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Abstract 

Background  Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated 
with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain 
largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together 
with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy 
aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for mag-
netic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), 
and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their cor-
relation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce 
the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial 
Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used 
to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individ-
ual “omics” signature that distinguishes subjects with varying cognitive profiles.

Results  We found a positive association between MD-PRS and long-term memory, as well as a correlation 
between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher 
memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular 
and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregula-
tion of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration 
of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organi-
zation, and glycosylation in the process of cognitive aging.

Conclusions  These findings provide valuable insights into the biological mechanisms underlying the association 
between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation 
and gene expression changes contribute to cognitive aging.
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Background
Cognitive aging is depicted by a decline in several cog-
nitive domains, mainly in executive function, memory, 
and information processing speed [1] and each of these 
cognitive abilities has been associated with morpho-
metric changes in specific neuroanatomic regions [2, 
3]. Moreover, cognitive aging seems to result from inef-
ficient communication within neurocognitive networks 
such as the frontal-striatal network [4]. Thus, white 
matter (WM) integrity seems critical for proper cogni-
tive function [5]. Magnetic resonance imaging (MRI) 
markers, including WM hyperintensities (WMH), Frac-
tional Anisotropy (FA), and Mean Diffusivity (MD), can 
detect WM changes and provide quantitative measures 
to assess its integrity. With advancing age, WM under-
goes natural age-related changes. These changes include 
increased WMH load, reduced FA, and increased MD, 
suggesting a decline in white matter integrity [6]. In fact, 
WM lesions represent a risk factor for several health 
conditions, including stroke, vascular dementia, and 
age-related cognitive impairment [7]. The pathogenesis 
is not fully understood but it is presumed to have a vas-
cular origin, resulting from ischemic injury or related to 
endothelial dysfunction and age-associated blood–brain 
barrier (BBB) disruptions [8]. Like many other age-asso-
ciated traits and frequent comorbid complex diseases, it 
is possible that the phenotypic associations between WM 
integrity and age-related cognitive alteration are a result 
of widespread pleiotropic effects and thus, partly medi-
ated by a shared genetic etiology [9, 10].

A common approach to test shared genetic effects is to 
calculate polygenic risk scores (PRS) which are estimated 
by summing the risk alleles of a phenotype of interest 
weighted by the effect size derived from the most robust 
genome-wide association study (GWAS) on the pheno-
type [11]. The method was first applied to evaluate shared 
genetic variants in schizophrenia and bipolar disorder 
[12] and, since then, PRS have been used to test whether 
the genetic architecture of many comorbid diseases and 
endophenotypes overlaps. PRS can be applied to two dif-
ferent traits making it possible to test the genetic pro-
pensity of an individual to a wide range of diseases. For 
example, Mclntosh et al. [13] showed that PRS for schizo-
phrenia predicts the development of cognitive deficits in 
older ages and others used PRS to demonstrate that the 
phenotypic correlation between coronary artery disease 
and cognitive ability is mediated by shared genetic effects 
[14].

GWAS have successively found associations of genetic 
variants to several diseases. Nevertheless, nearly 90% of 
disease-associated variants are in non-protein-coding 
regions suggesting that many of these variants might be 
affecting disease risk by altering gene regulation [15]. 

DNA methylation is a common epigenetic mechanism 
regulating gene expression. Also, age-dependent meth-
ylation changes have been used as an effective biomarker 
to predict biological age and a promising biomarker to 
trace age acceleration in age-related diseases [16]. There-
fore, age-related methylation changes and resulting 
gene expression alterations might be associated with the 
pathogenesis of major age-associated diseases. However, 
the study of transcriptomic and methylation data in the 
central nervous system is limited by sample availability, 
largely because brain tissue requires post-mortem col-
lection, and the acquisition of cerebrospinal fluid sam-
ples require invasive procedures. Conversely, peripheral 
blood mononuclear cells (PBMCs) are easily acquired, 
and studies show that molecular alterations in PBMCs 
may serve as surrogates or biomarkers for CNS disorders 
[17].

Categorized into twelve interconnected hallmarks [18] 
the aging processes largely intersect with many molecular 
mechanisms underlying many age-related diseases which 
in a way validates epidemiological comorbidity and over-
lapping symptomology and, highlights shared patho-
physiology [9]. Determining the underlining molecular 
pathways affected by age and implicated in disease sus-
ceptibility is a critical milestone to enable better medical 
healthcare to treat a growing aged population. Moreover, 
by better understanding the effects of age-related changes 
in cognition we can assess the effects of pathological dis-
ease states. Therefore, the aim of this work was two-fold. 
First, we hypothesized that the phenotypic associations 
between WM integrity and age-related cognitive altera-
tions have shared genetic etiology. Second, to grasp a bet-
ter understanding of the molecular link between aging 
and age-related cognitive performance by assessing how 
age-associated methylation and transcriptomic changes 
related to cognitive aging.

Results
Age‑related cognitive changes and associated structural 
brain alterations
sPLS-DA analysis was first performed on neurocognitive 
tests using data from the Minho aging cohort (descriptive 
statistics are provided in Table 1) to determine individual 
cognitive tests best discriminating [50–60[, [60–70] and 
[70-…] age groups. sPLS-DA is particularly suited for 
this analysis because it handles multicollinearity effec-
tively, which is common among cognitive tests. Moreo-
ver, it reduces the dimensionality of the data and focus on 
the cognitive tests that contribute most significantly to 
the discrimination between age groups. By identifying a 
sparse set of features that contribute most significantly to 
class discrimination, sPLS-DA ensures that the selected 
cognitive tests are the most relevant for distinguishing 
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between age groups. Parameter tuning for the number 
of components onto which the data is projected and the 
optimal number of features to select on each compo-
nent were determined by tuning these parameters using 
a cross-validation procedure (as described in the mate-
rials and methods section). Among the cognitive tests, 
STR-LTS, Stroop Color Test, MMSE, SRT-CLTR, and 
SRT-Delayed-Recall were selected as the most effective 
at discriminating between different age groups in terms 
of cognitive performance (Fig.  1a and Supplementary 
Table  1). Loading weights, depicted in Fig.  1 and Sup-
plementary Table  1, reflect the contribution of each 
test to the separation of the age groups, indicating the 
importance of each test in distinguishing between the 
age groups. The oldest age group (> 70) exhibited lower 
mean values in all five cognitive tests, indicating worsen-
ing performance in cognitive tasks with age (Fig. 1a and 
Supplementary Table 1). The SRT-LTS and Stroop-Color 
Test presented the higher loadings weights (− 0.557 and 
− 0.511, respectively), meaning that they were the most 
relevant cognitive variables discriminating the different 

