
immune cells in tumor samples [35]. We employed the 
“ESTIMATER” R package to calculate the stromal score 
and immune score in each cancer, further estimating 
the tumor purity for each type of cancer (platform select 
“Affymetrix”).

Prognostic related gene screening
A univariate Cox analysis was performed on the differ-
ential genes of each cancer. To prevent the loss of some 
important genes, genes with a P-value less than 0.2 were 
screened. To minimize overfitting risk, the Lasso regres-
sion and XGboost were then used for the feature selec-
tion. We performed feature selection and shrinkage 
using the “glmnet” R package. The penalty parameter 
(λ) of the model was determined by conducting ten-fold 
cross-validation and following the minimum criterion, 
which corresponds to the λ value of the minimum likeli-
hood deviation [36]. Meanwhile using the “XGBoost” R 
package, we set ‘survival: cox’ as the objective function 
and ‘cox-nloglik’ as the evaluation metric, trained the 
model for 100 rounds at a 0.1 learning rate with the L1 
regularization hyperparameter alpha set to 0.5 to prevent 
overfitting. Finally, a multivariate Cox analysis was per-
formed, selecting genes with P < 0.05 as prognostic genes 
[37]. Patients were divided into high-risk and low-risk 
groups based on the median of the risk scores, followed 
by survival analysis using the “survminer” package in R. 
The “timeROC” package in R was utilized to conduct 
time-dependent receiver operating characteristic (ROC) 
curve analysis to evaluate the prognostic predictive per-
formance of the gene features for prognosis over a 3-year 
period [38].

Tumor mutation burden
Tumor Mutation Burden (TMB), characterized as the 
aggregate count of somatic coding inaccuracies, base 
substitutions, and insertion or deletion mutations iden-
tified per million bases of DNA, serves as an effective 
estimator for both mutational and neoantigen loads [39]. 
The “maftools” R-package integrates standard analysis 
and visualisation modules into a single pipeline by imple-
menting well-established statistical and computational 

methods, requiring only a single and uniform input data 
format for the process from analysis to visualisation to 
annotation [40]. We further used this R package to cal-
culate the mutations in prognosis-related genes for each 
cancer.

Screening for hub genes
The gene interaction network was established utilizing 
the STRING database (https://string-db.org/). Choose 
the highest confidence (0.900) as the minimum required 
interaction score. Further use Cytoscape software to visu-
alize the connections between genes. For further study, 
after protein-protein network analysis, the MCODE 
plug-in was performed to screen hub genes, whose 
degree cutoff was = 2, node score cutoff was = 0.2, k core 
was = 2, and maximum depth was = 100 [41].

GO enrichment analysis of hub gene
To ascertain the functions of the identified hub genes, a 
Gene Ontology (GO) analysis was conducted, encom-
passing enrichment of Biological Process (BP), Cellular 
Component (CC), and Molecular Function (MF) [42]. 
Further analysis was conducted using the “clusterProfiler”, 
“enrichplot” and “Goplot” R packages, with a p.adjust 
value of less than 0.05 set as the critical threshold.

Drug sensitivity analysis
The Genomics of Drug Sensitivity in Cancer (GDSC) 
database, as the largest public resource for information 
on drug sensitivity in cancer cells and molecular markers 
of drug response, amalgamates extensive drug sensitivity 
and genomic datasets to expedite the discovery of novel 
therapeutic biomarkers for cancer treatment [43]. And 
subsequently, we utilized GSCA (http://bioinfo.life.hust.
edu.cn/GSCA/#/) [44], a tool incorporating data from the 
GDSC database, to investigate the association between 
hub genes and drug sensitivity.

Results
Data set screening and preliminary analysis
We downloaded samples of 33 types of cancer from 
public database. After screening, we obtained a total of 
18,002 samples, including 8,278 normal samples and 
9,724 tumor samples. The sample information for each 
cancer type is shown in Fig. 1A. Using the Wilcoxon test, 
we excluded 7 types of cancer. Ultimately, we identified 
26 types of cancer for further analysis. It’s noteworthy 
that gene expression in tumor tissues surpasses that in 
normal tissues for most cancers, as depicted in Fig. 1B.

