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Abstract
Background  The architecture and dynamics of T cell populations are critical in orchestrating the immune response 
to SARS-CoV-2. In our study, we used T Cell Receptor sequencing (TCRseq) to investigate TCR repertoires in 173 post-
infection COVID-19 patients.

Methods  The cohort included 98 mild and 75 severe cases with a median age of 53. We amplified and sequenced 
the TCR β chain Complementary Determining Region 3 (CDR3b) and performed bioinformatic analyses to assess 
repertoire diversity, clonality, and V/J allelic usage between age, sex and severity groups. CDR3b amino acid sequence 
inference was performed by clustering structural motifs and filtering validated reactive CDR3b to COVID-19.

Results  Our results revealed a pronounced decrease in diversity and an increase in clonal expansion in the TCR 
repertoires of severe COVID-19 patients younger than 55 years old. These results reflect the observed trends in 
patients older than 55 years old (both mild and severe). In addition, we identified a significant reduction in the usage 
of key V alleles (TRBV14, TRBV19, TRBV15 and TRBV6-4) associated with disease severity. Notably, severe patients 
under 55 years old had allelic patterns that resemble those over 55 years old, accompanied by a skewed frequency of 
COVID-19-related motifs.

Conclusions  Present results suggest that severe patients younger than 55 may have a compromised TCR repertoire 
contributing to a worse disease outcome.
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Background
Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) infection exhibits a wide range of symp-
toms, leading to diverse outcomes in the severity of 
COVID-19 disease. This viral infection triggers adap-
tive antigen-specific responses, facilitates viral clear-
ance, and initiates the formation of immune memory [1]. 
Single-cell multi-omics analyses have unveiled a lack of 
coordination between innate and adaptive responses in 
progressive COVID-19 [2]. T lymphocytes, particularly 
CD4 and CD8 T cells, recognize multiple antigens, and 
play a crucial role in influencing disease resolution [3]. 
These T cell responses persist even after asymptomatic 
infection [4], suggesting their potential as a correlate of 
COVID-19 immunological responses and supporting the 
feasibility of T cell-based diagnostic assays for SARS-
CoV-2 [5]. Significant correlations have been reported 
between circulating and tissue-resident memory T and 
B cells, supporting the validity of blood-based measures 
as a convenient, albeit imperfect, approach to assessing 
overall T-cell responses [6].

A crucial aspect of T-cell populations is their extensive 
diversity, originating from the sequences of their T-cell 
receptor (TCR). This diversity primarily arises from vari-
able (V), diversity (D, only present in TCR-beta chain), 
and joining (J) gene segments, collectively forming the 
Complementarity Determining Region 3 (CDR3) of the 
TCR, generated through random and imprecise somatic 
recombination [7]. Bulk TCR-beta (TCRβ) repertoire 
analysis (bulk TCRseq) involves studying the diver-
sity and characteristics of TCR sequences such as V(D)
J usage, repertoire overlap and TCR motif-based cluster-
ing, crucial for immune responses [8].

It has been demonstrated the potential to predict 
SARS-CoV-2 immunity from TCR profiles. In mild cases, 
the TCR repertoire remains diverse, with specific clono-
types, including SARS-CoV-2-specific ones, compared to 
severe cases [9]. While few studies have identified strong 
associations between specific V-, D-, and J-segment usage 
and prior SARS-CoV-2 exposure, severe cases show nota-
ble patterns in specific TCR Vβ gene segments [10]. We 
report this TCRβ diversity and bioinformatic analysis in 
a large and new Spanish cohort unvaccinated COVID-19 
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patients. We suggest changes in TCR diversity, clonality, 
V usage, and motif-usage.

Methods
The main aspects of the applied methodology are 
described below, from the study population to sequenc-
ing and TCR bioinformatics analysis. For further details 
regarding inclusion criteria,  parameter descriptions and 
bioinformatic pipelines, refer to Supplementary Material 
1: Supplementary Methods.

Study population
A cohort of 173 patients (n = 98 mild and n = 75 severe) 
was recruited between 2020 and 2021 from primary care 
centres and hospital facilities in Granada.   “Tempus™ 
Blood RNA Tubes” were collected from each patient for 
total RNA extraction. Clinical symptoms were recorded, 
including dermatological involvement, anosmia, ageu-
sia, myalgia, headache, fever, dyspnoea, asthenia and 
cough. All of them follow-up inclusion criteria based 
on WHO classification. Inclusion criteria were revised 
periodically to update database trying to have balanced 
samples according to age, gender and severity. Those in 
mild disease were characterized by fever, malaise, cough, 
upper respiratory symptoms, and/or less common fea-
tures of COVID-19 (headache, loss of taste or smell etc.). 
Moreover, patients in severe disease group fulfil hos-
pital admission and the following features: (i) hypoxia: 
SPO2 ≤ 93% on atmospheric air or PaO2:FiO2 < 300 
mmHg (SF ratio < 315); tachypnoea: in respiratory dis-
tress or RR (respiratory rate) > 30 breaths/minutes; or 
more than 50% involvement seen on chest imaging [11, 
12]. SARS-Cov2 infection was confirmed by positive 
Reverse Transcription Polymerase Chain Reaction (RT-
PCR) or by positive Immunoglobulin M (IgM) antibody 
test; and at the same timeline after COVID-19 recovery.

