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Abstract 

Background  Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. 
While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral 
organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape 
of gliomas remains unexplored.

Methods  We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas 
within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signa-
ture and the immunological landscape of gliomas was undertaken from multiple perspectives.

Results  Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The 
nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 
0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associ-
ated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, 
tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-
related markers, as well as cancer signaling pathway biomarkers and cytokines.

Conclusion  The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential 
viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore 
the underlying biological background and novel therapeutic interventions in gliomas.
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Introduction
Gliomas, characterized by infiltrative growth, are the most 
prevalent primary intracranial tumors of the central nerv-
ous system in adults, with an incidence of 5–6/100,000 
each year [1–5]. In 50% of cases, glioblastoma (GBM) is 
extremely deadly, with its 5-year survival rate not exceed-
ing 7.2% [6]. Conventional therapies for GBM including 
surgery, chemotherapy, and radiotherapy, have only mar-
ginally improved patient outcomes, extending overall sur-
vival by just 4.9  months [7, 8]. Hence, there is an urgent 
need to explore innovative therapies for glioma patients.

Immunotherapy has emerged as a promising strategy 
for glioma treatment, leveraging the interaction between 
the brain’s lymphatic vessels and the external immune 
system [9]. Various types of immunotherapy, such as 
adoptive cell transfer and immune checkpoint inhibitors 
(ICIs), have demonstrated significant clinical responses, 
but their efficacy varies among different cancer sub-
sets [10, 11]. While the focus is primarily on immune 
checkpoints like the programmed cell death protein 
1 (PD1) and cytotoxic T lymphocyte-associated anti-
gen 4 (CTLA4), scarce clinical trials conducted on ICIs 
for gliomas have yielded significant outcomes [12–14]. 
Tumor-infiltrating immune cells and other distinct tumor 
microenvironment (TME) components foster an immu-
nosuppressive milieu, enabling cancer cells to evade 
immune system surveillance [15]. Furthermore, the het-
erogeneous nature of tumor antigens within subtypes 
makes it challenging to determine effective immunother-
apy options [16]. These factors collectively contribute to 
the limited success of immunotherapy in gliomas.

Given the pivotal role of copper in cellular signaling, 
it may implicate the development and progression of 
carcinogenesis, particularly through mechanisms such 
as cell proliferation, angiogenesis, and metastasis [17]. 
Cuproptosis, a novel form of programmed cell death dis-
tinct from apoptosis, ferroptosis, pyroptosis, and necrop-
tosis [18], remains relatively unexplored in terms of its 
impact on tumor cells. Nineteen cuproptosis-related 
genes (CRGs) have been reported [19], involved in essen-
tial functions such as copper ion homeostasis, protein 
lipoylation, the tricarboxylic acid cycle, and oxidative 
stress responses [18]. Previous researches have dem-
onstrated the beneficial effects of a model constructed 
based on CRGs for predicting the prognosis of breast, 
and neck squamous cell carcinoma [19, 20]. With the tar-
geting of cuproptosis considered as a potential option for 
tumor management, the impact of CRGs on the progno-
sis and the immunological landscape of gliomas is yet to 
be fully understood.

To determine the impact of cuproptosis on the TME 
immune features in gliomas, we explored the CRG expres-
sion patterns and developed a prognostic model across 

multiple cohorts. Additionally, we explored the correlation 
between the CRG risk signature and the immunological 
landscape of gliomas from various perspectives.

Materials and methods
Data collection
We sourced glioma RNA sequencing profiles and clinical 
records from The Cancer Genome Atlas (TCGA data-
base, https://​portal.​gdc.​cancer.​gov/) and Chinese Glioma 
Genome Atlas (CGGA) curation (http://​www.​cgga.​org.​
cn/.), comprising 615 primary gliomas from TCGA and 
406 cases from CGGA. Additionally, 85 patients were 
enrolled from the in-house Sichuan West China Hospi-
tal (SWCH) cohort, the sequencing data of which can be 
obtained at the Open Archive (https://​ngdc.​cncb.​ac.​cn/​
omix/). All patients met the following inclusion crite-
ria: supratentorial lesions, primary diagnosis of glioma, 
adults ≥ 18  years, and a definitive pathologic diagno-
sis, mRNA sequencing profile, and complete clinical 
phenotypes.

