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Abstract 

Background Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-
specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods 
that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially 
expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, 
which can be prohibitively expensive.

Results Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase 
the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared 
with other popular single cell differential expression methods if both FDR and power were considered. As an example, 
the method was applied to an idiopathic pulmonary fibrosis (IPF) case study.

Conclusion In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identi-
fied more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, 
the BFH offers a unique and flexible framework for future scRNA-seq analyses.
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Background
Single cell RNA sequencing (scRNA-seq) is a powerful 
sequencing technology that allows for the profiling of 
gene expression in individual cells. Traditional bulk RNA 
sequencing technologies measure the average expres-
sion level of all cells in the population, which mask the 
uniqueness of each cell. In contrast, isolation of cells is 
an important step in scRNA-seq. It enables the identifi-
cation of different cell types within complex tissues [36]. 
As demonstrated in Keren-Shaul et al.’s research, by ana-
lyzing immune cell populations in mouse brains, they 

discovered a novel microglia type associated with neuro-
degenerative diseases using scRNA-seq [21].

scRNA-seq has the advantage in processing thou-
sands or even millions of single cells simultaneously [48] 
and has extensive applications across different fields of 
biology and medical research. By comparing the gene 
expression level between patients and healthy controls, 
scRNA-seq can provide important insights into the dis-
ease associated genes and pathways. In drug discovery 
area, it has become an essential tool to identify novel 
drug targets and to test the efficacy of drugs on specific 
cell types. For instance, in the study by Wu et al. [42] on 
diabetic kidney disease (DKD), they generated single cell 
data from nearly 1 million cells and analyzed the response 
of a murine DKD model to five treatment approaches. 
They found that different medications affected different 
cell types, and combination therapies achieved better 
outcomes in rescuing DKD-associated transcriptional 
changes.
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One important question in analyzing scRNA-seq data 
is the identification of differentially expressed genes 
(DEG) between groups. Compared to the gene expres-
sion data generated from other sequencing technologies, 
scRNA-seq data have some unique features including 
overdispersion, sparsity, high proportion of zeros due 
to dropout events (i.e., scRNA-seq data only captures a 
small fraction of the transcriptome of each cell), and the 
hierarchical structure embedded in the data [10]. Early 
scRNA-seq studies often collect many cells from one or a 
few individuals. With the rapid advancement in the tech-
nology, scientists have started to collect single cell data 
from multiple individuals. In a multi-individual, multi-
condition experiment, other than cell-to-cell variation 
within each individual, heterogeneity also exists among 
different conditions, individuals and across different cell 
types. Those distinctive challenges need to be considered 
when we explore DEG in scRNA-seq data.

With more and more gene expression data becoming 
publicly available, many approaches and tools for the 
differential expression (DE) analysis have been devel-
oped for scRNA-seq data. For example, ZINB-WaVE 
[32] and ZingeR (Van den [37]) assume the expression 
counts follow a zero-inflated negative binomial (ZINB) 
distribution and apply Expectation–Maximization (EM) 
algorithms to estimate model parameters. In contrast, 
SCDE [22] models the observed abundance using a 
mixture of the Poisson (dropout component) and nega-
tive binomial (amplification component) distribution. 
These approaches require several distributional assump-
tions which may fail to be satisfied by real data. MAST 
[12] applied a hurdle model to simultaneously model the 
expression rate and mean expression values for a spe-
cific gene, then DE testing is performed between two 
cell populations using likelihood ratio test statistic. Non-
parametric approaches were also applied on analyzing 
scRNA-seq data, such as Wilcoxon signed rank test and 
ROSeq [16], both of which use test statistics based on 
ranks. In summary, many single-cell-specific DE meth-
ods which apply different strategies, have been developed 
in recent years. However, some existing approaches are 
inappropriate for individual level differential expression 
testing (such as comparison between patients and healthy 
controls), as the sampling units for these approaches 
are cells, not individuals [47].  Failing to account for the 
intrinsic variability of individuals causes a systematic 
underestimation of the variance of gene expression, com-
promising the ability to generate biologically accurate 
results.

Pseudo-bulk methods, which pool the scRNA-seq 
counts in the same biological replicate, have been devel-
oped to address this variability. Squair et  al. [34] evalu-
ated the performance across fourteen different DE 

methods using eighteen datasets and found pseudo-bulk 
methods outperform other cell-level based DE methods 
in scRNA-seq data. Murphy and Skene [29] also recom-
mended the use of pseudo-bulk approaches after the 
simulation analysis from multiple scenarios. Biased infer-
ence and highly inflated type 1 error rates were observed 
when scientists assume cells from the same individual 
are statistically independent. Zimmerman, Espeland, 
and Langefeld [49] proposed a generalized linear mixed 
model that incorporates a random effect for individual, 
to address the correlation structure from cells within an 
individual. NEBULA [20] is an efficient negative binomial 
mixed model accounting for both individual-level and 
cell-level overdispersions. Another method IDEAS [47] 
captures the gene expression profile in each individual by 
a probability distribution and then compares such distri-
butions across two groups of individuals.

