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Abstract
Background  Maternal genetic risk of type 2 diabetes (T2D) has been associated with fetal growth, but the influence 
of genetic ancestry is not yet fully understood. We aimed to investigate the influence of genetic distance (GD) and 
genetic ancestry proportion (GAP) on the association of maternal genetic risk score of T2D (GRST2D) with fetal weight 
and birthweight.

Methods  Multi-ancestral pregnant women (n = 1,837) from the NICHD Fetal Growth Studies – Singletons cohort 
were included in the current analyses. Fetal weight (in grams, g) was estimated from ultrasound measurements of 
fetal biometry, and birthweight (g) was measured at delivery. GRST2D was calculated using T2D-associated variants 
identified in the latest trans-ancestral genome-wide association study and was categorized into quartiles. GD and 
GAP were estimated using genotype data of four reference populations. GD was categorized into closest, middle, and 
farthest tertiles, and GAP was categorized as highest, medium, and lowest. Linear regression analyses were performed 
to test the association of GRST2D with fetal weight and birthweight, adjusted for covariates, in each GD and GAP 
category.

Results  Among women with the closest GD from African and Amerindigenous ancestries, the fourth and third 
GRST2D quartile was significantly associated with 5.18 to 7.48 g (weeks 17–20) and 6.83 to 25.44 g (weeks 19–27) larger 
fetal weight compared to the first quartile, respectively. Among women with middle GD from European ancestry, the 
fourth GRST2D quartile was significantly associated with 5.73 to 21.21 g (weeks 18–26) larger fetal weight. Furthermore, 
among women with middle GD from European and African ancestries, the fourth and second GRST2D quartiles were 
significantly associated with 117.04 g (95% CI = 23.88–210.20, p = 0.014) and 95.05 g (95% CI = 4.73–185.36, p = 0.039) 
larger birthweight compared to the first quartile, respectively. The absence of significant association among women 
with the closest GD from East Asian ancestry was complemented by a positive significant association among women 
with the highest East Asian GAP.
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Background
Observational studies have shown an association 
between extremes of birthweight and an increased risk 
of perinatal morbidity and mortality, as well as long-term 
cardiovascular and metabolic complications such as type 
2 diabetes (T2D) [1–4]. Genetic and non-genetic factors 
contribute to variations in fetal growth [5–9]. The mater-
nal genome influences fetal growth through a direct 
impact on the intrauterine environment [8, 9], accounting 
for 7.6% of the genome-wide heritability of birthweight 
[9]. Previous studies, largely involving European ancestry 
individuals, showed that maternal genetic susceptibility 
to T2D contributes to increased fetal growth and birth-
weight [9–13]. It is known that the distribution of genetic 
variants, lifestyle factors, and their interactions can vary 
by ancestry [14, 15]. However, there is a knowledge gap in 
the link between maternal genetic susceptibility to T2D 
and fetal growth across different genetic ancestries.

The association between individual or aggregate effect 
(i.e., genetic risk score (GRS)) of genetic variants and 
health outcomes is poorly transferable across diverse 
ancestry groups [16]. GRST2D based on summary statis-
tics from genome-wide association studies (GWAS) in 
African Americans was associated with increased birth-
weight in populations of African ancestry [13]. Like-
wise, GRST2D based on summary statistics from GWAS 
involving individuals of European ancestry showed a 
positive association with fetal weight beginning from 24 
gestational week among European American women, but 
not among non-European American women [12]. The 
difference in GRST2D effects across the genetic ancestry 
continuum and the gestational weeks in which GRST2D 
begins to influence fetal growth are, therefore, unclear for 
most ancestral populations.

Addressing these research gaps through the use of self-
reported race/ethnic groups or discrete genetic ances-
try classifications has shortcomings [17]. For example, 
individuals categorized into the same ancestry group 
may exhibit variations along the genetic ancestry con-
tinuum. Consequently, it is challenging to establish clear 
boundaries between clusters, and some individuals may 
be excluded because of difficulty in assigning them to a 
specific ancestry group [17]. Moreover, the definitions 
of socially constructed race/ethnic groups and genetic 
ancestry are intricate and continuously evolving [18].