Construction of CRG and immune scores
In the TCGA datasets, CRGs were screened using the 
least absolute shrinkage and selection operator (LASSO) 
and Cox regression employing the “glmnet” R package (R 
Foundation, Vienna, Austria, version 4.1.2). These CRGs, 
whose coefficients at the lambda minimum C-index were 
not 0, were identified as potential genes. Subsequently, 
five potential target genes (NLRP3, ATP7B, SLC31A1, 
FDX1, and GCSH) for the model were analyzed using 
the "survminer" R package to perform a multivariate 
Cox regression analysis. Then, these genes were used to 
develop a prognostic signature. The score was calculated 
using the following formula:

where β and Exp are the coefficients and expression of 
each critical gene, respectively.

A gene expression profile was extracted to calculate the 
stromal, immune, and estimate scores, along with tumor 
purity using the “ESTIMATE” package in R [21]. Then, 
patients were stratified into high- and low-risk subgroups 
according to the median immune and CRG scores, 
respectively.

Identification of Differentially Expressed Genes (DEGs) 
and functional annotation
Using the R package “limma”, differentially expressed 
genes (DEGs) were identified by separately comparing 
the immune and CRGs subgroups. The significance of the 
DEGs was determined by the false discovery rate < 0.05 
and a cutoff of |Log2 Fold Change (FC)|> 1. An adjusted 

(1)CRG score =

i=1

(βi ∗ Expi)

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://ngdc.cncb.ac.cn/omix/
https://ngdc.cncb.ac.cn/omix/
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p-value < 0.05 indicated statistical significance between 
the different subgroups.

The ’clusterProfiler’ R package was used to analyze 
the enrichment of differentially expressed genes (DEGs) 
in the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases, with the top 
10 enrichment terms displayed [22, 23]. Dot plots and 
enriched KEGG pathways were employed to explore 
biological functions and signaling pathways, with sig-
nificantly enriched terms meeting the criteria of p 
value < 0.05 and q value < 0.05. Subsequently, gene set 
enrichment analysis (GSEA) was performed using the 
’gsva’ R package to identify significant alterations in sign-
aling pathways for each subtype [24]. The results were 
visualized using ’gseaplot2’ to display the top five sub-
group enrichment terms.

Nomogram construction and evaluation
A univariate Cox regression analysis was performed to 
analyze clinical indicators, CRG and immune scores, 
and other potential prognostic factors. Next, a multivari-
ate Cox regression analysis was conducted for variables 
with p values < 0.1 in the univariate analysis. The p value, 
hazard ratio, and 95% confidence interval of each vari-
able were then displayed using the “forestplot” R pack-
age. An overall score based on the nomogram model 
was obtained by summing the scores for each clinically 
significant factor. Additionally, calibration plots were 
generated to assess the predictive accuracy for 1-, 2-, 
and 3-year prognosis compared to virtually observed 
outcomes. A decision curve analysis (DCA) using the R 
package “ggDCA” was performed to determine the net 
benefit of using the model at different threshold prob-
abilities. Finally, receiver operating characteristic (ROC) 
curves were constructed with the R package “rms” to 
evaluate the effectiveness of the nomogram in predicting 
prognosis for patients with gliomas.

Estimation of Tumor‑infiltrating Immune Cells, Tumor 
Mutant Burden (TMB), Tumor Immune Dysfunction 
and Exclusion (TIDE), Specific Markers for Cytotoxic T 
Lymphocytes (CTLs) and immune exhaustion, immune 
checkpoints, and cytokines in gliomas
Due to the challenge of determining the specific percent-
age of immune cells based on the immune scores, the 
“CIBERSORT” package was utilized to estimate the com-
position of 22 tumor-infiltrating immune cells [25].