Regardless, pseudo-bulk methods could still lack power 
to detect genes of interest due to the limited sample 
size. To overcome these limitations, we propose to use 
a Bayesian-frequentist hybrid (BFH) inference method 
to analyze the scRNA-seq data at the individual level. 
The BFH theoretical framework was originally proposed 
by Yuan [45] and the computation framework based on 
the EM algorithm and Monte-Carlo Markov Chain was 
proposed by Han et  al. [19]. In BFH, part of the model 
parameters is frequentist, and others are Bayesian. The 
goal of BFH is to obtain estimation of both types of 
parameters and quantify the variation in the estimation. 
BFH is achieved by maximizing the likelihood function 
given the Bayesian parameters and simultaneously mini-
mizing the posterior expected loss function given the 
frequentist parameters. We extended the work of Han 
et al. [19] using a linear regression model based on nor-
mal distribution, where both the frequentist and Bayesian 
estimators have tractable analytic forms. We also derive 
the estimation error (or standard error) of the frequen-
tist and Bayesian parameters. With a point estimate and 
a standard error of an estimator, we can construct confi-
dence intervals of the coefficients, which can also be used 
to test whether predictors (such as disease group) are sig-
nificantly associated with gene expression.

Methods
The hybrid inference in existing literature
BFH inference is designed for models that have both 
frequentist and Bayesian parameters [45]. Suppose 
the frequentist and Bayesian parameters are θA and θB , 
respectively, the data is Y  , and the prior for θB is π(θB) . 
Given a decision d(Y ) , a loss function W (d(Y ), θB) , and 
the distribution likelihood f (Y |θA, θB) , the hybrid esti-
mators of θA and θB are
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where inf  and sup were taken in the space of d(Y ) and θA 
respectively so that θ̌B minimizes the posterior risk given 
θ̂A and θ̂A maximizes the likelihood function given θ̌B . The 
frequentist parameter θ̂A is defined (and can be numeri-
cally calculated) as integration of the loss function over 
the posterior distribution. Yuan [45] proved that the 
hybrid estimator is a consistent estimator, and the stand-
ard error of the hybrid estimators can converge to that of 
the frequentist estimators. As a result, the variance–
covariance matrix can be quantified using Fisher infor-
mation matrix. Han et  al. [19] developed an EM 
computational algorithm to compute θ̂A, θ̌B  for any loss 
function ensuring that the hybrid inference is applicable 
to general practical problems and different data settings. 
Han et  al. [19] demonstrated, in extensive simulation 
studies, that the hybrid inference based on the EM algo-
rithm can outperform Bayesian inference and frequentist 
inference. In this paper we adopt the EM algorithm in 
Han et al. [19] to make inference. Data, statistical models, 
and more details about the computation are given in sec-
tion  "Introduction of frequentist, Bayesian, and hybrid 
inference in linear regression with conjugate priors".

Single‑cell RNA sequencing methods comparison using 
semi‑synthetic dataset
Motivation of semi-synthetic data We employed 
semi-synthetic data derived from actual single-cell RNA 
sequencing (scRNA-seq) data to assess the power and 
false discovery rate (FDR) of our proposed method in 
comparison to other widely used approaches. Inspired 
by Li et  al.’s work [26], where semi-synthetic data was 
employed to evaluate bulk RNA-seq differential expres-
sion (DE) methods, we sought to extend this approach to 
scRNA-seq. Traditional simulated datasets often struggle 
to accurately capture the biological signals and intricate 
correlation structures present in real datasets, leading to 
challenges in maintaining cellular population heteroge-
neity [8]. Consequently, analyses based on diverse simu-
lations and packages may yield conflicting conclusions. 
For instance, Zimmerman et  al. [49] observed superior 
Type I error rate control and power in mixed models 
compared to pseudo-bulk methods using simulated data. 
However, Murphy et  al., in a different simulation setup, 
found that pseudo-bulk methods exhibited the lowest 
Type II error rate among all tested methods, with equal 
Type I error rates. Recognizing these discrepancies, we 
advocate for a more realistic evaluation procedure for DE 
methods.

(

θ̂A, θ̌B

)

= arg inf sup

∫

W (d(Y ), θB)f (Y |θA, θB)π(θB)dθB,
Semi-synthetic data source and data generation: 

HypoMap, a compilation of mouse hypothalamus single-
cell RNA sequencing (scRNA-seq) data sourced from 18 
publications [35], encompasses 100 normal chow mice, 
yielding a dataset containing190,710 neuron cells. Given 
the substantial number of subjects and cells within this 
dataset, it serves as a valuable resource for generating 
multiple synthetic datasets. As a subset, 55 mice were 
identified with a minimum of 1,000 cells each, constitut-
ing a total of 170,874 neuron cells. Based on this subset, 
we derived our semi-synthetic datasets.

In our scRNA-seq semi-synthetic scenario, we ran-
domly selected 20 out of 55 mice. Among these, 10 were 
arbitrarily assigned to the ’disease’ group, while the 
remaining mice served as the ’normal chow’ group. It’s 
important to note that in the original data, the ’disease’ 
group was under normal chow conditions. To achieve 
around 1,000 cells per mouse, we sampled a specific 
number of cells from each mouse using a Poisson distri-
bution with a mean of 1,000, ensuring an average of 1,000 
cells across the 20 mice.

For the generation of true positives (true differentially 
expressed genes or true DE genes), we initially focused on 
genes expressed in at least 10% of the cells, amounting to 
approximately 8,000 genes. Subsequently, we randomly 
selected 5% of these genes from the ’disease’ group and an 
artificial fixed effect was introduced to these genes by multi-
plying the counts under the ’disease’ condition by a constant 
of 2. Consequently, these genes represent true positives, 
while the remaining genes serve as true negatives (non-DE 
genes). This process was iterated 100 times to generate 100 
semi-synthetic datasets.