age groups. Next, sPLS-DA was applied to imaging data 
towards identifying structural brain alteration best-
discriminating individuals with higher and lower cogni-
tive scores in the SRT-LTS and Stroop-Color test. For 
the SRT-LTS, parameter tuning established an optimal 
number of 2 components with 10 and 5 imaging vari-
ables in each component, respectively (Supplementary 
Table  2a–b). On the other hand, 4 components and 
10,10,5, and 25 imaging variables in each component, 
respectively, were necessary to discriminate individu-
als with higher and lower scores in the Stroop-Color test 
(Supplementary Table  3a–d). The 5 top contributing 
imaging variables, on the first component, discriminat-
ing participants with higher and lower scores in the STR-
LTS and the Stoop-Color are presented in Fig. 1b and c, 
respectively.

The contribution of PRS for white matter integrity 
to cognitive and brain aging
Genome-wide PRS analysis was performed to test asso-
ciations between WMH, FA, MD, and the pre-selected 

Table 1  Descriptive statistics of the Minho aging cohort

[50–60] (N = 128) [60–70] (N = 148) [70-… ] (N = 166) Total (N = 442) p value

Gender 7.208e−01 1

F 70 (54.7%) 76 (51.4%) 83 (50.0%) 229 (51.8%)

M 58 (45.3%) 72 (48.6%) 83 (50.0%) 213 (48.2%)

Schoolyrs 1.662e−10 2

5.406

Mean (SD) (2.855) 4.243 (2.732) 3.175 (2.706) 4.179 (2.897)

0.000– 0.000

Range 16.000 0.000–17.000 17.000 0.000–17.000

Fig. 1  Age-related cognitive alteration and associated structural brain alteration. Loading plots showing cognitive tests that best discriminate 
age group ([50–60], [60–70], [70-…]) (A) and top 5 structural MRI features best-discriminating individuals with higher and lower cognitive scores 
in SRT-LTS (B) and Stroop-Colors (C). The plots display the weights of each selected variable on the first component of the sPLS-DA model, 
with color indicating the class with the minimum mean value
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age-related cognitive phenotypes (STR-LTS and Stroop 
Color Test). Nominal associations were found for WMH-
PRS with Stroop colors (PRS.R2 = 1,1%, p-value = 0.01, 
at best Pt), MD PRS with STR/LTS (PRS.R2 = 2,3%, 
p-value = 0,001, at best Pt), and FA with STR/LTS (PRS.
R2 = 1.2%, p-value = 0,01, at best Pt). Results for best-
fitting p-value threshold are presented in Table 2. In the 
analysis of the association between the PRSs and cogni-
tive outcomes only MD-PRS for STR-LTS passed FDR 
correction for multiple testing (FDR p = 0.04). Next, 
we tested whether besides being associated with SRT-
LTS, MD-PRS scores were correlated to structural brain 
alterations, as shown in Table 3, discriminating individu-
als with lower and higher scores in SRT-LTS. We found 
that MD-PRS was positively correlated with WMH and 
negatively correlated with the left hemisphere amygdala, 
the right hemisphere fusiform white mater (rh-fusiform 
wm) and right hemisphere Temporal pole white matter, 
although only WMH and left amygdala results survived 
multi-comparison corrections (Table 3). Finally, to grasp 
a better understanding of the biological function com-
ing from the polygenic signal we performed an enrich-
ment analysis of the 1383 SNPs used in the construction 
of the polygenic model. A total of 190 gene sets were 
significantly enriched (Supplementary Table  4). These 
were grouped into 20 clusters (as described in material 
methods section), and the most significant term within 
each cluster was selected to represent the entire cluster 
(Fig.  2). This analysis revealed an enrichment of genes 
involved in brain development and structural plastic-
ity (e.g. axon, regulation of plasma membrane bounded 
cell projection organization, neuron projection develop-
ment, brain development, post-synapse, nervous system 
development, modulation of chemical synaptic transmis-
sion, regulation of synapse organization, RAC1 GTPase 
cycle), circulatory system development/process (e.g. 
heart development, tube morphogenesis, circulatory 
system process), cell adhesion/communication (e.g. cell–
cell adhesion molecule binding, enzyme-linked receptor 
protein signaling pathway), immune and inflammatory 
response (positive regulation of cell adhesion) and extra-
cellular matrix organization.

Age‑related methylation and transcriptomic alterations
With the focus on identifying CpG sites and gene expres-
sion probes displaying age-related methylation and 
transcriptomic alterations, sPLS-DA was, separately, 
modeled using beta values of 7,346,680 CpG and 23,496 
gene expression probes across 41 and 94 samples, respec-
tively (Subsamples characteristics are present in Supple-
mentary Tables  5 and 6).Parameter tuning indicated an 
optimal selection of 1 component and 350 CpG and 2 
components and 58 gene expression probes, 8 in the first 

component and 50 in the second component, (refer to 
methods section and supplementary Table 6 and Table 8 
a-b, respectively, for the full list of selected CpG and 
genes). Figure 3a displays the clustering of the methyla-
tion analysis, where two main clusters with similar pro-
files were identified. Custer 1 included CpG that were 
hypermethylated in the younger and older age groups 
while cluster 2, was composed of hypomethylated CpG in 
younger and older age groups. Of note, younger (50–60) 
and older age groups ([70-…]) tended to cluster together, 
displaying similar levels of methylation, while the middle 
age group [60–70] displayed a different pattern of meth-
ylation (Fig. 3a).