The somatic mutation files were retrieved from the 
TCGA database in the Varscan file format, while copy 
number variation (CNV) data were downloaded from 
UCSC Xena (https://​xenab​rowser.​net/​datap​ages/). A 
total of 598 patients in the TCGA cohort were eligible for 
TMB analysis, where the R package "maftool" was used to 
calculate significantly mutated genes and TMB [26].

T-cell exclusion and microsatellite instability analysis 
in the TME for ICIs response prediction were conducted 
using the TIDE site (http://​tide.​dfci.​harva​rd.​edu).

Finally, we separately examined the relationship 
between CRGs and molecular markers specific to cyto-
toxic T lymphocytes (CTLs), immune exhaustion, 
immune checkpoints of tumor signature genes, and 
cytokines in gliomas.

Statistical analyses
All data analyses were conducted using R software (R 
Foundation, Vienna, Austria, version 4.1.2). Categorical 
data were analyzed using Chi-square or Fisher’s exact 
tests. Differences between the Kaplan–Meier curves were 
determined by the log-rank test. Missing values were 
imputed through a random forest algorithm that dynami-
cally adjusted parameters to improve data accuracy, and 
statistical analysis was not performed on variables with 
missing values exceeding 5%. A p value < 0.05 was consid-
ered statistically significant.

Results
Construction of the CRG scoring system
The clinicopathological records of the three cohorts were 
comprehensively analyzed and are presented in Addi-
tional file 1: Fig. S1. Remarkable differences in age, WHO 
grade, molecular diagnosis, radiotherapy, TMZ therapy, 
and prognosis for gliomas were observed among the 
three datasets.

In the TCGA cohort, relationships between the expres-
sion of 19 CRGs and clinicopathological features are 
shown in Additional file 2: Fig. S2A and B. Following mul-
tivariate Cox regression analysis and LASSO Cox regres-
sion, we identified NLRP3, ATP7B, SLC31A1, FDX1, and 
GCSH as potentially critical genes for constructing the 
prognostic signature in gliomas (Fig. 1A and B). Notably, 
SLC31A1 exhibited the highest expression levels among 
these genes, and significant differences in survival were 
noted for these five key CRGs (Additional file 2: Fig. S2C-
G). The formula for the CRG score was as follows:

(2)
CRG score = (−0.157 ∗ NLRP3 expression) + (−0.492 ∗ ATP7B expression)

+ (0.812 ∗ SLC31A1 expression) + (0.500 ∗ FDX1 expression)

+ (−0.544 ∗ GCSH expression).

https://xenabrowser.net/datapages/
http://tide.dfci.harvard.edu
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Fig. 1  Development of the CRG prognostic signature in three cohorts. A Ten-times cross-validation for CRGs selection in the LASSO Cox regression. 
B Multivariate analyses in the TCGA cohort. C Heatmap of the expression of five CRGs between CRG risk subgroups. D Kaplan–Meier curves for CRG 
risk subgroups in the TCGA cohort. The heatmap of five CRG genes and Kaplan–Meier curves between CRG subgroups in the SWCH (E, F) and CGGA 
cohorts (G, H), respectively. *p < 0.05; **p < 0.01; ***p < 0.001 
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Afterward, patients were stratified into high- and low-
risk subgroups according to the median CRG score. In 
the CRG high-score group, ATP7B, NLRP3, and GCSH 
had significantly lower expression, while SLC31A1 and 
FDX1 exhibited higher expression (Fig.  1C). Survival 
analysis indicated that patients in the high-score group 
revealed an inferior prognosis compared to those in the 
low-score group (Fig. 1D). Consistent with findings from 
the TCGA cohort, the expression patterns of these five 
genes and the Kaplan–Meier survival curves between 
CRG risk subgroups were also analyzed for the SWCH 
(Fig. 1E and F) and CGGA cohorts (Fig. 1G and H).