Differential gene recognition
Differential expression analysis identified a total of 
1,853 differentially expressed genes, including 506 up-
regulated and 1,347 down-regulated genes. The top 5 
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up- and down-regulated genes across the cancer samples 
were displayed (Fig. 2). The complete list of differentially 
expressed genes for each cancer sample is provided in 
Supplementary Table S1. Additionally, we have generated 
clustering heatmaps for each type of cancer to visually 
illustrate the differences in gene expression. The corre-
sponding images can be found in Figure S1.

In addition, we analyzed the significant functional dif-
ferences and commonalities of differential genes across 
various cancer types using GO enrichment analysis (Fig-
ure S2). For example, in adrenocortical carcinoma (ACC), 
genes primarily function in response to peptide hor-
mones, highlighting their importance in regulating hor-
mone balance and cell signaling. In cholangiocarcinoma 
(CHOL), genes play a significant role in peptidyl-serine 
phosphorylation, indicating their critical role in protein 

modification and signal transduction. In liver hepatocel-
lular carcinoma (LIHC), genes are crucial in responding 
to tumor necrosis factor, underscoring their involvement 
in inflammatory responses and immune regulation. In 
breast invasive carcinoma (BRCA), genes are particularly 
active in muscle cell proliferation, indicating their role 
in cell growth and tissue development… Notably, differ-
ential genes across multiple cancer types are involved in 
leukocyte migration, cellular response to abiotic stimuli, 
and regulation of vasculature development. This sug-
gests that these genes play universally important roles in 
regulating immune responses, adapting to environmental 
changes, and promoting angiogenesis.

Fig. 1  Overview of Sample Composition and Gene Expression Differences in Various Cancers.(A) The distribution of normal and tumor tissue samples 
across different cancer types: The horizontal axis represents different types of cancer, and samples are distinguished by color: blue for normal tissue and 
red for tumor tissue. For each cancer type, the counts of normal samples are indicated at the top, while those of tumor samples are indicated at the 
bottom. (B) The differences between normal and tumor samples across various cancers: Normal and tumor samples are depicted in blue and red, respec-
tively. The horizontal axis represents different types of cancer, while the vertical axis indicates the level of gene expression. The symbols “*”, “**”, “***”, “****” 
and “ns” correspond to p < 0.05, p < 0.01, p < 0.001, p < 0.0001, and non-significance, respectively. The lack of any markers signifies the absence of normal 
controls for that type of cancer (MESO, UVM)
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Differences in immune cell infiltration in different cancer 
samples
An in-depth analysis of immune cell infiltration in a vari-
ety of cancer samples was performed using CIBERSORT, 
after which immune subpopulations with P-values less 
than 0.05 were screened out and correlation heat maps 
were used to show the relationship between differential 
genes and these subpopulations (Figure S3), the propor-
tion of cell subpopulations in each cancer is shown in 
Figure S4. To further explore the differences in immune 
cells in tumor and normal samples, we used the Wilcox-
con rank sum test for comparison. The results showed 
that immune infiltrating cells in the pathway mainly 
included T cells, macrophages, NK cells, B cells, den-
dritic cells, plasma cells, monocytes, and neutrophils. To 
visualize these findings more intuitively, we visualized the 
results using the “networkD3” R package (Fig.  3). These 
data provide us with strong evidence that these immune 
cell subpopulations may play a key role in the pathogen-
esis of various cancers.

Tumour microenvironment score
Using the ESTIMATE algorithm, we analyzed 26 cancer 
types and obtained stromal scores, immune scores and 

estimate scores for each cancer except LGG, which only 
had stromal scores available. The estimate score is cal-
culated as the sum of stromal and immune scores [35]. 
As shown in Fig. 4, immune scores were increased while 
stromal and estimate scores were decreased across most 
cancer cohorts. Additionally Stromal scores, immune 
scores and estimate scores were all negatively correlated 
with tumor purity, with the estimate score showing the 
strongest negative correlation (Figure S5). This implies 
that immune cells may play an increasingly impor-
tant role within the tumor microenvironment of these 
cancers.