Methylation profiles seem to display non-linear rela-
tions with chronological age. In Figs. 3b and c, boxplots 
are presented to illustrate the trends of GpG methyla-
tion levels for specific methylation markers within the 
two distinct clusters identified in the analysis (Fig.  3a). 
These clusters are characterized by different patterns of 
methylation changes with respect to chronological age. 
Figure 3b represents the trend observed in cluster 1, dis-
plays a decreasing trend in methylation levels with age, 
reaching minimum levels in the [60–70] age group, fol-
lowed by an increase in the [70-…] age group. Figure 3c 
represents the trend observed in cluster 2, with methyla-
tion levels increasing with age picking at the [60–70] age 
group, followed by a decrease in the [70-…] age group. 
These findings suggest non-linear relationships between 
methylation profiles of specific markers and chronologi-
cal age”. Subsequently, we carried out pathway enrich-
ment analysis of the selected variables. Annotated CpG 
were mapped to 164 gene-set, of which 99 were signifi-
cantly enriched (q value < 0.05) (Supplementary Table 8), 
and they were grouped into 20 clusters (as described in 
material methods section), with the most significant term 
within each cluster being selected to represent the entire 
cluster (Fig. 3d). We identified an enrichment of several 
gene sets known to be associated with aging, includ-
ing gene sets involved in intercellular communication 
(e.g. cell junction organization), genomic instability (e.g. 
DNA repair), proteostasis (e.g. synthesis of active ubiq-
uitin: roles of E1 and E2 enzymes), cellular senescence 
(e.g. negative regulation of cell population prolifera-
tion) and immune response (e.g. regulation of leukocyte 
differentiation).

Heatmap plots of the transcriptomic data can be seen 
in Fig.  3e, where three clusters were identified. Cluster 
1 included the genes that were mainly overexpressed in 
[50–60] and [60–70] age groups, Cluster 2 comprised 
genes overexpressed in [70-…[ age group, and Cluster 3 
was composed of a subset of genes mainly overexpressed 
in [60–70[ age group. Boxplots in Figs. 3f–h further illus-
trate the trends of gene expression levels for specific 
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genes within these clusters. Figure  3f displays the gene 
expression pattern observed in Cluster 1, Fig.  3g show-
cases the gene expression trend identified in Cluster 
2, and Fig.  3h demonstrates the gene expression trend 
observed in Cluster 3. Thus, indicating both linear and 
non-linear relationship between gene expression and 
age.” As previously mentioned, parameter tuning deter-
mined an optimal selection of 2 components and 58 gene 
expression probes, 8 in the first component and 50 in the 
second component (please refer to information provided 
in the methods section and supplementary Table 7 a-b for 
the full list of selected genes). These components capture 
the most significant sources of variability within the data, 
notably discriminating between different age groups. The 
top 5 contributing genes from the first and second com-
ponents are depicted in Fig. 3 I–J, respectively.

Multiomics data integration for age‑related cognitive 
alteration
Having identified major age-related methylation and 
transcriptomic alterations, our next objective was to 
explore how these changes, in conjunction with SNP 
(selected from the MD-PRS), could potentially impact 
cognitive aging. To accomplish that, we employed the 
DIABLO model, integrated into the MixOmics R pack-
age [19]. The DIABLO is specifically designed for the 
integrative analysis of multi-omics data aiming to iden-
tify a common latent structure that captures the shared 

information between multiple omics datasets in a super-
vised way. It does this by integrating the different datasets 
and finding a low-dimensional representation that maxi-
mizes the covariance between them. In this study, the 
DIABLO was modeled using the 350 CpG and 58 gene 
expression probes, previously selected as discriminating 
the different age groups, and 1383 SNPs, used in the con-
struction of the MD-PRS model to identify a set of cor-
related variables that best discriminate individuals with 
higher and lower performance in the SRT-LTS memory 
test. After fine-tuning the model parameters (refer to 
methods section) a sub-set of 120 SNPs, 50 CpG sites, 
and 25 gene expression probes, projected into a single 
component, were selected. The clustering of the 38 sam-
ples, together with the selected variables, is depicted in 
Fig. 4a (refer to Supplementary Table 9 a-c for the com-
plete list). Subsequently, the selected variables underwent 
pathway enrichment analysis using the web based Metas-
cape porta [20]. Notably, this analysis revealed a signifi-
cant enrichment of 22 terms (q value < 0.05), as shown in 
Fig. 4b (refer to Supplementary Table 10 for the complete 
list). Importantly, these enriched terms were associated 
with genes involved in pivotal processes such as synaptic 
dysfunction, axonal degeneration, microtubule cytoskel-
eton organization, and glycosylation.

Discussion
Age‑related cognitive changes and associated structural 
brain alterations
While memory loss is one of the earliest cognitive altera-
tions in aging, a decline in processing speed is pointed 
out as a leading indicator and critical mechanism behind 
age-related cognitive alterations [5, 21]. In line with 
this, we found that the most relevant age-related cogni-
tive alterations were identified in cognitive variables of 
verbal learning and memory (STR-LTS) and process-
ing speed (Stroop-Color Test). When analyzing struc-
tural brain alterations discriminating individuals with 
poorer and higher memory and processing speed scores, 
we found common and distinct brain structural altera-
tions. Generally, participants with lower cognitive scores 
showed reduced hippocampus and amygdala volumes 
while showing enlargement of the inferior lateral ventri-
cle and greater WM hyperintensities load. Interestingly, 
decreased volume of the hippocampus and amygdala 
together with an increased size of the inferior lateral 
ventricle has been associated with aging as well as Alz-
heimer’s Disease (AD) [22]. Moreover, when trying to 
dissociate structural brain alterations discriminating AD 
from normal aging, Coupé [22] and colleagues showed 
that AD brains start to diverge from normal brain aging 
before 40  years old and that this difference is enhanced 
with age. Additionally, our results are consistent with 