Functional annotation in distinct risk subgroups
Regarding the correlation between CRG and immune 
scoring systems, significant statistical differences were 
observed in the expression of these five CRGs across 
immune risk subgroups. Specifically, ATP7B and GCSH 
were characterized by lower expression, while NLRP3, 
SLC31A1, and FDX1 exhibited higher expression in the 
immune high-score group (Fig.  2A). Further, high CRG 
subgroups were associated with elevated immune, stro-
mal, and estimated scores, alongside reduced tumor 
purity (Fig.  2B and C). Notably, the CRG score demon-
strated a positive correlation with the immune, stromal, 
and estimate scores, but an inverse relationship with 
tumor purity (Fig. 2D-G).

We identified 999 intersecting DEGs in CRG and 
immune risk subgroups (Additional file 3: Fig. S3A) and 
specifically extracted the top 30 upregulated and down-
regulated genes respectively in the TCGA cohort. Addi-
tionally, there were some intersecting genes among the 
top 30 upregulated and downregulated DEGs between 
the immune and CRG risk groups (Additional file 3: Fig. 
S3B and C).

A GO analysis revealed that DEGs in the immune sub-
groups were primarily involved in immune response-
related pathways, such as cytokine production, immune 
effector processes, and myeloid leukocyte activation 
(Fig.  3A). The analysis also revealed high enrichment 
in cytokine receptor interactions, chemokine signal-
ing pathways, and cell adhesion molecules in KEGG for 
the immune risk groups (Fig. 3B). Additionally, GO and 
KEGG annotations for the CRG subgroups were primar-
ily related to the regulation of membrane potential, regu-
lation of trans-synaptic signaling, modulation of chemical 
synaptic transmission, and cell signaling biological pro-
cesses, including neuroactive ligand-receptor interaction 
and the cAMP signaling pathway, respectively (Fig.  3C 
and D). For the immune and CRG subgroups, some com-
mon mechanisms, including chemokine signaling, and 
cytokine receptor interactions, were observed in the top 

five signaling pathways of KEGG gene set (Fig. 3E and F), 
while epithelial-mesenchymal transition and TNF-α sign-
aling via NF-κB were noted in the top five signaling path-
ways of HALLMARK gene set (Fig. 3G and H). Similarly, 
some of these, such as the P53 signaling pathway, ECM 
receptor interaction, chemokine signaling in the KEGG 
gene set, and TNFα signaling by the NF-kB, epithelial-
mesenchymal transition, and inflammatory response in 
the HALLMARK gene set (Additional file 3: Fig. S3D and 
E), were associated with immunological activation. These 
findings underscore that CRGs may exert anti-tumor 
effects through immunoregulatory mechanisms.

Nomogram for predicting glioma prognosis
We developed a model to predict the survival for patients 
with gliomas at 1, 2, and 3  years in the three datasets. 
Within the TCGA cohort, factors including WHO grade, 
age, IDH status, CRG risk, and immune risk were identi-
fied as independent prognostic factors (p < 0.05) (Fig. 4A). 
These variables were integrated to construct the nomo-
gram for individualized prognosis prediction (Fig.  4B). 
The ROC curve indicated that the nomogram had a supe-
rior predictive performance (AUC of 0.89, 0.92, and 0.93 
at 1, 2, and 3 years, respectively) (Fig. 4G). A validation 
study was performed in the SWCH (Fig.  4C, D  and H) 
and CGGA cohorts (Fig. 4E, F and I). Finally, calibration 
curves and decision curve analysis validated the per-
formance of this model in predicting the prognosis of 
patients with gliomas, with high consistency between the 
actual proportion of the 1-, 2-, and 3-year overall survival 
and the nomogram-predicted probability in the three 
cohorts (Fig. 4J-O).