To address the aforementioned challenges, recent stud-
ies suggest using genetic distance (GD) [17, 19]. GD is 

a continuous metric that quantifies the similarity of an 
individual’s genome to the center of a standard reference 
population [17]. GD is considered a less biased estima-
tor of genetic similarity as it takes into account inter-
individual genetic variation within a given sample [17]. It 
has been shown that the accuracy and transferability of 
GRS derived from associations discovered in European 
GWAS decrease as the GD from a European ancestry 
reference population increases [17]. Additionally, the 
genetic ancestry proportion (GAP) of admixed popula-
tions affects the strength of the association between GRS 
and disease traits in Hispanic Americans [20]. Based on 
these recent developments, we posit that understanding 
the relationship between maternal genetic risk for T2D 
and fetal growth, accounting for GD and GAP, can pro-
vide insights about targeted intervention across different 
population groups. Therefore, in a cohort of multi-ances-
tral US pregnant women, we investigated the influence of 
maternal GD and GAP in the association between mater-
nal GRST2D and fetal weight trajectories throughout ges-
tational weeks 10–40.

Methods
Study population
Data from the Eunice Kennedy Shriver National Insti-
tute of Child Health and Human Development (NICHD) 
Fetal Growth Studies – Singletons cohort study, which 
recruited 2,802 women from four self-identified racial/
ethnic groups (i.e., non-Hispanic white, non-Hispanic 
black, Hispanic white and Asian and Pacific Islanders), 
was used [21, 22]. The NICHD Fetal Growth Studies – 
Singletons cohort study was designed to develop a fetal 
growth standard for the US by race/ethnicity. Details on 
the inclusion criteria, data collection and quality assur-
ance, and ethical approval were published elsewhere [21, 
22]. Women completed sociodemographic, reproduc-
tive and pregnancy history questionnaires at enrollment 
in addition to providing blood specimen [21]. Clinical 
data was also extracted from medical records. The cur-
rent analyses included 1,837 women with genotype data, 
at least two measures of fetal weight, and without gesta-
tional diabetes or hyperglycemia based on glucose chal-
lenge test.

Fetal weight and birthweight measures
After ultrasonographic confirmation of gestational age 
at 8+ 0 and 13+ 6 weeks of gestation, participants were 

Conclusions  The association between maternal GRST2D and fetal growth began in early-second trimester and was 
influenced by GD and GAP. The results suggest the use of genetic GD and GAP could improve the generalizability of 
GRS.
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randomized to one of four groups and scheduled for five 
follow-up appointments to measure fetal growth bio-
metrics using identical standardized obstetrical ultra-
sonography equipment and protocols [21, 22]. This 
randomization scheme was designed to capture all ges-
tational week’s windows. Measurements between site 
sonographers and experts had a high correlation (> 0.99) 
and low coefficient of variation (< 3%) [23]. Fetal weight 
was estimated from head circumference, abdominal cir-
cumference, and femur length using Hadlock’s formula 
[24]. Fetal weight measures at gestational weeks 10–40 
were estimated from the five measurements using a lin-
ear mixed model with a cubic spline mean structure and 
a cubic polynomial random effect [25]. Birthweight was 
measured in grams (g) using an electronic infant scale or 
beam balance scale [21].

Genotyping and quality control
Genomic DNA was extracted from stored maternal 
blood specimens obtained from 2,215 (i.e., 641 self-
identified non-Hispanic white, 652 non-Hispanic black, 
582 Hispanic white and 340 Asian and Pacific Islander) 
women and genotyped using the Infinium Multiethnic 
Global BeadChip microarray (Illumina) with > 1.7  mil-
lion single nucleotide polymorphisms (SNPs). A total 
of 2,056 women passed genotype quality control. SNP 
genotypes were imputed using the entire 1000 Genomes 
Phase 3 reference sequence data in the Michigan Impu-
tation Server, implementing Eagle2 for haplotype phas-
ing followed by Minimac3 for imputing non-typed SNPs. 
Details on genotyping, quality control and imputation 
procedures were described in our previous study [26].

Genetic risk score for T2D (GRST2D)
Publicly available summary statistics of 302 of the 338 
genome-wide significant SNPs associated with T2D in 
the latest T2D multi-ancestry GWAS were used to cal-
culate GRST2D (Supplementary Table 1) [27]. GRS aggre-
gates the effects of genetic variants into a single score 
[28]. Weighted GRST2D was calculated by multiplying the 
dosage (i.e., values range 0 to 2) of the T2D-increasing 
allele for each SNP by logOR and the resulting values 
summed up [27]. We categorized the GRST2D into quar-
tiles, and the lowest quartile (quartile 1) was used as a 
reference group.