Prognostic related gene screening
After screening 26 cancer-related genes by univariate 
analysis, we further screened them by LASSO regression 
method and successfully obtained 20 prognostic genes 
associated with cancer. For the six cancers (LUSC, DLBC, 
TGCT, THYM, UCEC, UCS) that failed the LASSO 
screening, we re-screened them using the XGboost 
method, and only TGCT was excluded (P > 0.05), and 
finally we obtained prognostic-associated genes for these 
cancers (Table S2). We showed some of the genes with 
prognostic value for each cancer (Fig.  5A). The survival 

Fig. 2  The differential gene expression across various cancer types (from left to right ACC, BLCA, BRCA, CHOL, DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, 
LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS). The y axis shows the fold changes in gene expression. Gene 
expression levels relative to different color blocks are displayed in varying colors, with red representing up-regulated genes and blue representing down-
regulated genes
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curves of different cancers with high and low prog-
nostic risks were clearly separated, and the prognostic 
assessment models constructed using these genes could 
effectively distinguish the prognostic status of different 
cancer samples (Fig. 5B-Z). These models were validated 
by ROC curves and showed reliable predictive efficacy 
(Figure S6). To further confirm the importance of these 
genes in the development of cancer and their clinical 
significance regarding expression levels, we utilized data 
from The Cancer Cell Line Encyclopedia (CCLE) proj-
ect for external validation. The CCLE is a comprehensive 
resource that includes genomic and drug response data 
from over 1000 cancer cell lines of various tissue types, 
offering a valuable asset for cancer biology and precision 
medicine research [45]. Our analysis revealed that most 
genes exhibit a Chronos dependency score of less than 
zero, suggesting their potential role in cancer progression 
[46]. Furthermore, the majority of these genes show high 
expression levels in cancer cells (Fig. 6), suggesting their 
significance in specific cellular contexts.

Tumor mutation burden
Utilizing “maftools” R package, we systematically ana-
lyzed the mutation profiles of various cancer prog-
nostic genes. Of the 131 prognostic-related genes 
examined, mutations were identified in 72 (54.96%), 
whereas the other 59 (45.04%) did not harbor any 

mutations (Fig. 7A-Y). Further mutation classification of 
these 72 mutated genes revealed a predominance of mis-
sense mutations in the majority of them. The detailed 
mutation spectra for each individual gene are illustrated 
in Figure S7.

Hub gene and its functional enrichment analysis
After constructing the Protein-Protein Interaction (PPI) 
network, MCODE analysis was further used to screen 
modules with scores ≥ 6, highlighting the most intercon-
nected hub genes implicated in the HCMV pathway. A 
total of 23 hub genes were obtained, including CALML4, 
GRB2, CALML3 etc. The hub gene interaction network 
is shown in Fig. 8A-B. GO enrichment analysis revealed 
that these hub genes were significantly enriched in 803 
BP, 47 CC and 97 MF. The enriched BP were primarily 
related to cell chemotaxis and response to peptides; the 
CC were mostly membrane-bound and synapse-related; 
the MF included receptor ligand binding activities and 
enzyme activities (Fig. 8C), underscore the multifaceted 
biological implications of these genes. In addition, we 
visualized key genes in the HCMV pathway using the 
‘pathview’ R package [47]. The results showed that most 
of the genes had protein-molecular interactions in the 
pathway. Specifically, the expression of CaM (CALML4, 
CALM3, CALML6) was promoted, while AC (ADCY8, 
ADCY3) was inhibited in the pathway (Fig.  8D), and 