Differential expression method selection We carefully 
selected representative approaches from three domains of 
previously proposed Differential Expression (DE) methods: 
mixed models, pseudo-bulk methods, and single-cell meth-
ods. Our choice for the mixed model approach was NEB-
ULA [20, 27], edgeR [33], and limma-voom [25].

ScRNA‑seq and bulk RNA‑seq Data source
Lungmap dataset The Lungmap dataset used in this 
study was from a published human lung tissue study [39]. 
The cells were clustered by Seurat v3 [7] and annotated to 
31 cell types based on canonical lineage-defining mark-
ers. Lungmap dataset served as the reference dataset for 
Hierarchical XGBoost [9] algorithm to obtain the prob-
ability for a cell being an alveolar macrophage cell. In 
addition to output of probabilities indicating the likeli-
hood of a candidate cell belonging to each individual cell 
type, HierXGB offers an additional capability. HierXGB 
can provide cell identity directly using a naive Bayesian 



Page 4 of 13Han et al. Human Genomics           (2024) 18:69 

approach, assigning the cell type based on the maximum 
of such predicted probability.

IPF scRNA-seq dataset The idiopathic pulmonary 
fibrosis (IPF) scRNA-seq dataset was obtained from a 
previous study on pulmonary fibrosis (PF) disease mech-
anisms and the corresponding cell types in human lung 
tissues [17]. This dataset contains over 114,000 cells from 
22 donors who had cell observations. Among these 22 
donors, 10 are from the control group and 12 from the 
IPF group. The IPF dataset served as the query data for 
HierXGB to obtain the probability for a cell being an 
alveolar macrophage cell.

IPF bulk RNA-seq dataset We also obtained bulk 
RNA-seq IPF data from human lung tissues [13] in the 
previous research on the relationship between chronic 
hypersensitivity pneumonitis and idiopathic pulmonary 
fibrosis. This bulk IPF dataset contains 18,838 genes from 
103 idiopathic IPF samples and 103 unaffected controls 
samples. For each gene, the mean differences of expres-
sion level between the IPF and control groups were cal-
culated using linear regression with the adjustment of 

In our analysis the outcome Y  is the weighted average 
of a gene’s expression for a particular cell type (e.g., TGF-
β1 in alveolar macrophage) at the individual level, p = 1, 
and X the design matrix is composed of a vector of 1 s, 
X1 the disease group of the individual (control or IPF), 
and X2 the predictive probability of each cell belonging 
to alveolar macrophage averaged per individual with sub-
sequent negative log transformation. The linear model is 
Y = Xβ + ε, ε ∼ N

(

0, σ 2I
)

 , where I is an identity matrix 
with dimension n by n. So Y ∼ N

(

Xβ , σ 2I
)

 . The regres-
sion parameters are β = (β0,β1,β2), which β0,β1 and 
β2 are the intercept, regression parameter for disease 
group, and regression parameter for probability of the 
cell belonging to alveolar macrophage, respectively. The 
likelihood value given data ( Y ,X ) is

The conjugate prior of the regression parameter can be 
written as π(β) ∼ N

(

µβ ,�β

)

. Then the posterior distri-
bution can be derived as

where µ
new
β =

(

�−1
β + XTX

)−1(

�−1
β µβ + XTY

)

 and 

�new
β =

(

�−1
β + XTX

)−1
σ 2. Without the prior π(β) , the 

frequentist’s estimate and its variance of β can be written 
as µF

β =
(

XTX
)−1(

XTY
)

 and �F
β =

(

XTX
)−1

σ 2 , which 
is the ordinary least square estimate.

Finally, following the EM algorithm in Han et al. [19], 
the hybrid Bayesian analysis can be written in the follow-
ing iterative procedures:

[Step 1.] Initialize parameters (β0,β1,β2) from the fre-
quentist estimates as 

(

β
(0)
0 ,β

(0)
1 ,β

(0)
2

)

 , where β0 is the 
intercept, and (β1,β2) are the slope parameters for dis-
ease group X1 and the predictive probability of each cell 
belonging to alveolar macrophage averaged per individ-
ual with subsequent negative log transformation X2 , 
respectively.

[Step 2.] Given the current value of frequentist parame-
ters 

(

β
(t)
0 ,β

(t)
2

)

 , generate data yBi = yi − X0,iβ
(t)
0 − X2,iβ

(t)
2  . 

From the regression model YB = X1β1 , obtain β(t+1)
1  as the 

posterior mean of β1 , given a conjugate (normal) prior of β1.
[Step 3.] Given β(t+1)

1 , the posterior mean of β1 , gener-
ate data yFi = yi − X1,iβ

(t+1)
1  . From the regression model 

(1)P((Y ,X)|β) =

n
∏

i=1

P
(

yi = N
(

Xiβ , σ
2
))

.

(2)P(β|(Y ,X)) ∝ P((Y ,X)|β)π(β) ∼

n
∏

i=1

N
(

Xiβ , σ
2I |yi

)

× N
(

µβ ,�β

)

∼ N
(

µ
new
β ,�new

β

)

,

age, sex, race, and smoking history. This difference served 
as the informative prior of the phenotype coefficient.

Data preprocessing of IPF datasets
For scRNA-seq dataset, we selected genes with average 
expression level across cells greater than 0.1. We removed 
cells when the number of detected genes was below the 
lower 2-percentile or with more than 10% of mitochon-
drial gene expression. For the cell weight calculation, 
we aligned Lungmap dataset and IPF single cell RNA-
seq datasets by their common genes, resulting in 13,988 
common genes and 44,294 and 50,383 cells for Lungmap 
and IPF, respectively. For coefficient estimation of each 
gene, we matched the IPF scRNA-seq and IPF bulk data-
sets and obtained 7,886 common genes.