Table 3  Pairwise Spearman correlation analysis between 
MD-PRS and structural MRI features (components 1–2) best-
discriminating individuals with higher and lower SRT-LTS scores

Nominally significant results (p-value < 0.05). FDR False discovery rate, wm White 
matter, lh Left hemisphere, rh Right hemisphere, Inf Inferior, Lat Lateral, Vent 
Ventricle DC Diencephalon, CC Corpus callosum, vol Volume

Pairwise correlations with 
MD-PRS

Correlation 
coefficient

p-value q-value(FDR)

Left-Amygdala − 0.298 0.006 0.044

White Matter Hyperintensities 0.301 0.005 0.044

rh-fusiform (wm) − 0.269 0.014 0.068

rh-temporal pole (wm) − 0.254 0.020 0.074

Right-Accumbens-area − 0.219 0.045 0.135

Left-Inf-Lat-Vent 0.208 0.058 0.145

Left-Hippocampus − 0.169 0.125 0.261

lh-inferior temporal (wm) − 0.163 0.139 0.261

Right-Hippocampus − 0.132 0.231 0.386

Left-Ventral DC − 0.112 0.309 0.464

lh-precentral-vol − 0.081 0.464 0.632

Right-Inf-Lat-Vent 0.061 0.581 0.727

rh-lateral occipital (wm) − 0.052 0.641 0.740

rh-caudal middle frontal-vol − 0.044 0.692 0.742

rh-lingual-vol − 0,014 0.897 0.897
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other studies that showed an association between mem-
ory performance and temporal lobe structures. Moreo-
ver, they support previous studies showing a positive 
relationship between the hippocampus size and memory 
in aging 2 and provide further evidence for the role of the 
hippocampus in other cognitive domains [23, 24] specifi-
cally in processing speed [25].

The contribution of PRS for white matter integrity 
to cognitive and brain aging
There is strong evidence supporting a link between white 
matter integrity and age-related changes in cognitive 
abilities [6], and it is plausible that the observed pheno-
typic associations are influenced by shared genetic fac-
tors and common biological mechanisms. In this study, 
we found that individuals with a higher genetic risk for 
reduced white matter integrity exhibited lower age-sen-
sitive memory scores, suggesting that these traits are 

influenced by common genetic factors, and corrobo-
rating other studies finding a phenotypic correlation 
between white matter integrity and age-related cognitive 
alterations [6].

Taken together, these findings indicate that being at 
high genetic risk of small vessel disease is associated with 
age-related memory decline and agree with other studies 
demonstrating a correlation between memory scores and 
diffusion tension imaging findings [26], mean diffusivity 
and WMH [27] as well as associations between temporal 
white matter microstructure and memory performance 
[28]. The mechanisms behind these associations might 
be multifaceted and likely mediated by genetic suscepti-
bility to both vascular and non-vascular effects since our 
analysis point to enrichment in both circulatory system 
development/process and brain development and struc-
tural plasticity as well as cell adhesion/communication, 
immune and inflammatory responses and extracellular 

Fig. 2  MD-PRS gene-set enrichment analysis. Top 20 clusters with their representative enriched terms (most significant term within each cluster). 
Log(q-value) is the multi-test adjusted p-value in log base 10
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matrix organization. Moreover, common molecular 
mechanisms and pleiotropic genetic effects shared by 
both nerve and blood vessels might be major players in 
mediating these associations [29]. For example, several 
growth factors that promote blood vessel formation have 
been found to play important roles in regulating synap-
tic plasticity. For instance, vascular endothelial growth 
factor (VEGF) has been shown to enhance hippocam-
pal long-term potentiation (LTP), a cellular mechanism 
underlying learning and memory processes [30].

Age‑related methylation and transcriptomic alterations
While age-related alteration typically exhibits a linear 
pattern, it is noteworthy that they can occur in a non-
linear pattern, meaning that changes do not adhere to 
a straightforward linear progression. For example, the 
effect of age on WM follows a non-linear pattern grow-
ing until 40–50  years before a steep reduction from 
70  years of age onwards [31]. Similarly, it is estimated 
that the heritability of cognition increases through 
the lifespan, peaking in late adulthood and decreasing 

after 65 years of age [32]. Furthermore, in recent years 
several studies have highlighted the use of nonlin-
ear models to access changes in gene expression 33, 
methylation [34, 35], and protein expression [36] dur-
ing aging. Our results are consistent with these studies 
showing non-linear patterns of age-related methylation 
and transcriptomic alterations. Notably, our analysis 
established that the younger and the older group dis-
played similar methylation profiles with most abrupt 
changes occurring in the middle-aged group [60–70], a 
pattern also observed in a subset of genes in the tran-
scriptomic analysis. Nonlinear patterns of age-related 
alteration can be influenced by a variety of factors, such 
as genetics, lifestyle, environmental factors, and gene-
by-environment interactions as well as being possibly 
related to buffering mechanisms [37]. Gene-set enrich-
ment analysis of selected CpGs identified many gene 
sets related to key hallmarks of aging [18], including 
genomic instability (e.g., DNA repair), altered intercel-
lular communication (e.g., cell junction organization, 
extracellular matrix organization), inflammation (e.g., 

Fig. 3  Age-related methylation and transcriptomic alterations. Heat map of selected CpG (a) and Genes (e) by sPLS-DA with samples in columns 
colored in turquoise, grey and raspberry representing [50–60], [60–70] and [70-…] age groups, respectively. The color key represents a spectrum 
of lowest expression (blue) to highest expression (red). Boxplots representing trends of GpG in cluster 1 (b) and cluster 2 (c). Gene-set enrichment 
analysis of methylation data (d) showing top 20 clusters with their representative enriched terms (most significant term within each cluster). 
Log(q-value) is the multi-test adjusted p-value in log base 10. Gene expression trends representing cluster 1, cluster 2, and cluster 3 (e) are 
presented in the boxplots f, g and h, respectively. The top 5 variables selected the best-discriminating age group ([50–60], [60–70], [70-…]) 
within transcriptomic data using the first (i) and second component (j). The plots display the loading weights of each selected variable 
of the sPLS-DA model, with color indicating the class with the maximum mean value
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regulation of leukocyte differentiation), and epigenetic 
alterations (e.g., histone modification).