Genetic distance (GD) and ancestry proportion (GAP)
We used GD and ancestry proportion estimates to deter-
mine, for each woman’s genome, similarity with genotype 
of a reference population [29], and genome-wide average 
ancestry from each of four continental populations [30], 
respectively. First, genome-wide principal components 
analysis (PCA) of our cohort and the reference popula-
tion (i.e., 1000 Genome and Human Genome Diversity 

Project population (HGDP)) genotype was performed 
using ‘flashpcaR’ R package. Next, our cohort genotype 
was projected on the PC space of the reference popula-
tion genotype. Unlike the previous studies that estimated 
GD using only European reference population [17, 19], 
we performed four types of GD estimations using three 
reference populations from the 1000 Genomes proj-
ect [31]: European - Utah residents with Northern and 
Western European ancestry (CEU); African - Yoruba in 
Ibadan, Nigeria (YRI); and East Asian - Han Chinese in 
Beijing, China (CHB); and one reference population from 
the 1000 Genomes and Human Genome Diversity Proj-
ect (HGDP) [32] – Amerindigenous – Native American 
(NAM). Then, GD of each woman’s genotype from the 
center of the reference population genotype projected 
on the PC space was calculated [17]. Finally, women 
were categorized into tertiles based on their GD and 
conventionally named as ‘closest GD’ (tertile 1), ‘middle 
GD’ (tertile 2) or ‘farthest GD’ (tertile 3) (Supplementary 
Table 2).

To supplement our findings based on GD, GAP was 
estimated for each sample by performing linkage disequi-
librium pruning of the genotype data and running unsu-
pervised clustering in ADMIXTURE version 1.3 software 
[30] with the assumption of four ancestral components 
(k = 4). These clusters represent European, African, 
Amerindigenous and East Asian genetic ancestry propor-
tions. Reference samples for African, European and East 
Asian ancestries were obtained from genotype data of the 
1000 Genomes project [31], whereas reference samples 
for Amerindigenous ancestry were obtained by combin-
ing samples from the 1000 Genomes and HGDP [31, 32]. 
The analyses were described in detail in our previous 
study [33]. Women were categorized into tertile based 
on their GAP and conventionally named as ‘lowest GAP’ 
(tertile 1), ‘medium GAP’ (tertile 2), and ‘highest GAP’ 
(tertile 3) (Supplementary Table 3).

Data analyses
Maternal and newborn background characteristics were 
summarized using frequency (%) and mean (± SD). The 
correlation between GD and GAP was estimated using 
Spearman correlation method. Linear regression mod-
els were fitted to test the association of GRST2D with 
fetal weight at each gestation week (weeks 10–40) and 
birthweight, adjusted for years lived in the United States 
(continuous), marital status (categorical), maternal age 
(continuous), pre-pregnancy body mass index (continu-
ous), parity (categorical), and fetal sex (categorical) in 
each GD and GAP category. The association between 
GRST2D and birthweight was further adjusted for gesta-
tional age at delivery (continuous). Additionally, interac-
tion model was fitted by including interaction between 
GRST2D (continuous) and GD and GAP (continuous). 
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Statistical significance was set to be p-value < 0.05. All 
analyses, unless specified otherwise, were implemented 
using the software package R version 4.2.2.

Results
Characteristics of study participants
The mean (± SD) of maternal age, number of years lived 
in the US, and birthweight were 28 (± 6) years, 23 (± 9) 
years, and 3,314 (± 529) grams, respectively. Approxi-
mately three-fourths of the women were married or liv-
ing with a partner (73.54%). The mean (± SD) GRST2D was 
16.19 (± 0.55). The mean (± SD) GD of the women from 
European, African, Amerindigenous, and East Asian 
reference panels was 0.03 (± 0.01), 0.03 (± 0.01), 0.13 
(± 0.02), and 0.04 (± 0.01) unit, respectively. The mean 
(± SD) European, African, Amerindigenous, and East 

Asian GAPs in the maternal genome were 0.48 (± 0.37), 
0.30 (± 0.36), 0.10 (± 0.20), and 0.12 (± 0.29), respectively 
(Table 1).