Introduction of frequentist, Bayesian, and hybrid inference 
in linear regression with conjugate priors
Here, we would like to introduce each of the methods we 
attempted to identify genes associated with IPF. In linear 
regression analysis, given the sample size n and the num-
ber of regression parameters p , the data can be arranged 
in Y  of dimension n× 1 as the response, and X of dimen-
sion n× p as the design matrix. The regression parameter 
in the model β can be arranged in a vector of dimension 
p× 1.
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Y F = X0β0 + X2β2 , obtain 
(

β
(t+1)
0 ,β

(t+1)
2

)

 as frequentist 
estimate of (β0,β2).

[Step 4.] Iterate steps 2–3 as in EM algorithm.
For frequentist, Bayesian, and hybrid inferences can 

all generate parameter estimates and the corresponding 
estimation variances. An estimate and its variance are 
used to construct a 95% confidence interval (estimate 
minus and plus 1.96 times of the standard error) and to 
calculate a p-value from the two-sided test (by calculat-
ing a z-score of estimate divided by the standard error) of 
whether this value is equal 0 or not based on the underly-
ing normal distribution.

Acquiring weights for alveolar macrophage cells using 
HierXGB method
Alveolar macrophage cells have been recognized to play 
a crucial role in the pathogenesis of IPF [2, 46]. Rather 
than analyzing gene expression levels across all cell types, 
we are specifically interested in the association between 
gene expression levels and disease group (IPF vs. con-
trol) in alveolar macrophage cells. A simple approach to 
obtain alveolar macrophage gene expression is to take the 
unweighted average across the annotated alveolar mac-
rophage cells in the original study. However, single-cell 
data are high-dimensional, and annotations for different 
cells have varying degrees of uncertainty. To better char-
acterize the alveolar macrophage gene expression levels, 
we took this uncertainty into account by assigning higher 
weights to cells that we are more certain of them being 
alveolar macrophages. We quantified such uncertainty 
with probabilities of cells being alveolar macrophages 
calculated by HierXGB method [9].

HierXGB is a supervised machine learning algorithm 
that aims to classify each single cell in the query dataset 
into one of cell types from a reference dataset. With a 
pre-defined cell-type hierarchical tree structure, the algo-
rithm annotates the cell from ancestor to one of descend-
ant subtypes iteratively until reaching the bottom layer. 
For dataset with a clear cell type hierarchy, including 
Lungmap, it outperforms other state-of-arts methods in 
terms of both accuracy and efficiency [9]. We performed 
a comparative analysis using the same IPF dataset in with 
singleR [1], a widely used method for scRNA-seq data 
annotation to demonstrate the usefulness of HierXGB 
method in our setting.

In the analysis, we first had Lungmap and IPF scRNA-
seq datasets aligned using batch effect correction [40]. 
Then the HierXGB model was trained by Lungmap and 
produced the predictive probability of a cell belonging 
to alveolar macrophage for the IPF scRNA-seq data. The 
obtained probabilities were used as the weights when 
we combined gene expression across cells to obtain 

cell-type-specific expression summary for each gene per 
individual.

Generating predictor X2 based on alveolar macrophage 
probabilities and outcome Y as the weighted expression 
average of alveolar macrophage per patient
In our example, we averaged the probability of being in 
alveolar macrophages across cells within each of the 22 
donors and generated a length-22 vector as the predictor 
X2 . A higher X2 indicates that the cells from this donor 
are more likely from alveolar macrophages. We also used 
this alveolar macrophage probability to generate outcome 
Y. For each gene, Y was also a length-22 vector, where the 
value was the weighted average of counts in this gene 
across cells. The weights were alveolar macrophage prob-
abilities, and such weighted averages are called pseudo-
bulk counts in single cell data analysis. Weighted averages 
are more robust to different cell numbers per donor. A 
higher value of Y indicates that this gene expresses highly 
in alveolar macrophage cells.

Acquiring priors of the contrast between IPF and healthy 
and other covariates (β) and their variance–covariance 
matrix Σ,
We use non-informative priors such as (0, 0, 0) and 
diag(100, 100, 100) for µβ and �β , respectively, when 
we have little information on parameters. However, for 
RNA-sequencing data, bulk RNA-seq data which are 
characterized by its affordability and wide availability, 
can serve as good informative priors. Although bulk data 
may not have the same high-resolution as single-cell data, 
they still provide the overall expression level of each gene 
within the targeted tissue. In our analysis, the key param-
eter is β1 for the disease group, and we incorporated bulk 
RNA-seq into its estimation. For each gene, we used the 
difference in mean expression levels between IPF and 
control samples as the prior of β1 . We obtained the dif-
ference from the coefficient of IPF indicator in a linear 
regression model adjusting for other covariates including 
age, smoke, sex, and race. We observed that the sample 
variance of the difference was relatively small compared 
with the magnitude of the difference. Directly using it 
as the prior for the variance of β1 would result in a very 
strong prior distribution concentrated around the mean. 
To offer a prior with more moderate dispersion, we used 
the squared root of sample variance of difference as the 
variance for the prior. For intercept and average negative 
log expression, we had no prior information and hence 
kept the non-informative priors for (β0,β2).
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Pathway analysis based on differentially expressed genes 
from frequentist, Bayesian and hybrid methods
Pathway analysis is usually performed using a set of 
selected features, in this case, differentially expressed 
genes [23]. The goal of the analysis is to identify common 
biological pathways or networks and analyze how they 
interact to form biological processes. The analysis typically 
involves comparing a list of genes of interest to a reference 
database that contains information about functional cate-
gories such as biological pathways, molecular interactions, 
canonical signaling, disease biomarker and other areas of 
biomedical knowledge. The analysis determines whether 
the genes in the list are significantly enriched or depleted 
in any of the categories, compared with what would be 
observed by chance. A pathway with significantly enriched 
genes would yield a significantly small p-value. We fur-
ther studied pathways based on a gene subset that satisfies 
the following criteria. For a set of differentially expressed 
genes detected by each method, cut-off points were set 
to obtain a gene subset with FDR less than 0.01 and abso-
lute estimated difference greater than 0.585. The refer-
ence database we used was the R package metabaser that 
collects all system biology products including MetaCore, 