Fig. 3  Immune cell infiltration in various types of cancer: The squares on the left represent different cancer types, the middle squares represent salience 
scores, and the squares on the right represent distinct immune cell populations. The symbols “*”, “**”, “***”, “****” and “ns” correspond to p < 0.05, p < 0.01, 
p < 0.001, p < 0.0001, and non-significance
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Fig. 4  Assessing the tumor microenvironment via ESTIMATE algorithm: The horizontal axis represents different cancer types, and the vertical axis repre-
sents the scores. Normal samples are represented in blue, while tumor samples are indicated in yellow. The symbols “*”, “**”, “***”, “****” and “ns” correspond 
to p < 0.05, p < 0.01, p < 0.001, p < 0.0001, and non-significance. (A) Distribution of stromal scores across various cancers assessed by ESTIMATE approach. 
(B) Distribution of immune scores across multiple cancer types calculated by ESTIMATE algorithm. (C) Estimate scores reflecting tumor purity determined 
by ESTIMATE method
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Fig. 5  Identification and validation of prognostic gene signatures for cancers. (A) Forest plots of partial prognostic genes for each cancer: Different colors 
represent different cancer types, the horizontal axis represents different genes, the vertical axis represents the hazard ratio (HR) (dashed line represents 
HR = 1) and the line segments in the figure represent confidence intervals (CI). Kaplan-Meier curves compared the prognostic situations of prognostic 
genes in (B) ACC, (C) BLCA, (D) BRCA, (E) CHOL, (F) DLBC, (G) ESCA, (H) GBM, (I) HNSC, (J) KICH, (K) KIRC, (L) KIRP, (M) LAML, (N) LGG, (O) LIHC, (P) LUAD, 
(Q) LUSC, (R) OV, (S) PAAD, (T) PRAD, (U) SKCM, (V) STAD, (W) THCA, (X) THYM, (Y) UCEC, (Z) UCS. Red lines represented high-risk group, blue represented 
low-risk group
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Fig. 6  Validation of pan-cancer prognostic genes in CCLE: Validation of pan-cancer prognostic genes in CCLE: Each panel represents a different cancer 
type, with the x-axis denoting different genes, and the y-axis representing The Chronos dependency score. The size of the points within the boxplot cor-
responds to the gene’s expression level in cells (log2(TPM + 1))
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potentially impacting the HCMV’s pathophysiological 
mechanisms.

Analysis of the correlation between hub gene expression 
levels and drug sensitivity
We investigated the correlation between the expression 
of HCMV pathway hub genes and drug sensitivity pro-
files in the GDSC database. The results showed that the 
expression levels of ADCY1, PTK2, CRK, SRC, PXN, 
BRCA1, CXCL8 are mostly positively correlated with 
IPA-3, STF-62,247, THZ-2-49, AP-24,534, KIN001-236, 
QL-X-138, Y-39,983, ZSTK474, AZD8055, BX02189, 
CAL-101, CP466722, GSK2126458, JW-7-24-1, KIN001-
244, PHA-793,887, PIK-93, SNX-2112, TG101348, 
AZD7762, NG-25, OSI-930, QL-XI-92, TPCA-1, Navi-
toclax and AICAR, these findings suggest that elevated 
expression of these genes may serve as a biomarker for 
predicting response to specific drugs, potentially guid-
ing more tailored treatment strategies. The expression 
levels of ADCY1, PTK2, CRK, SRC, PXN, BRCA1, and 
CXCL8 were mostly negatively correlated with sensitivity 
to bleomycin (50 µM), afatinib, cerutinib, and gefitinib. 
By contrast, the expression levels of CALML4, CALML6, 
CALM3, GRB2, CCR4, RTK2B, CXCR2, CCL5 to the 
above mentioned is the opposite (Fig.  9A), these may 

provide new insights into developing combination thera-
pies or alternative treatments to overcome drug resis-
tance. To further validate these findings, we performed 
additional analyses using the Connectivity Map (CMap), 
which helped identify the targets of drug action [Fig. 9B]. 
For instance, the mechanism of action of PD-0325901 
is highly similar to that of AP-24,534, AZD8055, and 
TG101348, as listed in the GDSC database, and all belong 
to kinase inhibitors. Of note, the results from CMap 
suggest that drugs may exert their effects by inhibit-
ing or downregulating these target points. This not only 
strengthens the reliability of our results but also further 
confirms the potential application of these HCMV path-
way hub genes in predicting drug response, demonstrat-
ing their significant value in drug response prediction.