There was weak to moderate negative correlation 
between GD from an ancestry reference and GAP of 
the same ancestry, for instance, with the lowest correla-
tion between African GD and European GD (r = -0.0.06, 
p < 0.05) and the highest correlation between European 
GD and European GAP (r = -0.56, p < 0.05) (Fig.  1). 
Nearly all GD and GAP tertile groups included each of 
the four self-reported race/ ethnicity. No GD or GAP 
tertile represents less than three race/ethnicity groups, 
demonstrating the continuum nature of human popula-
tion variation (Supplementary Figs. 1 and 2).

GD and association of GRST2D with fetal weight
GRST2D showed significant positive association with fetal 
weight beginning from week 17 among women with the 
closest African GD, medium European GD, and irre-
spective of Amerindigenous GD. Specifically, the fourth 
GRST2D quartile was significantly associated with 5.73 to 
21.21 g (weeks 18–26) and 5.18 to 7.48 g (weeks 17–20) 
larger fetal weight compared to the first quartile among 
women with the middle GD from European ancestry 
and with the closest GD from African ancestry, respec-
tively. Among women with the closest and farthest GD 
from Amerindigenous ancestry, the third and second 
GRST2D quartiles were significantly associated with 6.83 
to 25.44  g (weeks 19–27) and 7.65 to 149.71  g (weeks 
19–40) larger fetal weight compared to the first quar-
tile, respectively. Among women with middle GD from 
Amerindigenous ancestry, the second GRST2D quartile 
was significantly associated with 8.75 to 69.75  g (weeks 
21–35) lower fetal weight. No significant associations 
were observed regardless of GD from East Asian ances-
try (Fig.  2, Supplementary Fig.  3, Supplementary Table 
4). The interaction model showed that the interaction 
between European GD and GRST2D significantly associ-
ated with fetal weight (weeks 21–40, p < 0.05).

GD and association of GRST2D with birthweight
GRST2D and birthweight showed significant positive 
association among women with medium and farthest 
European GD, medium African GD, and farthest Amer-
indigenous GD. Specifically, among women with middle 
and farthest GD from European ancestry, the fourth and 
second GRST2D quartile was significantly associated with 
a 117.04 g (95% CI = 23.88–210.20, p = 0.014) and 110.02 g 
(95% CI = 17.09–202.95, p = 0.02) larger birthweight com-
pared to the first quartile, respectively. Compared to the 
first quartile, the second GRST2D quartile was signifi-
cantly associated with a 95.05  g (95% CI = 4.73–185.36, 
p = 0.039) and 95.28  g (95% CI = 4.54–186.03, p = 0.04) 
larger birthweight among women with middle GD from 

Table 1  Description of maternal and fetal background 
characteristics. (N = 1,837)
Characteristics n(%) or Mean(± SD)
Maternal self-reported race/ethnicity
  Non-Hispanic white 562 (30.59)
  Non-Hispanic black 573 (31.19)
  Hispanic white 505 (27.49)
  Asian/Pacific Islander 197 (10.72)
Maternal age (years) 27.88 (± 5.50)
Maternal birthplace, born in the United States 1,304 (70.99)
Years lived in the United States 23.03 (± 9.47)
Marital status, married or living with partner 1,351 (73.54)
Parity, ≥ one 980 (53.35)
Maternal pre-pregnancy BMI (kg/m2) 25.38 (± 5.13)
Gestational weight gain 12.41 (± 6.27)
Systolic blood pressure 109.94 (± 11.39)
Diastolic blood pressure 66.66 (± 8.95)
Gestational age at delivery (weeks) 39.16 (± 1.97)
Fetal weight (gram, g)
  Baseline 66.59 (± 14.71)
  First visit 342.39 (± 172.85)
  Second visit 1,075.02 (± 326.85)
  Third visit 1,916.35 (± 407.51)
  Fourth visit 2,749.93 (± 461.44)
  Fifth visit 3,320.67 (± 469.94)
Birthweight (g) 3,313.92 (± 529.05)
Genetic risk score of type 2 diabetes (GRST2D ) 16.19 (± 0.55)
Genetic distance from the reference panel
  From a European reference 0.03 (± 0.01)
  From an African reference 0.03 (± 0.01)
  From an Amerindigenous reference 0.13 (± 0.02)
  From an East Asian reference 0.04 (± 0.01)
Genetic ancestry proportion
  European 0.48 (± 0.37)
  African 0.30 (± 0.36)
  Amerindigenous 0.10 (± 0.20)
  East Asian 0.12 (± 0.29)
Fetal sex, male 857 (46.65)
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African ancestry and with farthest GD from Amerin-
digenous ancestry, respectively. The interaction model 
showed that the interaction between European GD 
and GRST2D significantly associated with birthweight 
(p = 0.04). No significant association was observed 
regardless of GD from East Asian ancestry (Fig. 3).