MetaDrug, and others [6, 30]. The final pathways were 
identified based on a p-value less than 0.05. Please see the 
top10 and detailed summary of pathways in Table 1 and 2 
and supplement material S5 and S6.

Results
Comparison of differential expression methods using 
semi‑synthetic dataset
For each method, we obtained p-values and fold changes 
(FC) in mean expression between two groups ("disease" 
vs. normal chow) for the genes in each semi-synthetic 
dataset. Initially, we adjusted the p-values of tested genes 
for multiple comparisons using the Benjamini–Hoch-
berg procedure [3]. The FC also serves as a crucial met-
ric in determining if a gene is differentially expressed. We 
applied a 0.05 False Discovery Rate (FDR) cutoff and a 1.5 
FC cutoff in this setting. Consequently, a gene was classi-
fied as differentially expressed when its adjusted p-value 
was less than 0.05 and its FC exceeded 1.5.

Power and FDR calculations, as discussed in sec-
tion  "Single-cell RNA sequencing methods comparison 
using semi-synthetic dataset", are summarized in Fig. 1. 
Our findings reveal that our proposed hybrid methods 

Table 1 Top 10 pathways detected by Bayesian, informative method, ranked by qvalue

* Threshold: qvalue < 0.05; r: intersection of ontology term with experiment list; R: size of experiment list; n: size of ontology term; N: size of background list; zscore: 
z-score of enrichment; pvalue: hypergeometric test enrichment p-value; qvalue: FDR-adjusted pvalue

Bayesian, informative

Pathways r R n N Zscore pvalue qvalue

Role of TGF-beta 1 in fibrosis development 
after myocardial infarction

10 219 38 12,814 11.72026 5.39E−10 8.23E−07

IL-1 beta- and Endothelin-1-induced 
fibroblast/ myofibroblast migration and 
extracellular matrix production in asthmatic 
airways

8 219 40 12,814 8.93905 3.08E−07 0.000173

Cell adhesion_ECM remodeling 9 219 55 12,814 8.403013 3.39E−07 0.000173

TGF-beta-induced fibroblast/ myofibroblast 
migration and extracellular matrix 
production in asthmatic airways

9 219 60 12,814 7.961536 7.33E−07 0.00028

Th2 cytokine- and TNF-alpha-induced 
profibrotic response in asthmatic airway 
fibroblasts/ myofibroblasts

8 219 52 12,814 7.623879 2.52E−06 0.000771

Immune response_CCL2 signaling 8 219 54 12,814 7.445987 3.39E−06 0.000863

TGF-beta 1-mediated induction of EMT 
in normal and asthmatic airway epithelium

7 219 44 12,814 7.279623 8.66E−06 0.00189

Development_Inhibition of angiogenesis 
and regulation of endothelial cell function 
by PEDF

8 219 64 12,814 6.677022 1.25E−05 0.002377

Immune response_IL-4-responsive genes 
in type 2 immunity

8 219 70 12,814 6.291138 2.43E−05 0.003892

Role of fibroblasts in the sensitization
 phase of allergic contact dermatitis

5 219 22 12,814 7.61249 2.89E−05 0.003892
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Table 2 Top 10 pathways detected by Hybrid, informative method, ranked by qvalue

* Threshold: qvalue < 0.05; r: intersection of ontology term with experiment list; R: size of experiment list; n: size of ontology term; N: size of background list; zscore: 
z-score of enrichment; pvalue: hypergeometric test enrichment p-value; qvalue: FDR-adjusted p value

Hybrid, informative

Pathways r R n N Zscore pvalue qvalue

Role of TGF-beta 1 in fibrosis development after myocardial infarction 10 236 38 12,814 11.23695 1.12E−09 1.71E−06

IL-1 beta- and Endothelin-1-induced fibroblast/ myofibroblast migration 
and extracellular matrix production in asthmatic airways

8 236 40 12,814 8.554393 5.44E−07 0.000324

Cell adhesion_ECM remodeling 9 236 55 12,814 8.026844 6.37E−07 0.000324

TGF-beta-induced fibroblast/ myofibroblast migration and extracellular 
matrix production in asthmatic airways

9 236 60 12,814 7.598001 1.37E−06 0.000522

Development_Inhibition of angiogenesis and regulation of endothelial cell 
function by PEDF

9 236 64 12,814 7.289229 2.39E−06 0.000729

Th2 cytokine- and TNF-alpha-induced profibrotic response in asthmatic 
airway fibroblasts/ myofibroblasts

8 236 52 12,814 7.277826 4.4E−06 0.000978

Immune response_Alternative complement pathway 8 236 53 12,814 7.190269 5.1E−06 0.000978