Discussion
In this study, we comprehensively analysed the role 
of the human cell cytomegalovirus (HCMV) pathway 
in the development of a variety of cancers by means of 
bioinformatics methods. We found that the HCMV 
pathway has a wide range of differentially expressed 
genes in various cancer samples. Immune infiltration 
analysis demonstrated that immune cells such as T cells 
and macrophages play important roles in the tumor 

Fig. 7  Mutations of different cancer prognostic genes. Prognostic gene mutation details in (A) ACC, (B) BLCA, (C) BRCA, (D) CHOL, (E) DLBC, (F) ESCA, (G) 
GBM, (H) HNSC, (I) KICH, (J) KIRC, (K) KIRP, (L) LAML, (M) LGG, (N) LIHC, (O) LUAD, (P) LUSC, (Q) OV, (R) PAAD, (S) PRAD, (T) SKCM, (U) STAD, (V) THCA, (W) 
THYM, (X) UCEC, (Y) UCS: The horizontal axis represents genes, and the vertical axis represents mutation rates
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microenvironment, providing evidence that HCMV is 
involved in the regulation of tumorigenesis. Further-
more, 23 pathway key genes were identified, which 
provide potential targets for the development of HCMV-
associated targeted therapies. Overall, our study com-
prehensively resolved the role of HCMV pathway in the 
development of various cancers, provided new insights 
into the relationship between HCMV and tumours, and 
provided a theoretical basis for the treatment of HCMV-
associated tumours.

HCMV invasion induces multiple immune responses. 
Endothelial cells, dendritic cells, natural killer cells, 
monocytes, and macrophages become activated in the 
blood and tissues, producing abundant inflammatory 
mediators including IL-1β, IL-2, IL-6, TNF-α, and che-
mokines [48–51]. This process prompts circulating neu-
trophils to receive signals from antigen-presenting cells 
at the site of infection and prepare for a further immune 
response. Concurrently, the activation of local clot-
ting factors also induces platelet aggregation, further 

Fig. 8  Integrated Analyses of HCMV Pathway and Hub Genes. (A, B) Two significant subnetworks of PPI network. (C) GO enrichment analysis of Hub 
genes: The horizontal axis represents the potential functions enriched, while the vertical axis indicates the number of enrichments (from left to right, they 
are Biological Process (BP) in purple, Cellular Component (CC) in orange, and Molecular Function (MF) in green). (D) Pathway localization of hub genes 
in HCMV pathway
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Fig. 9  Integration of GDSC Analysis and CMap Validation Reveals Potential Drug Targets Associated with Hub Genes. (A) Gene expression-drug sensitivity 
correlations: Red indicates positive correlation and blue indicates negative correlation. Bubble size positively corresponds to FDR significance, with black 
outline highlighting correlations meeting FDR < = 0.05 threshold. (B) CMap validation identifies potential drug targets: The columns of various colors rep-
resent the actions of different compounds, with corresponding labels denoting the potential targets of action. The vertical axis depicts the connectivity 
score
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enhancing inflammatory processes [52, 53]. Our analysis 
revealed that differential gene functions across various 
cancer types, including leukocyte migration, response to 
abiotic stimulus, and vasculature development regulation, 
align with the immune responses seen in HCMV inva-
sion. These shared pathways highlight common mecha-
nisms of immune regulation and inflammation critical 
to both viral infections and cancer progression. Given 
these findings, it is crucial to explore additional genetic 
regulatory layers that may influence these processes. 
DNA methylation, one of the most extensively studied 
epigenetic modifications, plays a critical role in essential 
biological processes such as embryonic development, 
genomic imprinting, and X-chromosome inactivation 
[54]. Aberrant DNA methylation can alter the cellular 
microenvironment, affect gene expression patterns, and 
lead to various pathological conditions, including cancer 
[55]. Using the MethSurv tool, we explored individual 
methylation CpG sites in differentially expressed cancer 
genes [56–58]. For instance, in adrenocortical carcinoma 
(ACC), we found a significant association between the 
methylation site cg04721825 in the PRKCA gene (HR: 
6.626, 95% CI: 1.561–28.119, P: 0.010349507) and dis-
ease risk. Similarly, in bladder cancer (BLCA), the meth-
ylation site cg09825327 in the TRAF5 gene (HR: 1.682, 
95% CI: 1.136–2.49, P: 0.009355414) was significantly 
associated with disease risk… These results suggest that 
variations in methylation sites may play a critical role in 
cancer development, highlighting an important direction 
for future research. However, the relationship between 
HCMV and the host immune system is complex, and 
once HCMV enters the body, it is able to establish latency 
in undifferentiated hematopoietic progenitor cells in the 
bone marrow and then reactivate, leading to a recur-
rence of the disease [51, 59, 60]. Latently infected mono-
cytes disseminate the virus to various organs, and upon 
their reactivation, the adaptive immune system activates 
T helper cells and cytotoxic T cells via T cell receptors 
while accelerating epigenetic events. This further exac-
erbates the inflammatory role in pathophysiology, which 
may precipitate multi-organ diseases, heighten disease 
risk, and even cause death in severe cases [61–64].