GAP and association of GRST2D with fetal weight
GRST2D showed significant positive associations with 
fetal weight among women with medium European GAP, 
highest Amerindigenous GAP, and highest East Asian 
GAP. Specifically, among women with medium European 
GAP, the second GRST2D quartile was significantly associ-
ated with 7.14 to 21.63 g (weeks 19–26) larger fetal weight 
compared to the lowest quartile. Among women with the 
highest Amerindigenous GAP, the fourth GRST2D quar-
tile was significantly associated with 3.48 to 3.65 g (weeks 
10–12) smaller fetal weight and 25.35 to 117.53 g (weeks 
27–40) larger fetal weight. Among women with the high-
est East Asian GAP, the fourth GRST2D quartile was sig-
nificantly associated with 5.93 to 13.26 g (weeks 18–23) 
larger fetal weight. No significant association was found 
regardless of African GAP (Fig. 4, Supplementary Fig. 4, 
Supplementary Table 5). The interaction model showed 
that the interaction between Amerindigenous GAP and 

GRST2D significantly associated with fetal weight (weeks 
25–40, p < 0.05).

GAP and association of GRST2D with birthweight
GRST2D and birthweight showed significant positive 
association among women with medium European GAP, 
medium African GAP, highest East Asian GAP, and high-
est Amerindigenous GAP. Specifically, among women 
with medium European GAP, the second, third, and 
fourth GRST2D quartiles were significantly associated 
with 95.25  g (95% CI = 4.04–186.46, p = 0.041), 131.11  g 
(95% CI = 40.39–221.83, p = 0.005), and 102.59  g (95% 
CI = 11.47–193.71, p = 0.027) larger birthweight com-
pared to the lowest quartile, respectively. Compared to 
the lowest quartile, the fourth GRST2D quartile was signif-
icantly associated with 111.88 g (95% CI = 18.03–205.73, 
p = 0.02) among women with medium African GAP; and 
the third GRST2D quartile was significantly associated 
with 106.45  g (95% CI = 15.48–197.42, p = 0.022) larger 
birthweight among women with the highest East Asian 
GAP. Among women with the highest Amerindigenous 
GAP, the third and fourth GRST2D quartile was signifi-
cantly associated with 126.54  g (95% CI = 35.04–218.04, 
p = 0.007) and 152.17 g (95% CI = 59.42–244.92, p = 0.001) 
larger birthweight, respectively (Fig.  5). The interaction 

Fig. 1  Correlation between genetic distance (GD) and genetic ancestry proportion (GAP). Numbers inside boxes denote correlation coefficients and are 
only shown for those with p < 0.05
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model showed significant interaction between Amerin-
digenous GAP and GRST2D (p = 0.004).

Discussion
By leveraging T2D-associated loci from a large multi-
ancestral GWAS and incorporating genetic distance and 
ancestry proportion estimates in a multi-ancestral preg-
nancy cohort, we found that maternal GRST2D begins to 
influence fetal weight in early second trimester of preg-
nancy. Presence and gestational timing of associations 
between GRST2D and fetal weight varied by maternal GD 
and GAP. In many instances, the association between 
maternal GRST2D and fetal weight was influenced by both 
GD and GAP. For example, GRST2D was consistently asso-
ciated with higher birthweight in women with middle or 
farthest GD from European, African, and Amerindige-
nous ancestries, as well as in those with the highest GAP. 
In other instances, the use of GAP yielded an association 
undetected when using GD. For example, while GRST2D 

was not associated with fetal weight or birthweight irre-
spective of GD from East Asian ancestry, significant asso-
ciation was detected with East Asian GAP. These findings 
and the weak to moderate correlation between GD and 
GA suggest the importance of considering both GD and 
GAP as alternative measures in identifying the timing 
and impact of GRST2D on fetal weight.