Correlation between CRG Risk, and immune cell profiles 
in gliomas
We used the CIBERSORT method to analyze 22 types of 
immune cell profiles. M2 macrophages (30%), and rest-
ing memory CD4 + T cells (20%) were the predominant 
infiltrating immune cells (Additional file 4: Fig. S4A and 
B). These two types of immune cells had more infiltration 
in the CRG and immune high-risk subgroups, although 
no statistically significant difference was observed in 
resting memory CD4 + T-cell infiltration between the 
immune subgroups (Fig. 5A and B) (Additional file 4: Fig. 
S4C). Additionally, a correlation was observed between 
the CRG score and infiltration of CD8 + T cells, naïve 
CD4 + T cells, activated memory CD4 + T cells, resting 
NK cells, M0 macrophages, and activated dendritic cells; 
however, only the correlation with CD8 + T cells was vali-
dated by the immune score (Fig. 5C), suggesting that the 
CRG score may be more closely related to immune cell 
infiltration in gliomas than the immune score.
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Fig. 2  Relationship between immune scoring system and CRG prognostic signature. A Relationship between the immune score and expression 
of five CRGs. Relationship between immune scoring system (B) and CRG risk subgroups (C). D-G Linear regression between the CRG and immune 
scoring system. *p < 0.05; **p < 0.01; ***p < 0.001 
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Fig. 3  Functional enrichment analysis. GO enrichment analysis of the top 10 pathways (A), and KEGG enrichment analysis of the top 20 pathways 
(B) for distinct immune risk groups. C and D GO and KEGG in CRG risk subgroups. The top five pathways with the highest NES in KEGG (E, F) 
and HALLMARK (G, H) gene sets for the immune and CRG subgroups, respectively
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Fig. 4  Nomogram construction and evaluation. Multivariate Cox regression of potential prognostic power in the TCGA (A), SWCH (C), and CGGA 
(E) cohorts. The nomogram was used to calculate the 1-, 2-, and 3-year prognosis for patients with gliomas in the TCGA (B), SWCH (D), and CGGA 
(F) cohort. ROC curves for predicting survival in the TCGA (G), SWCH (H), and CGGA (I) cohort. Calibration curve and decision curve evaluation 
for nomograms in the TCGA (J, M) cohort, SWCA (K, N) cohort, and CGGA (L, O) cohort. *p < 0.05; **p < 0.01; ***p < 0.001 
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Fig. 5  Immune cell profiles in gliomas. Infiltrating levels of 22 immune cells in CRG (A) and immune (B) risk subgroups. C Correlation 
between the 22 types of immune cells, CRG, and immune score. *p < 0.05; **p < 0.01; ***p < 0.001 
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Analysis of genetic mutations, TIDE, Cytotoxic T 
Lymphocytes (CTLs) and immune exhaustion related 
molecular markers, immune checkpoints and cytokines 
in gliomas
TMB, which indicates the frequency of genetic muta-
tions in cancer and the potential to recruit more neo-
antigens, was positively correlated with the CRG score 
(Additional file  5: Fig. S5A). Additionally, TMB was 
significantly higher in both the CRG and immune high-
score groups (Fig. 6A). IDH1 was the most mutated gene 
(58%; with missense mutations) (Additional file  5: Fig. 
S5B). Notably, more mutated genes were associated with 
the CRG score than with the immune score, and NF1 
exhibited the strongest correlation among the top 20 
mutated genes (Fig. 6B).

TIDE algorithms were used to examine T-cell dysfunc-
tion and exclusion scores, which could account for the 
differences in immune responses between the immune 
and matrix components. A positive correlation was noted 
between TIDE, and exclusion scores with CRG score, and 
this correlation was also observed in the immune score. 
Interestingly, microsatellite instability (MSI) showed a 
negative correlation with the CRG score but a positive 
correlation with the immune score (Additional file  5: 
Fig. S5C-J). Moreover, higher TIDE and exclusion scores 
were significant in the high-risk CRG and immune sub-
groups, while the MSI score did not show a consistent 
trend (Fig. 6C).