Using the bioinformatics tools CIBERSORT and ESTI-
MATE, we analyzed the immune cell composition and 
scoring of 26 cancer types. While the degree and pro-
portion of immune cell infiltration varied across cancers, 
the infiltration patterns were similar to those of cells 
involved in innate and adaptive immunity. Fractalkine/
CX3C chemokine ligand 1 (CX3CL1) and its receptor 
CX3CR1 have been found to allow immature dendritic 
cells to migrate to cancer cells using the expression of 
their receptor CX3CL1 [65, 66]. The CX3CL1-CX3CR1 
axis promotes NK cells to adhere to tumor cells and 
directly kill cancer cells [67, 68]. Cancers associated with 

the CX3CL1-CX3CR1 axis include BLCA, STAD, BRCA, 
GBM, LGG, LIHC, LUAD, LUSC, PAAD, KICH, KIRC, 
KIRP, OV, PAAD, HNSC, PRAD, TGCT, UCEC, SKCM, 
etc [69]. . . Results from ESTIMATE revealed high tumor 
purity across most cancer cohorts, implying a relatively 
high proportion of tumor cells and low immune activity 
in the tumor samples. The tumor immune microenviron-
ment represents a highly complex system that is pivotal 
in driving immunosuppression, distant metastasis, local 
drug resistance, and response to targeted therapies [70–
73]. Moreover, it is closely related to the clinical progno-
sis of tumor patients [74]. The tumor microenvironment 
contains multiple immunosuppressive cell types that are 
induced by cancer-associated fibroblasts, such as M2 
macrophages, regulatory T cells and myeloid-derived 
suppressor cells. These immunosuppressive cells accu-
mulate abundantly within the tumor immune microen-
vironment (TIME) and play critical roles in promoting 
immune evasion and suppression [75–77]. , with which 
our results are also consistent, supporting the hypothe-
sis that enriched immune cells reduce the proportion of 
tumour cells by enhancing their killing effect on tumour 
cells and inhibiting their proliferation. We comprehen-
sively analysed the immune infiltration of pan-cancer, 
which is important for understanding the immune char-
acteristics of tumours and developing corresponding 
immunotherapy strategies. Future studies can further 
delve into the interactions of different immune cells in 
the tumour immune microenvironment to more compre-
hensively resolve the complexity of the tumour immuno-
regulatory network.

We identified 25 cancer prognostic genes that are sig-
nificantly associated with survival (ACC, BLCA, BRCA, 
CHOL, DLBC, ESCA, GBM, HNSC, KICH, KIRC, KIRP, 
LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, 
SKCM, STAD, THCA, THYM, UCEC, UCS), these pre-
dictive models of gene composition can effectively dis-
tinguish between high and low risk groups of cancer 
patients. The use of large-scale public databases for bio-
logical information mining allows us to efficiently dis-
cover these potential cancer prognostic genes [78]. Our 
findings provide important molecular markers for prog-
nostic assessment and risk stratification of cancer. The 
study by Anuraga et al. (2021), leveraging multiple data-
base resources such as The Cancer Cell Line Encyclope-
dia (CCLE) and the Tumor Immune Estimation Resource 
(TIMER), has successfully identified prognostic biomark-
ers for breast cancer, contributing valuable insights to 
the field. Their work not only underscores the efficacy of 
CCLE in cancer genomics research but also inspired the 
application of this methodology to pan-cancer analysis, 
further exploring the commonalities and specificities of 
molecular characteristics across various cancers [79, 80]. 
Notably, individual cancer types, such as TGCT, did not 
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show significant prognostic genes in our model, which 
may be related to the small sample size. In follow-up 
studies, we will collect more samples to improve statisti-
cal efficiency and use experimental techniques to verify 
the expression and prognostic value of these genes in 
relevant cancer samples. In addition, we analyzed the 
mutation spectra of these prognostic genes, and found 
that about 55% of the genes had mutation information, 
and the proportion of missense mutations was relatively 
high. Studies have shown that tumor genomic charac-
teristics, mutation load, and tumor-specific neoantigens 
are key factors in determining a patient’s response to 
immune checkpoint blockers, and they may affect the 
patient’s immunotherapy response. Moreover, tumor 
mutation load and its associated tumor-specific neoanti-
gens appear to be key ways to predict the potential clini-
cal efficacy of immune checkpoint blockers [81].