A key finding of our study is the detection of associa-
tions between maternal GRST2D and fetal weight in early 
second trimester (gestational weeks 17–19) based on GD 
from African, European, and Amerindigenous ancestry. 
In a previous study, maternal GRST2D was associated with 
increased fetal weight starting at week 24 among Euro-
pean American women, but not among non-European 
women [12]. In addition, maternal glucose levels mea-
sured at gestational weeks 10–14 have been significantly 
associated with fetal weight starting at week 27 [34]. The 
use of genetic distance estimates and implementation 
of GRS derived from a multi-ancestral GWAS may have 

Fig. 2  Weekly change in standardized fetal weight (in SD) associated with GRST2D based on GD. The dotted curved lines represent the average change 
in fetal weight, while the broken lines with colored zones indicate the 95% CI. The solid horizontal lines indicate the null hypothesis of no change in fetal 
weight. GRS (Q1) is the reference group
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facilitated our ability to identify a change in fetal weight 
at gestational weeks much earlier than previous studies.

There may be several factors that underlie the observed 
differences in the association of GRST2D with fetal growth 
by GD and GAP, especially after adjustment for maternal 
pre-pregnancy body mass index. Other cardiometabolic 
factors may have trajectories during pregnancy that dif-
fer across GD and GAP group, hence partly explaining 
these differences. For example, total gestational weight 
gain significantly differed across the continuum of Amer-
indigenous GD, systolic blood pressure differed across 
European and African GD, and diastolic blood pres-
sure differed across European and Amerindigenous GD 

(Supplementary Table 2). Furthermore, out of the 302 
SNPs included in the GRS calculation, 40% (121 out of 
302) were associated with at least one cardiometabolic 
or anthropometric trait such as lipid profiles, blood pres-
sure, adiposity and body composition, over-weight or 
obesity, and birth weight (Supplementary Table 1). Inter-
actions among these factors and shared genetic effects 
could set the intrauterine metabolic, endocrine, and 
inflammation environment, potentially explaining dif-
ferential effects of GRST2D on fetal growth by GD and 
GAP groups. Further investigation of the role of T2D-
related SNPs in pregnancy-related cardiometabolic traits 
such as gestational weight gain, gestational diabetes, 

Fig. 3  Change in birthweight (g) associated with GRST2D based on GD. The squares indicate the average change in birthweight, the horizontal lines rep-
resent the 95% CI, and the broken vertical lines indicate the null hypothesis of no change. GRS (Q1) is the reference group
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and gestational hypertension could provide additional 
insights into the association between GRST2D and fetal 
growth.

The mechanisms through which maternal T2D genetic 
risk induces fetal growth in early pregnancy are complex. 
A possible mechanism of the genetic effect is enhanced 
trans-placental glucose transfer which leads to increased 
secretion of fetal insulin, a growth hormone that pro-
motes fetal growth [8, 9, 35]. Our finding is supported by 
this mechanism because fetal pancreatic release of insu-
lin begins as early as 11 weeks of gestation [36]. Further 
studies should clarify the relationship between fetal insu-
lin and glucose levels during early gestation. Moreover, 
non-glycemic pathways may underlie our observed asso-
ciations because T2D shares genetic risk with metabolic 
and cardiovascular phenotypes, all of which are related 
to fetal growth [12]. Given the interdependent influence 
of the parental and fetal genomes on birthweight [8, 9], 
integrating fetal and parental genotype data will help 

elucidate the potential mechanisms underlying these 
associations [37–40].