Immune response_IL-4-responsive genes in type 2 immunity 9 236 70 12,814 6.872979 5.12E−06 0.000978

Immune response_CCL2 signaling 8 236 54 12,814 7.104981 5.89E−06 0.001

TGF-beta 1-mediated induction of EMT in normal and asthmatic airway 
epithelium

7 236 44 12,814 6.951711 1.41E−05 0.002153

could be optimal when both power and FDR were con-
sidered especially with an informative prior. MAST 
demonstrated high power akin to the hybrid approach, 
albeit with an inflated FDR exceeding 50%, aligning with 
Squair et  al.’s findings. In contrast, NEBULA exhibited 

insufficient power and inflated FDR. Finally, none of the 
pseudo-bulk methods achieved more than 1% power, 
although the FDR closely approached the nominal level 
of 5%.

Fig. 1 The comparison of different DE methods using 100 runs of semi-synthetic data. The proposed hybrid methods were implemented 
with non-informative and different informative priors
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Analysis of transforming growth factor beta 1 (TGF‑β1) 
gene from frequentist, Bayesian and BFH methods
Through our comparison analysis using singleR and 
HierXGB methods, the accuracy and mean F1 of alveo-
lar macrophages are 0.897, 0.921 and 0.829, 0.914 for 
HierXGB and SingleR respectively when compared 
with the annotation from the original paper. This dem-
onstrated our HierXGB method was at least in par with 
other popular single cell annotation methods.

Next, we exemplified and compared the frequen-
tist, Bayesian, and hybrid inferences with and without 
informative prior. TGF-β pathway is well-known in terms 
of its role in pulmonary fibrosis, therefore, we used the 
results of TGF-β1 as an example [15]. In the analysis, 
the outcome or response variable ( y) was the weighted 
average gene expression level per individual (see sec-
tions  "Acquiring weights for alveolar macrophage cells 
using HierXGB method" and "Generating predictor  
based on alveolar macrophage probabilities and out-
come Y as the weighted expression average of alveolar 
macrophage per patient" for details). The two independ-
ent variables include 1) whether the individual was in the 
control or IPF group ( X1 ) and 2) the average negative log 
probability of being the macrophage cell ( X2 ). The model 
parameters (β0,β1,β2) were intercept, coefficients for X1 
and X2 , in the regression model, respectively.

Figure 2 shows boxplots of average of gene expression 
per person grouped by IPF or control. In this sample 12 
patients were in the IPF group and 10 were in the con-
trol group. Panel (a) has the average gene expressions of 
all cells for each person, weighted by the probability of 
each cell being alveolar macrophage cell. Panel (b) has 
the average gene expression from the cells that were pre-
dicted to be alveolar macrophages based on HierXGB 
prediction. In both (a) and (b), the expression of TGF-β1 
in IPF is lower than control, but not statistically signifi-
cant. The averages of gene expression for control in (a) 
and (b) are 1.21 and 1.22, respectively. The averages of 
gene expression for IPF in (a) and (b) are 0.93 and 0.86, 
respectively. Numerically the expressions from IPF are 
lower than from control, but Wilcoxon rank sum test 
p-values are 0.448 for (a) and 0.419 for (b), both are not 
statistically significant.

Table 3 is a summary of analysis result for gene TGF-
β1 and model coefficient for disease group (i.e. IPF and 
control) ( β1 ), including in the columns the coefficient 
estimate, standard error, 95% confidence interval, and 
p-value for testing if the estimated coefficient is differ-
ent from 0. The linear regression also included inter-
cept and gene probability of being microphage data as 
a covariate. The five rows in Table  3 correspond to 5 
inferences about β1.

Frequentist: All model parameters were frequentist 
parameters, and ordinary least square estimates were 
reported.

Bayesian inference with non-informative prior: A 
non-informative prior distribution was imposed on all 
the parameters β0,β1,β2 . Mean and standard deviation 
of the posterior distribution ( µnew

β ,�new
β  ) were reported.

Hybrid inference with non-informative prior: The 
same non-informative prior was imposed on β1 , while 
β0,β2 were frequentist parameters.

The Bayesian and hybrid Bayesian inference with 
informative prior had the Normal distribution with 
mean −0.31 and variance 0.096 as the prior for β1 , while 
β0,β2 still had the non-informative priors.

The frequentist and Bayesian analyses for the samples 
with averaged expression across all predicted alveolar 
macrophages cells by HierXGB had parameters β0,β1 
only, and the Bayesian inference was based on the same 
non-informative prior for β0,β1 as in Bayesian infer-
ence with non-informative prior.

With non-informative prior, the frequentist with Bayes-
ian inferences resulted in similar estimates of β1 . Bayes-
ian inference had slightly wider 95% confidence interval 
(CI), (−0.692, 0.147), compared with the 95% CI (−0.695, 
0.145) from the frequentist inference. The hybrid infer-
ence had a similar estimate of β1 but less standard error 
(0.144) and shorter 95% CI (−0.557, 0.008) than the 
Bayesian inference. The hybrid inference with non-
informative was marginally significant with p-value 
0.057. Given the informative prior, both Bayesian and 
hybrid inference showed significant effect on β1 , with 
p-values of 0.017 and 0.005, respectively. The estimates 
of β1 were identical (−0.299), but the standard error from 
hybrid inference (0.106) was less than that from Bayesian 
inference (0.126), leading to a smaller, more significant 
p-value from the hybrid inference. This is consistent with 