The present study identified 23 pivotal hub genes 
by constructing protein-protein interaction networks 
and implementing the MCODE algorithm, thus shed-
ding light on the molecular mechanisms underlying 
the interplay between HCMV infection and host cells. 
These hub genes were implicated principally in cell che-
motaxis and synaptic function modulation, intimating 
that viruses might harness such processes to facilitate 
dissemination and proliferation. Meanwhile, promo-
tion of CaM family genes (CALM1, CALM2, CALM3, 
CALML3, CALML4, CALML5, CALML6) and inhibition 
of AC family genes (ADCY1, CDCY2, ADCY3, ADCY4, 
ADCCY5, ADCY6, ADCY7, ADCY8, ADCY9) were 
observed. These are prognosis-associated genes. Nota-
bly, while mutations prevail in AC family genes expressed 
in manifold cancers (e.g. HNSC, KICH, KIRC, KIRP, 
LUAD, PRAD), the mutation rates of CaM family genes 
were mostly 0% across certain expressed cancers (BRCA, 
LGG, LIHC, PRAD, SKCM, THCA). Additionally, we 
utilized the GDSC database to screen for drug sensitivi-
ties, which provides a comprehensive overview of the 
correlations between gene expression levels and vari-
ous drug responses. To further validate these findings, 
we employed the Connectivity Map (CMap) database, a 
broad bioinformatics resource used to elucidate the con-
nections between small molecules, biological processes, 
and disease states by comparing gene expression profiles 
to predict drug mechanisms, annotate genetic variations, 
and provide insights for clinical trials [82–84]. Interest-
ingly, the results between CMap and GDSC were similar, 
and more importantly, CMap identified the targets of 
drug actions. By leveraging CMap, we were able to cross-
validate our preliminary findings and gain deeper insights 
into drug-gene interactions, thus proffering novel the-
oretical foundations for therapeutic and preventive 
interventions against the diseases. However, inter-gene 
interactions are intricate and multifaceted. Whether the 

pathway hub genes discovered in this study are the major 
factors influencing HCMV-induced disease progression 
remains to be further validated. Their purported capaci-
ties to exert pivotal roles in diverse HCMV-associated 
cancers also remain nebulous. Despite unveiling latent 
molecular mechanisms, inherent limitations exist as a 
purely in bioinformatical predictive study. Subsequent 
validation through experimental techniques is imperative 
to verify the expressional and functional alterations of 
these genes, alongside their precise roles during HCMV 
infection. Furthermore, the regulatory mechanisms of the 
hub genes and their downstream pathways, as well as the 
influences on viral infection and pathogenic mechanisms 
of diseases, warrant further in-depth research. Investiga-
tions on their consistencies of actions across the gamut 
of HCMV-induced cancers are necessitated, alongside 
assessments of their potentials as novel biomarkers or 
therapeutic targets for diseases. In summary, this study 
proffered valuable insights into HCMV and host inter-
play, and invoked multiple scientific issues for scholars 
across pertinent domains to pursue. We hope that future 
studies can further uncover the mystery of HCMV mech-
anism and provide theoretical basis for prevention and 
treatment of related diseases.

Conclusions
Through a comprehensive and comprehensive analy-
sis of the relationship between HCMV and pan-cancer, 
HCMV is significantly associated with many cancers and 
is involved in complex immune processes. We finally 
obtained prognostic genes and their mutations for 25 
cancers, providing potential targets for clinical treat-
ment. It is important to find the key genes of HCMV 
pathway species, which are closely related to cell chemo-
taxis and synaptic function, and in most tumors, CaM 
family genes are up-regulated and AC family genes are 
down-regulated, which may play an important role in the 
occurrence and development of cancer, and deserve fur-
ther study.
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