The CTL-related genes (CD8A, CD8B, GZMA, 
GZMB, and PRF1) (Fig.  6D), as well as the immune 
exhaustion-related genes (LAG3, CTLA4, CD274, PD-
L1, and HAVCR2) (Fig. 6E), were all highly expressed in 
the CRG and immune high-score groups. The analysis 
of 11 biomarkers associated with well-known cancer 
signaling pathways revealed that CDKN2A was charac-
terized by the lowest abundance, while EGFR exhibited 
the highest expression (Fig. 6F). Additionally, the path-
way markers (PIK3CA, Wnt, TGF-β, MYC, and MDM2) 
showed differential expression in the immune risk sub-
groups as well as between CRG risk subgroups (Fig. 6G 
and H).

Among the 51 immune checkpoints, SIRPα and 
CD47 were highly expressed, with discernible differ-
ences among the CRG risk subgroups. In particular, low 
expression of these two markers correlated with a high 

CRG score and worse prognosis (Additional file  5: Fig. 
S5K and L).

Cytokines play a crucial role in information transmis-
sion between cells and regulation of the TME. The major-
ity of cytokines exhibited higher expression in patients 
with high CRG scores (Additional file  6: Fig. S6A), and 
most were more closely associated with the CRG score 
than the immune score (Additional file 6: Fig. S6B).

Discussion
This seminal research involved the development and vali-
dation of a CRG risk signature to predict the prognosis 
of glioma patients. Compared to similar studies [27–29], 
the model featuring the CRG risk signature displayed 
exceptional stability as an independent prognostic fac-
tor across various cohorts, even exceeding 90% for 3-year 
survival predictions.

The correlation between immune scores calculated 
by the ESTIMATE algorithm and the clinicopathologic 
features, as well as the TME, has been comprehensively 
identified across various types of cancers [21, 30]. A 
striking observation was that, unlike tumors in periph-
eral organs, where high immune scores typically indicate 
a better prognosis [30, 31], glioma patients with high 
CRG and immune risk scores had worse outcomes, pos-
sibly due to the distinct immune microenvironment of 
gliomas.

Gliomas, characterized by distinct TME features, gen-
erally lack abundant activated CD8 + T and NK cells, 
which are considered as indicators of immune rec-
ognition and representative of "hot" tumors [32–34]. 
Despite a uniquely high ratio of activated CD8 + T cells 
in the CRG high-risk subgroups, their absolute content 
was markedly low, posing challenges in inducing direct 
tumoricidal potential. The high-risk subgroups also 
exhibited significant enrichment in immunosuppres-
sive properties of cells, including M2 macrophages com-
prising about 30%, which play a crucial role in secreting 
chemokines and upregulating immunosuppressive pro-
teins to dampen T cell functionality [35, 36]. Moreover, 
the higher enrichment of resting memory CD4 + T cells 
in the CRG and immune high-risk subgroups implies that 
their activation, proliferation, and differentiation into 
specific Th subsets may offer new insights into the patho-
genesis and therapy for gliomas [37].

Fig. 6  Molecular phenotypes of immune microenvironments in gliomas. A Relationship between TMB, CRG and immune risk groups. B 
Relationship between mutated genes, CRG, and immune scores. C Analysis of correlation between TIDE, and exclusion scores with the CRG 
and immune high-risk groups. The expression of cytotoxic T lymphocyte markers (D), and immune exhaustion-related genes (E) were all 
significantly higher in the CRG and immune high-risk groups. F Expression levels of 11 well-known biomarkers of cancerous signaling pathways. 
Pathway markers were differentially expressed in the CRG (G) and immune (H) high-risk subgroups. *p < 0.05; **p < 0.01; ***p < 0.001 