Fig. 2 Boxplot of individual level TGF-β1 gene expression 
by phenotype in the whole sample (a) and predicted alveolar 
macrophages (b)
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Table 3 The estimation, standard error, 95% confidence interval (95% CI), p-value of the difference between IPF and healthy ( β1 ) for 
gene TGF-β from 7 models: frequentist, Bayesian inference with non-informative and informative priors, hybrid inference with non-
informative and informative priors for all cells; and frequentist and Bayesian analysis for the predicted alveolar macrophages

Sample Method Estimate Standard error 95% CI P‑value

All cells weighted by alveo-
lar macrophages predictive 
probability

Frequentist −0.275 0.214 (−0.695, 0.145) 0.199

Bayesian,
non-informative

−0.273 0.215 (−0.692, 0.147) 0.201

Hybrid,
non-informative

−0.275 0.144 (−0.557, 0.008) 0.057

Bayesian,
informative

−0.299 0.126 (−0.545, −0.053) 0.017

Hybrid,
informative

−0.299 0.106 (−0.506, −0.092) 0.005

Predicted alveolar mac-
rophages

Frequentist −0.357 0.228 (−0.804, 0.090) 0.117

Bayesian, non-informative −0.356 0.228 (−0.803, 0.091) 0.119

the published literature of TGF-β1’s critical role for pul-
monary fibrosis [15].

We also conducted analysis on the samples with aver-
age expression of cells predicted as alveolar macrophage 
by HierXGB. In this analysis the probability of alveo-
lar macrophage prediction was no longer used but the 
expression was averaged across identified alveolar mac-
rophages cell types as described in Sect.  "scRNA-seq 
and bulkRNA-seq Data source" using naïve Bayesian 
approach. This analysis was consistent with the tradi-
tional pseudo bulk analysis, ignoring the predictive prob-
ability of cell identity. The frequentist regression analysis 
p-value is equivalent to that from the two-sample t-test, 
because the independent variable phenotype is binary, 
and the F-statistic from regression (or ANOVA) is the 
square of the t-statistic in the t-test. In this analysis, 
the Bayesian inference with non-informative prior had 
similar results as frequentist and both were not signifi-
cant. Such inference was worse than BFH method with 
informative prior.

As a result, the analysis of TGF-β1 gene indicates that 
BFH inference outperforms both frequentist and Bayes-
ian inference. The inclusion of cell type predicted proba-
bility for all the cells (regardless how small the probability 
was), and the informative prior were all valuable for iden-
tifying potential significant genes.

Interpretation of differentially expression results 
from frequentist, Bayesian and BFH methods
We applied each of the five methods to the IPF sin-
gle cell dataset. The hybrid method with an informa-
tive prior detected the largest quantity of genes and 
biological meaningful pathways. Figure  3 summarizes 
the number of genes detected by each method. See 
detailed estimation, standard error, and p-value etc. in 
Table  S2-S4. The hybrid method with an informative 

prior has the highest power with 436 genes detected. 
Compared with the Bayesian method with an informa-
tive prior that discovered 416 genes, the hybrid method 
detected all of them with an additional 20 genes 
(Table S1). Among the 20 genes, TREM1 and CCL24 are 
the most interesting discoveries. Multiple studies have 
shown their association with IPF. TREM-1 is a recep-
tor expressed on myeloid cells that could serve as an 
inflammatory biomarker. For example, Dong et al. [11] 
studied a highly selective inhibitor to suppress TREM-1 
expression and inflammation in murine macrophage. A 
previous study by Xiong et al. [43] found that TREM-1 
was upregulated in bleomycin (BLM)-induced pulmo-
nary fibrosis (PF) mouse model. They further discov-
ered a pro-fibrotic effect of TREM-1 in PF, a potential 
strategy for treating fibrotic diseases could be pro-
vided. CCL24 protein promotes immune cell trafficking 
and activation as well as activities that lead to fibrosis. 
Kohan et  al. [24] revealed that eotaxin-2, the protein 
encodes by CCL24, stimulated human lung fibroblast 
proliferation. Mor et  al. [28] concluded that CCL24 
plays an important role in skin and lung inflammation 
and fibrosis pathological progression.

The hybrid method with informative discovered 
most pathways with a total of 38, whereas the Bayesian 
method discovered 36 (Fig.  4). The top pathway from 
each method involves TGF-β1 in fibrosis development. 
See Table 1, 2, 3, 4. TGF-β is a multifunctional cytokine 
that belongs to the transforming growth factor super-
family and has multiple isoforms, TGF-β1 is one of 
them. It has been well established that TGF-β1 plays 
a role in acute respiratory distress syndrome and pul-
monary fibrosis [15]. Past publications have studied the 
role of TGF-β in alveolar macrophages development. 
For example, Yu et  al. [44] revealed that TGF-β plays 
an essential role in controlling the origin, development, 
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and survival of alveolar macrophages. Woo, Jeong, 
and Chung [41] reviewed the role of TGF-β in alveo-
lar macrophages development, provided new informa-
tion and insight into its functions. Grunwell et al. [15] 
discovered that targeting the TGF-β1 signalling path-
way disruption may be a novel therapeutic approach 
to improve alveolar macrophage function. In compari-
son, the hybrid method with non-informative method 
discovered only two pathways, and their linkage to IPF 
remains unclear (Table  4). In both gene and pathway 
discoveries, the hybrid method with an informative 
prior showed supreme detection power against other 
methods.