Moreover, among the top transcripts (from the first and 
second components) discriminating the 3 age groups, 
there were genes implicated in key signaling pathways 
that regulate aging and promote lifespan, many of which 
have been implicated in cellular senescence. For example, 
the ICAM4 is a gene that encodes a protein involved in 
cell–cell adhesion, which is critical for the immune sys-
tem’s proper function, allowing immune cells to migrate, 
attach and detach from other cells during an immune 
response and inflammation [38]. Dysregulation of ICAM 
genes can lead to chronic inflammation and immune dys-
function, which are common features of aging and many 
chronic diseases. The results of our study have revealed 
that expression levels of the ICAM4 gene are higher in 
the older age group and agree with other studies showing 
that the expression of ICAM genes is increased in differ-
ent age-related diseases such as atherosclerosis [39], cel-
lular senescence [39–41] and even Alzheimer’s disease 
[42].

GPAM is involved in the metformin pathway [43], a 
drug often prescribed to treat type 2 diabetes, and a well-
studied senomorphic drug. Studies suggest that beyond 
its lifespan-promoting activity, metformin may be able 
to delay the onset of age-related diseases, such as neuro-
degenerative and cardiovascular, likely by acting on key 
aging hallmarks, such as inflammation, autophagy, and 
cellular senescence [44]. In addition, metformin may be 

able to extend lifespan and reduce the risk of age-related 
diseases due to its anti-hyperglycemic properties, by 
improving the sensitivity to insulin and metabolic health 
as well as reduction of oxidative stress and by protecting 
endothelial and vascular function [45].

The GATSL3 gene encodes a protein of the same name 
which is an arginine sensor for the mTORC1 (mechanis-
tic target of rapamycin complex 1) pathway a well-known 
regulator of aging and lifespan. GATSL3 is a negative reg-
ulator of mTORC1 [46] and inhibition of mTORC1 has 
been shown to increase lifespan and confer protection 
against age-related pathologies [47]. The mechanisms by 
which mTOR regulates aging and lifespan are not clear 
but inhibition of mTOR has been shown to suppress the 
senescence-associated secretory phenotype [48]. In our 
study GATSL3 displayed a biphasic relationship with 
age, presenting a maximum expression in the middle-
aged group [60–70] and minimal expression in the older 
age group (> 70). Taken together, GATSL3 as a negative 
regulator of mTORC1 signaling might have implications 
for potential therapeutic interventions for age-related 
diseases.

Multiomic data integration for age‑related cognitive 
alterations
Pathway enrichment analysis based on the multi-omics 
signature was biased towards variables from the SNP 
dataset, owing to their preselection from the Polygenic 
risk model. Nevertheless, our integrated omics approach 

Fig. 4  Multi-omic data integration for age-related cognitive alteration. Heat maps show the relationship between variables and each omics data 
block (A) with samples in columns colored in dark blue and light blue representing individuals with high and low scores in SRT-LTS, respectively. 
The different omics layers are represented as rows colored in blue, red, and green representing SNP, Methylation, and transcriptomic features, 
respectively. Gene-set enrichment analysis on the multi-omics signature (B). The length of the bar represents the number of genes in each ontology 
term, while the color represents the contribution of each omics with blue, red, and green representing SNP, CpGs and genes, respectively
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reinforces the involvement of synaptic dysfunction, 
axonal degeneration, microtubule cytoskeleton organi-
zation, and glycosylation in cognitive aging. Contrary 
to neurodegenerative disorders, minimal neuronal loss 
occurs during normal aging, instead age-related cogni-
tive alteration seems to be related to changes in neural 
plasticity and a result of region-specific morphological 
changes in dendritic branching and spine density, which 
ultimately lead to a progressive reduction in synap-
tic density and synaptic transmission [49]. Moreover, 
age-related structural changes in white matter (WM), 
including reductions in WM volume, accumulation of 
WM lesions, and disrupted WM integrity, have all been 
associated with aging and age-related cognitive deficits 
[6]. White matter is mainly composed of myelinated 
long-distance axonal projections and a decline in WM 
integrity may reflect demyelination and axonal degenera-
tion. Cytoskeletal remodeling plays a significant role in 
maintaining axonal integrity, axonal transport, driving 
myelination, and regulating dendritic spine morphol-
ogy and synaptic plasticity [50, 51]. Furthermore, loss of 
cytoskeletal integrity has been associated with aging and 
various diseases, including Alzheimer’s disease. Conse-
quently, there is ongoing development of agents targeting 
cytoskeletal integrity for potential therapeutic interven-
tions [49].

Our findings also provide evidence supporting the 
involvement of glycosylation in cognitive aging. Glyco-
sylation, the most common post-translational modifi-
cation of proteins and lipids, is an essential process for 
normal biological functioning. It plays a vital role in the 
development and function of the nervous system, includ-
ing plasticity and memory formation [52–54]. Conse-
quently, it is not surprising that nearly all congenital 
disorders of glycosylation (CDGs) exhibit neurological 
symptoms such as brain atrophy, cognitive impairment, 
and delayed intellectual development 55. Also, disrupted 
glycosylation has been implicated in the pathogenesis 
of neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s diseases [56, 57].