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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The exhaustion of CD8 + T and NK cells, along with 
the overexpression of molecular markers such as LAG3, 
CTLA4, CD274, PD-L1, and HAVCR2, have been identi-
fied as key mechanisms by which cancer cells can escape 
host immunity [38, 39]. Conversely, immune activity-
related signatures, including PRF1, GNLY, GZMA, 
GZMB, and interferon regulatory factor 1, play crucial 
roles in tumor cell recognition and tumoricidal, with con-
nections to extended survival, and identifying responders 
to anti-PD-1 antibody treatment [40, 41]. Interestingly, 
the increased expression of both immune activity and 
immune exhaustion-related molecules associated with 
the high CRG scores was indicative of an unfavorable 
prognosis, possibly due to the varying expression levels 
of these biomarkers. For instance, HAVCR2, an immune 
exhaustion molecule, exhibited the highest expression, 
potentially triggering significant immune evasion in gli-
oma cells [42]. Meanwhile, TIDE and exclusion scores 
showed a positive correlation with the CRG score, while 
MSI exhibited a negative correlation with these pheno-
types. These findings further signified that glioma cells 
may possess a greater immune evasion potential through 
T-cell exclusion, making it less likely for patients with 
these phenotypes to benefit from immunotherapy [43].

Although certain immune checkpoints, including 
CD274 (PD-L1), PDCD1 (PD-1), and CTLA-4, have 
been effectively employed in targeted immunotherapy 
for other organ tumors [44], this study explored that the 
expression of these molecules was notably low in glio-
mas. In contrast, critical biomarkers for glioblastoma, 
including CD47 and SIRPα, exhibited higher expression 
among these immune checkpoints, which are correlated 
with a CRG low-risk signature and improved prognosis. 
SIRPα, found on myeloid cells like macrophages, den-
dritic cells, neutrophils, neurons, and microglia, binds 
to CD47 with high affinity [45, 46]. Targeting the CD47-
SIRPα immune checkpoints has emerged as a promising 
strategy in both preclinical and clinical studies, with the 
potential to modify the tumor microenvironment, restore 
innate and adaptive immune functions, and enhance the 
prognosis of gliomas [47].

A broad panel of chemokines and cytokines within 
the TME constitute a dynamic network that regulates 
the overall composition of immune cells infiltrating 
the tumor. The lack of T-cell-recruiting signals, such as 
chemokines directing T-cell trafficking (e.g., CXCL9, 
CXCL10, CXCL11, CXCL13, CCL2, and CCL5), could be 
a primary cause of T-cell exclusion [36, 48, 49]. EGFR, the 
most prevalent molecule in the study, exhibited differen-
tial expression in CRG subgroups, contributing to tumor 
cell differentiation, proliferation, and migration by regu-
lating several signaling pathways, including PI3K/AKT, 
RAS/MAPK, and JAK2/STAT [50, 51]. Thus, further 

investigation into the relationship between cupropto-
sis and EGFR may shed new light on the application of 
EGFR inhibitors in gliomas [52].

Although this study provides important evidence to 
explore the potential of CRGs as markers for evaluat-
ing the TME, immunotherapy response and prognosis 
in gliomas, our findings should be interpreted with the 
following limitations in mind: First, as a retrospective 
study based on three independent datasets, glioma tissue 
mRNA sequencing profiles and clinical records are sub-
ject to selection bias. Second, while only transcriptional 
expression was considered in the molecular stratifica-
tions, it is essential to include metabolic, proteomic, and 
imaging characteristics. Third, in-vivo and in-vitro wet 
lab experiments should be conducted to verify the roles 
of CRG regulatory molecules in gliomas. In this regard, 
we intend to conduct such experiments in future work.

Conclusions
It is conceivable that CRG risk signature may be a potent 
biomarker for predicting the prognosis and the potential 
viability of immunotherapy responses in gliomas. Moreo-
ver, the key candidate CRGs might be promising targets 
to explore the underlying biological background and novel 
therapeutic interventions in gliomas.
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