Conclusion and discussion
Analysing scRNA-seq data has been a challenging topic, 
especially given the high cost of running the experi-
ments, which typically results in limited sample sizes. 
Pseudo-bulk methods, which pool scRNA-seq counts 
per patient per cell-type, have been commonly used for 
DE gene detection. However, its performance also relies 
on the sample size, and hence may lack detection power 
when sample size is limited. A natural way to overcome 
this challenge is to borrow information from other stud-
ies. Here, we have shown that BFH with informative pri-
ors should be considered and has advantages over other 
approaches. This could be seen in our method compari-
son using semi-synthetic dataset. BFH can be viewed 

Fig. 3 Genes detected by the five methods (threshold: adjusted p-value < 0.01 and absolute value of mean estimation >  = 0.585). P-value adjust: 
Benjamini and Yekutieli [4] FDR control

Fig. 4 pathways detected by the five methods based on the genes detected and the threshold for pathway analysis is based on q value < 0.05
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as an adaption of Bayesian method and can incorporate 
prior information with potentially less uncertainty com-
pared with Bayesian methods. As can be seen from the 
comparison, acquiring valuable priors is crucial for suc-
cessfully identifying DE genes. Although we only showed 
one IPF dataset with bulk RNA-seq as prior, which 
may have inflated FDR, similar to the Bayesian frame-
work, our BFH method can be implemented iteratively, 
especially when multiple datasets are accessible. In this 
iterative process, the posterior obtained from previous 
analyses becomes a more informative prior for the sub-
sequent analysis. Over iterations, the prior and posterior 
regarding the identification of differentially expressed 
genes gradually converge. This convergence significantly 
improves our ability to pinpoint the correct genes asso-
ciated with the disease using single-cell RNA sequencing 
(scRNA-seq) data with potential reduction in FDR.

In our BFH analysis of the IPF study, we used pseudo-
bulk summarization as the response variable. However, 
the way to calculate pseudo-bulk is still a topic of discus-
sion in the field. While many researchers have used the 
annotated cell types directly and summarized the data 
within a particular annotated cell type, such summari-
zation may potentially lose information since the anno-
tation is based on classifiers with certain thresholds to 
define the cell types. In our study, we derived the cell-
type-specific probability for each cell instead of relying 
on a classifier to define the cell types. We used this prob-
ability as the weight to summarize the data to avoid loss 
of useful information.

To boost the power of our coefficient estimate, we used 
bulk RNA-seq data as the prior for each gene. Bulk RNA-
seq data are not cell-specific, thus if the cell of interest 
is relatively scarce, they may not be able to provide use-
ful information. Literature suggested that alveolar mac-
rophages were abundant in the lung and could play a 
pivotal role in immunity [38]. Although bulk  RNA-seq 
data may not be as informative as scRNA-seq dataset 
to be used as prior, they offer several advantages. First, 
bulk data have better coverage than scRNA-seq data, 
thus providing prior information on a more compres-
sive gene list than a typical scRNA-seq experiment. Sec-
ond, it is relatively inexpensive and readily available. As 

we have summarized the scRNA-seq data into pseudo-
bulk format, the prior derived from bulk RNA-seq data 
is compatible with our scRNA-seq data. In addition, we 
transformed the sample variance for β1 so that the prior 
would have better dispersion. Properly setting priors 
remains as an interesting topic and should be explored 
further. The BFH method inherits flexibility from the 
Bayesian framework and can be used iteratively to inte-
grate the current results as new prior information with 
the new data when appropriate.

Our case example demonstrated the substantial 
increase in detection power of BFH framework when 
using informative priors. When non-informative priors 
were employed, either no differentially expressed genes 
were identified or only a small number were found. The 
use of informative priors significantly increased the 
detection power, as evidenced by the reasonable pathway 
identified for IPF in terms of the underlying mechanism. 
The work reinforces the importance for TGF-β pathway 
and cytokines such as TNF and IL1/IL4, which are well-
known for their roles in the IPF mechanism [5, 14, 31]. 
Consequently, our work brings valuable biological insight 
into the IPF disease for researchers.

A potential limitation of the BFH method is its heavy 
reliance on informative priors. In  situations where rel-
evant bulk RNA-seq or scRNA-seq data are unavailable, 
alternative data types such as methylation data could be 
considered as prior information. However, developing 
such priors needs biological justification and considera-
tion of how to align such data types to pseudo-bulk for-
mat of scRNA-seq data. When alternative data types are 
unavailable, the use of non-informative prior for parame-
ters is inevitable. As discussed in literature [18, 19], using 
Bayesian analysis with non-informative prior can lead to 
estimation bias and incorrect p-values if the sample size 
is relatively small.

Despite its limitations, the BFH method is a flexible 
approach with the capability to incorporate informative 
prior to enhance detection power. The current framework 
of the BFH method is implemented using conjugate priors, 
which reduces the computation time and makes it a suit-
able method for high throughput analyses in the future.

Table 4 A detailed list of pathways detected by Hybrid, non-informative method

* Threshold: qvalue < 0.05; r: intersection of ontology term with experiment list; R: size of experiment list; n: size of ontology term; N: size of background list; zscore: 
z-score of enrichment; pvalue: hypergeometric test enrichment p-value; qvalue: FDR-adjusted pvalue

Hybrid, non‑informative

Pathways r R n N Zscore pvalue qvalue

Putative pathways of activation of classical complement system in major depressive disorder 4 37 28 12,814 13.81785 1.15E−06 0.00175

Development_Role of proteases in hematopoietic stem cell mobilization 3 37 18 12,814 12.95844 1.76E−05 0.013401
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