Enhancing our comprehension of the biological pro-
cesses accountable for the deterioration of cognition due 
to aging is undeniably an urgent matter of public health. 
Our findings expand on previous research by indicating 
that phenotypic correlations between neurocognitive and 
white-matter integrity might be partly driven by shared 
genetic factors and emphasizing the molecular mecha-
nism behind these correlations. The identification of 
non-linear patterns in age-related alterations serves as 
a compelling testament to the intricate molecular com-
plexity underlying the aging process. These findings not 
only challenge the notion of a straightforward linear 

progression but also illuminate a critical period of physi-
ological transformation during the aging process.

The integration of multi-omic sdata has yielded sig-
nificant findings, revealing the existence of numerous 
interconnected biological pathways that contribute to 
age-related cognitive performance in memory. Among 
these pathways, structural neuroplasticity has emerged 
as a prominent factor responsible for this decline. Nota-
bly, the identification of concordant enrichment terms 
between genomic, peripheral transcriptomics and meth-
ylation data not only supports the reliability of using 
peripheral cells, in particular PBMCs, as proxies for 
brain-related studies but also reinforces the notion that 
systemic changes in peripheral tissues might reflect the 
molecular changes occurring in the brain during aging. 
These findings offer a valuable opportunity to leverage 
accessible and less invasive samples for monitoring and 
potentially developing interventions for age-related cog-
nitive performance.

However, our study has several limitations to consider. 
First of all, the cohort at hand was randomly selected 
from specific local health authority registries in the 
north of Portugal and consisted of individuals of Euro-
pean ancestry. This demographic restriction may hinder 
generalizability of our finding to other populations with 
different genetic backgrounds and demographics. Sec-
ondly, due to sample availability and quality, the subset 
of participants included in the methylation and tran-
scriptomics analyses does not accurately represent the 
larger cohort in terms of the distribution of females and 
males (transcriptomic data) and proportion of individu-
als in each age group (both for transcriptomic and meth-
ylation data). Consequentially, the interpretation of these 
results should be approached with caution, as they may 
not be generalizable and may have reduced statistical 
power. Thirdly, our study used a cross-sectional design, 
which captures data at a single point in time, to assess 
age-related cognitive, methylation and transcriptomic 
alteration. This design limits the ability to establish causal 
relationships and draw longitudinal conclusions. It is 
important to acknowledge that further research utiliz-
ing longitudinal designs is needed to provide more robust 
evidence. Fourthly the study used a relatively small 
cohort, particularly when examining age-related methyla-
tion and transcriptomic alterations, as well as integrating 
multi-omics data. A larger sample size would enhance the 
reliability and generalizability of the results. Additionally, 
in high-dimensional omics datasets where the number 
of variables exceeds the number of samples, the risk of 
overfitting exists. Therefore, it is crucial to validate these 
results using an external cohort to ensure their accuracy 
and reliability. In summary, while our study provides 
valuable insights, it is essential to recognize and consider 
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these limitations when interpreting the findings. Future 
research addressing these limitations will contribute to a 
more comprehensive understanding of age-related cogni-
tive alterations.

Conclusions
In conclusion, our study offers a comprehensive explo-
ration of the intricate mechanisms driving age-related 
cognitive performance. Notably, our findings highlight 
shared genetic risk factors and potential common patho-
physiological pathways, underscoring the phenotypic 
association between white matter integrity and age-
related cognitive performance. These associations likely 
involve multifaceted mechanisms influenced by genetic 
susceptibility to various vascular and non-vascular 
effects. Moreover, our observation of non-linear patterns 
in age-related alterations in methylation and transcrip-
tomic profiles challenges the simplistic view of aging pro-
gression, emphasizing the complex molecular nature of 
aging. Additionally, the integration of multi-omics data 
reveals interconnected biological pathways contribut-
ing to age-related cognitive performance, with structural 
neuroplasticity emerging as a significant factor. The con-
sistency of enrichment terms across genomic, peripheral 
transcriptomics, and methylation data underscores the 
potential utility of peripheral cells as proxies for brain-
related studies, offering avenues for less invasive monitor-
ing and potential interventions for age-related cognitive 
performance. However, our study has limitations, includ-
ing the demographic homogeneity of our cohort and the 
cross-sectional design. Additionally, the relatively small 
sample size and risk of overfitting in omics datasets war-
rant validation in larger cohorts. Despite these limita-
tions, our findings contribute valuable insights into the 
biological underpinnings of age-related cognitive perfor-
mance. Future research addressing these limitations and 
employing longitudinal designs will enhance our under-
standing and inform interventions to promote healthy 
aging and preserve cognitive function.

Methods
Cohort characterization
The study cohort (n = 443, after exclusion criteria) hereon 
after designated as Minho cohort is part of a larger cohort 
randomly selected from the Guimarães and Vizela local 
health authority registries in the north of Portugal [58]. 
Table 1 provides descriptive statistics of the Minho aging 
cohort. Selection criteria are described elsewhere [59]. 
Primary exclusion criteria included participants diag-
nosed with neuropsychiatric disorder and/or dementia, 
who had a stroke, renal failure, or overt thyroid pathol-
ogy, were unable to understand informed consent or 

chose to withdraw from the study. A team of experienced 
clinicians performed a standardized clinical interview.

Neurocognitive evaluation
Participants underwent a thorough neurocognitive eval-
uation conducted by a team of trained psychologists. 
Tests included measures of global cognition (Mini-Men-
tal State Examination (MMSE) [60]; short-term verbal 
memory and attention were assessed using the Digit 
Span Test (parameters; digits span forward and back-
ward) [61]; verbal learning and memory storage, reten-
tion and recall (The Buschke Selective Reminding Test 
parameters (SRT): consistent long term retrieval (CLTR), 
long term storage (LTS), delayed recall and intrusions 
[62]; inhibition/cognitive flexibility were assessed using 
the Stroop Color and Word test (parameters: words, 
colors and words/colors) [63]; verbal/phonetic fluency 
assessed by the Controlled Oral Words association test 
F-A-S (COWAT-FAS parameters: admissible and non-
admissible) [64].