Using multiple ancestry reference genotypes as 
anchors, we generated four GD estimates that allowed 
evaluation of GRS performance accounting for broad 
human population genetic variations. Previous studies 
tested the performance of GRS based on only GD esti-
mates using a European ancestry reference genotype [17, 
19], which could disregard the complex picture in human 
genetic variation and sociocultural differences. Using GD 
based on a single reference population could undermine 
predicting genetic influence in multi-ancestral popula-
tions that lead to increased heath disparity. For instance, 
although GRST2D was associated with fetal weight in the 
same gestational period for both the group with the clos-
est GD from African and Amerindigenous references, 
the composition of those two groups by race/ethnicity is 
different. Even within a single ancestry group, the predic-
tion accuracy of GRS may vary depending on factors such 

Fig. 4  Weekly change in fetal weight (in SD) associated with GRST2D based on GAP. The dotted curved lines represent the average change in fetal weight, 
the broken lines with colored zones represent the 95% CI, and the solid horizontal lines represent the null hypothesis of no change in fetal weight. GRS 
(Q1) is the reference group
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as socio-economic status, geographic distance, age, or 
sex of the individuals involved in the GWAS and predic-
tion cohorts [15]. Moreover, race/ethnicity and genetic 
ancestry are complex constructs with evolving definitions 
due to the social nature of self-identified racial/ethnic 
constructs and phenotypic heterogeneity within broad 
racial/ethnic groups [12, 18]. Therefore, the use of mul-
tiple GD can partly overcome this limitation and lead to 
improved accuracy in prediction of genetic influence in 
non-European populations.

Although the GRST2D used in the present analysis was 
based on a T2D GWAS involving diverse populations, 
individuals of European ancestry form the vast majority 

of the study participants [27], which is a prevailing limi-
tation of many genetic studies. Including ancestrally 
diverse individuals in genetic studies enhances insights 
into the genetic architecture of diseases [41]. Address-
ing the diversity gap in genomics is critical to ensure that 
all communities benefit from research innovations and 
precision medicine [42–44]. GRS derived from ances-
try-matched and multi-ancestry studies will have bet-
ter predictive accuracy, facilitating translation of genetic 
research into clinical care and public health policies that 
benefit a wide range of populations [45, 46].

Our study has several strengths. The GRS was derived 
from summary statistics of the largest T2D-GWAS in 

Fig. 5  Change in birthweight (g) associated with GRST2D based on GAP. Squares represents the average change in birthweight, the horizontal lines rep-
resent the 95% CI, and the broken vertical lines represent the null hypothesis of no change. GRS (Q1) is the reference group
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diverse ancestry groups [27]. The longitudinal ultrasound 
measures of fetal biometry in the NICHD Fetal Growth 
Studies allowed a comprehensive understanding of the 
influence of genetic variants on fetal growth at specific 
time points during pregnancy and at birth [21]. The study 
recruited low-risk pregnant women without previous 
history of major medical conditions and pregnancy com-
plications, thereby minimizing potential confounding 
due to maternal morbidity [21].

We acknowledge certain limitations. The fetal effects of 
the SNPs used to calculate maternal GRS have not been 
accounted because fetal genotypes are unavailable in our 
dataset. Several studies consistently reported T2D-risk 
variants in the maternal and fetal genomes may have 
directionally opposite effects on insulin-mediated fetal 
growth [10, 47]. By design, women with type 2 diabetes 
were not enrolled in the study, limiting generalizabil-
ity of the findings to women with glycemic dysregula-
tions. Given the exploratory nature of our study, we did 
not apply multiple test correction. The Hadlock formula 
was used to calculate fetal weight, which may introduce 
inaccuracies particularly in the third trimester [24]. To 
address this issue, the average of three measurements was 
used, and the same sonographers were involved through-
out the study period, minimizing intra-observer and 
inter-observer variability [23]. While GRS holds promise 
as a potential biomarker in medicine [48], it is crucial to 
validate its performance using studies with larger sample 
sizes and by integrating with non-genetic factors.

Conclusions
Our study showed that the association between GRST2D 
and fetal growth begins in early second trimester of 
pregnancy and may vary depending on the reference 
population used to infer genetic similarity. Addition-
ally, the use of both GD and GAP yielded valuable and 
alternative insights that may not be obtained when 
using either alone. The research question, study popula-
tion, non-genetic factors, and their relationship with the 
chosen reference should be considered when selecting a 
more appropriate measure of genetic similarity. Further 
investigation is needed to evaluate the extent of mater-
nal genetic susceptibility to T2D, integrated with other 
clinical and social determinants of health, can facilitate 
early detection of fetal growth changes, thereby mitigat-
ing adverse pregnancy outcomes and long-term diseases.
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