Imaging data acquisition
The details of imaging data acquisition are comprehen-
sively described in [65]. In summary, MRI scans were 
conducted using a Siemens Magnetom Avanto 1.5  T 
(Siemens Medical Solutions, Erlangen, Germany) scan-
ner with a 12-channel receive-only head coil. Imaging 
session included a single structural T1 sequence, spe-
cifically a 3D MPRAGE (magnetization prepared rapid 
gradient echo) sequence, with the following parameters: 
a repetition time (TR) of 2.730  s, an echo time (TE) of 
3.48 ms, 176 sagittal slices with no gaps, a flip angle (FA) 
of 7°, an in-plane resolution of 1.0 mm × 1.0 mm, and a 
slice thickness of 1.0  mm. The Freesurfer toolkit ver-
sion 5.1 (https://​surfer.​nmr.​mgh.​harva​rd.​edu), operat-
ing on an Ubuntu 12.04 LTS system, was utilized for the 
segmentation of brain cortical and subcortical struc-
tures during structural analysis. The software employs a 
semi-automated segmentation workflow, which includes 
stages such as spatial registration to the Talairach stand-
ard space, skull removal, normalization of white matter 
intensity, and tessellation of gray matter-white matter 
segmentation. Two atlases were employed for cortical 
parcellation: one gyral-based atlas defining 68 structures 
[66], and another that includes both gyral and sulcal 
regions, defining 148 distinct brain areas [67]. The study 
considered subcortical, white matter, and gyral-based 
cortical segmentations of 106 participants. For descrip-
tive statistics on the imaging dataset, please refer to sup-
plementary Table 5.

https://surfer.nmr.mgh.harvard.edu
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OMICS sample processing
Genomic DNA/RNA were extracted from PBMCs (for 
methylation and transcriptomic analysis) or whole blood 
(for genotyping) using a commercially available kit 
according to the manufacturer’s protocol (All prep DNA/
RNA kit, Qiagen). DNA integrity assessment was done 
using gel electrophoresis and quantified using Qubit 
dsDNA HS (High Sensitivity) Assay Kit measured on the 
Qubit Fluorometer (Life Technologies, Carlsbad, CA). 
RNA quality was assessed using Bioanalyzer RNA 6000 
Nano kit (Agilent), 6 out of 107 samples were excluded 
due to bad RNA quality.

Genetic data
Genotypic data were collected for 564 individuals using 
the Illumina Neuro Consortium Array (Infinium Core-
24 + v1.2). Bioinformatics quality control (QC) was per-
formed using Plink v1.9 software according to standard 
protocols [68]. Briefly, after exporting samples with call 
rate per marker ≥ 95% from Illumina-designed software 
GenomeStudio, per-sample QC involved controlling 
for discrepancies between reported and genotypic sex, 
heterozygosity rate, identification of related individual 
and identification of individuals of divergent ancestry. 
Per-SNP QC consisted of excluding SNP with exces-
sive missing genotypes (call rate > 0.05), the deviation 
for Hardy‐Weinberg Equilibrium (HWE > 0.00001), and 
Minor Allele Frequency (MAF < 0.01). After QC, geno-
types were imputed using the Michigan imputation 
server [69] with the Haplotype Reference Consortium 
(HRC) reference panel (version r1.1 2016). The imputed 
genotypes were then subjected to the same QC filters as 
previously described. Tree sample were excluded duo to 
a misidentified ID. A total of 418 samples (after exclusion 
criteria) and 5,389,594 SNPs passed QC and were used in 
subsequent analysis.

Transcriptomic data
A subset of randomly selected 101 RNA samples was 
used for gene expression profiling. Samples were pro-
cessed with the SurePrint G3 Human Gene Expression 
v3 8 × 60  K arrays and scanned in an Agilent scanner. 
The microarray contained more than 60,000 probe sets 
representing approximately 37,700 known transcripts, 
allowing the analysis of over 26,000 genes. Labeling was 
performed using the Low Input Quick Amp Labeling Kit, 
One-Color (Agilent Technologies). The analysis was per-
formed using R (v4.0.2) and the computing environment 
package, limma (v3.44.3) [70]. The quality of the data was 
assessed using multi-dimensional scaling analysis (MDS) 
[70], 6 outliers were detected and removed from further 
analysis. In addition, one sample was excluded duo to a 

misidentified ID. The characteristics of subsamples from 
the remaining 94 samples are documented in Supple-
mentary Table  5. Among these 94 samples, 79 samples 
included genomic data, 40 had methylation data, and 38 
possessed both genomic, and methylation data.

Methylation data
A subset of randomly selected 41 DNA samples were pro-
cessed with the Infinium Methylation EPIC Bead Chip 
(Illumina, Inc), according to the manufacturer’s instruc-
tions. Among these 41 samples, 38 included genomic and 
transcriptomic data, 2 had exclusively transcriptomic 
data and 1 had exclusively genomic data.

Subsamples characteristics are present in Supplemen-
tary Table 5. The quality control, preprocessing, and nor-
malization of the DNA methylation data were analyzed 
using R (v4.1.1) packages minfi (v1.38.0). FlowSorted. 
Blood. EPIC (v2.0.0). Peripheral blood cell composition 
(relative proportion) was estimated [71] with raw data. 
Methylation was normalized with the quantile normali-
zation method and deconvolution of the blood cells was 
performed to reduce the statistical bias in subsequent 
analysis. Probes with poor quality, rowSums(detP > 0.01), 
located between SNPs, cross-reactive, related to the dif-
ferences in gender (autosomal and sex chromosomes) 
were identified and removed.

Genome‑wide polygenic risk scores (PRS)
Genome-wide PRS were constructed for each healthy 
aging Minho cohort participant using the “standard 
weighted allele” method  implemented in  PRSice-2 soft-
ware [72]. SNPs were weighted by their GWAS effect 
sizes on MRI markers of cerebral small vessel disease 
(white matter hyperintensities; WMH, fractional anisot-
ropy; FA and mean diffusivity; MD). GWAS summary 
statistics for WMH (N = 18,381), FA (N = 17,663), and 
MD (N = 17,467) [73], were obtained via the Cerebro-
vascular Disease Knowledge Portal (https://​cd.​hugea​mp.​
org/) data download page (http://​www.​kp4cd.​org/​datas​
et_​downl​oads/​stroke). Genome-wide PRS was used to 
explore the association between WMH, FA, and MD with 
age-related cognitive outcomes using the additive model 
while adjusting for age, sex, school years, and 6 ancestral 
PCA via linear regression. Linkage disequilibrium (LD) 
clumping was performed under default settings (250  kb 
window, r2 < 0.1). To accurately predict the outcome of 
interest, and avoid overfitting and Type-I error, the best 
threshold was identified by computing different genome-
wide PRSs and calculating empirical p-values (pE) using 
10,000 permutations [72] Furthermore, each permuta-
tion test provided a Nagelkerke’s pseudo r2 after adjust-
ment for study-specific PCs 1–6, age, sex and school 

https://cd.hugeamp.org/
https://cd.hugeamp.org/
http://www.kp4cd.org/dataset_downloads/stroke
http://www.kp4cd.org/dataset_downloads/stroke
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years as covariates. The “best-fit PRS” was identified as 
the most associated with the target trait across the range 
of P-value thresholds considered. As an added measure, 
an FDR correction was applied to account for the three 
base MRI traits and the two cognitive outcomes tested. 
The list of variants used for PRS calculation was obtained 
using the –print-snp flag from PRSice software. Subse-
quently, g: Profiler [https://​biit.​cs.​ut.​ee/​gprof​iler/] web 
server was used to map SNP rs-codes, that overlap with 
at least one protein-coding Ensembl gene, to obtain gene 
names.

Sparse partial least squares‑discriminant analysis 
(sPLS‑DA)
Sparse partial least squares-discriminant analysis (sPLS-
DA) was performed separately on cognitive, imaging, 
methylation, and transcriptomic data to whether iden-
tify individual signatures best discriminating [50–60],  
[60–70], [70-…] age groups or cognitive profiles using 
the mixOmics R package [19]. Each cognitive test was 
categorized into “low” and “high” performers based on 
mean calculation, utilizing a threshold determined by the 
mean value. sPLS-DA performs dimension reduction and 
variable selection in a supervised classification setting in 
one step. It is based on Partial Least Squares regression 
(PLS), a multivariate linear regression method that can 

deal with high-dimensional data and collinearity among 
predictors (eg. the inherent correlation among neurocog-
nitive tests) but using a sparse penalty for variable selec-
tion (which penalizes the number of predictors favoring 
the ones that explain most of the variance of the data). 
The optimal number of components onto which the data 
is projected, and the optimal number of features to select 
on each component are determined by tuning these 
parameters using a cross-validation procedure and by 
assessing the overall error rate. In this study, the number 
of components and features were identified using leave-
one-out cross-validation.

Data integration
Integration of age-related methylation sites (350 CpG) 
transcriptomic (58 genes) variables and SNPs used in 
the construction of the polygenic model (1383 SNP) 
of 38 matching samples, 16 with low and 22 with high 
SRT-LTS, respectively (for descriptive statistics on the 
multi-omics dataset, please refer to supplementary 
Table  5), was conducted to identify correlated omics 
features discriminating individuals with high and low 
SRT-LTS scores (Fig.  5). The analysis was performed 
using the Data Integration Analysis for Biomarker Dis-
covery using the Latent cOmponents (DIABLO) [74] 
algorithm implemented in the mixOmics R package 

Fig. 5  Multi-omic data integration pipeline Single nucleotide polymorphisms used in the construction of the MD-PRS model (1383) together 
with age-related methylation (350 CpG) and transcriptomic (58 genes) variables, pre-selected using Sparse partial least squares-discriminant 
analysis (sPLS-DA), were integrated using the DIABLO model (MixOmics R package). Multi-omic data integration was achieved by identifying a set 
of correlated variables, both within and between the different omic layers, that best discriminate individuals with higher and lower performance 
in the SRT-LTS

https://biit.cs.ut.ee/gprofiler/
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[19]. The model, also known as multiblock sPLS-DA, is 
an extension of the previously described sPLS-DA and 
it incorporates rCCA (Regularized Canonical Correla-
tion Analysis) as the integration method. During the 
integration process, Diablo performs variable selection 
in a supervised fashion to identify the shared variation 
across the different omics datasets while accounting for 
the potential correlations and relationships between 
variables within and between the omics layers. There-
fore, like sPLS-DA, the method requires parameter 
tuning. Parameter tuning, for number of components 
and number of variables, was performed as described 
above in the sPLS-DA approach. In addition, an input 
design matrix to define the correlation between each 
omics data set is needed. A design matrix of 0.1 was 
chosen to prioritize the discrimination between groups 
(High vs Low SRT-LTS scores).

Pathway enrichment analysis
Pathway enrichment analysis was performed using the 
web-based Metascape portal [http://​metas​cape.​org] [20] 
with the following ontology sources: GO Biological Pro-
cesses, GO Molecular Functions, GO Cellular Compo-
nents, KEGG pathways, Reactome and Transcriptional 
Factor Targets gene sets. Terms with p-values < 0.01, 
a minimum of 3 counts, and an enrichment factor > 1.5 
(ratio between the observed counts and the counts 
expected by chance) were hierarchically clustered based 
on similarities (Kappa scores) among their gene mem-
berships. Enriched terms with a Kappa score > 0.3 were 
considered a cluster and the most significant term within 
each cluster was selected to represent the entire cluster. 
An adjusted p-value (q-values < 0.05), using Benjamini–
Hochberg false-discovery rate to account for multiple 
testing, was considered statistically significant.
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