To investigate changes in the composition of T lym-
phocyte repertoires with age, we categorized the subjects 
into two groups: individuals aged 55 years or older, and 
individuals younger than 55 years. We chose this age 
threshold based on previous scientific publications that 
extensively characterized the genetic, clinical, and cel-
lular attributes of this specific cohort [11, 12]. This age 
ensured a balanced distribution between the groups, 
facilitating a more robust and reliable comparison.

Differences symptoms were studied by severity, gen-
der, and age group. The study protocol was approved by 
the Granada Research Ethics Committee (CEI Granada) 
with internal code 1329-N-21. Written informed consent 
was obtained from all participants in accordance with the 
principles of the Helsinki Declaration.

Preparation of libraries and high-throughput sequencing
RNA was extracted from whole blood using the “Tem-
pus™ Spin RNA Isolation Reagent” kit (Applied Biosys-
tems), checked its quality, and normalized it to 1 µg. For 
analyzing TCR repertories, we employed the “AmpliSeq 
for Illumina Immune Repertoire Plus, TCR beta Panel” 
(Illumina). Our library preparation included convert-
ing RNA into cDNA, amplifying specific cDNA regions 
through PCR, and partial amplicon digestion. We then 
attached Index adapters for hybridization, followed by 
PCR enrichment, library normalization, pooling, and 
sequencing on the NextSeq 500 platform (Illumina). This 
platform utilized paired-end sequencing (150 bp x 2) and 
achieved a final library depth of around 1  million reads 
per sample.

Repertoire data analysis
FASTQ files were processed using MiXCR v4.0.0 [13] 
on the Illumina platform. Default settings included read 
filtering and alignment to TCRβ locus segments (V, D, 
J, C) to assemble clonotypes. Repertoire files were cre-
ated for each sample, containing annotated V(D)J alleles, 
clonotype abundance, frequency, and CDR3 sequences. 
VDJtools v1.2.1 [14] was used to filter non-functional 
clonotypes and removed non TRCβ alleles. To address 
library size differences, we downsample normalized rep-
ertoires. Minimum acceptable depth was determined 
using Tukey criterion, excluding one sample for being 
excessively small. Downsampling enables direct metric 
comparisons, which would be biased when comparing 
repertoires of differing sequencing depths. While low fre-
quency clonotypes may be affected by this process, their 
loss is less crucial when analysing diversity and clonality 
metrics dominated by expanded clonotypes [15]. Reper-
toires were analyzed using immunarch R package. Com-
mon metrics calculated included Chao1 estimator for 
clonotype richness, normalized Shannon-Wiener and 
Gini-Simpson indices for α-diversity, and DE50 index and 
Gini inequality coefficient for clonality assessment. For 
TCR repertorie overlap, two approaches were applied: 
based on exclusively CDR3b amino acid sequence or 
combined with V and J allele. Parameters calculated 
included public clonotypes, Jaccard index, and Morisita’s 
overlap index. Repertoire overlap also assessed for top N 
expanded clonotypes. V and J allele usage were calculated 
by computing relative frequency. For hierarchical clus-
tering, weighted counts for each allele were computed. 
Finally, each V and J allele detected were subjected for 
correlation analysis against the serum biomarker vari-
ables C-Reactive Protein  (CRP), D-dimer, ferritin and 
Lactate Dehydrogenase (LDH), collected in previous 
studies [12]. In addition, V and J alleles were subjected 
for another correlation analysis against key immune cel-
lular subpopulation characterized by Mass Cytometry 
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(CyTOF) in previous studies from our group such as lym-
phocytes (CD3+) and monocyte-macrophage subpopula-
tions [11].

Clustering and motif analysis
Top 100 expanded clones for each repertoire were clus-
tered with Grouping of Lymphocyte Interactions by 
Paratope Hotspots 2 (GLIPH2) algorithm [16]. COVID-
positive (COVID+) clonotypes were selected based on 
SARS-CoV-2 antigen binding validation present in Mul-
tiplex Identification of Antigen-Specific T-Cell Recep-
tors Assay (MIRA) dataset [17]. Frequency distributions 
of motif-filtered clusters were compared among patient 
groups. Structural signatures visualized using WebLogo 
v2.8.2 [18]. Motif-filtered data were used to construct 
logistic regression models for distinguishing patient 
groups based on severity and age divisions. A Monte 
Carlo simulation with 1000 iterations was performed, 
splitting data into 75% training and 25% testing divisions. 
Models were subsequently processed for stepwise fea-
ture selection based on the Akaike Information Criterion 
(AIC). Predictions were made with the selected model for 
each iteration, and ROC curves with AUC were calcu-
lated. The average AUC was determined after 1000-fold 
Monte Carlo cross-validation, recording the number of 
motif-filtered variables considered relevant in logistic 
regression models.

Statistics
Chi-square test was applied to symptomatology variables 
with Crammer’s V for effect size. Lilliefors Kolmogorov-
Smirnov test checked normality of continuous variables. 
Mann-Whitney U-test was employed for comapring non-
normal distributions and Kruskal-Wallis test for three or 
more groups, with Dunn test for multiple comparisons. 
T-test and ANOVA plus Tukey test used for normal dis-
tributions. For multiple comparisons tests, p-values were 

corrected with Bonferroni-Holm adjustment. Effect size 
coefficients computed for each test. Two-tailed P-value 
less than 0.05 was considered significant. Spearman’s 
correlation value was calculated for each V or J compari-
son. P-values of correlation analyses were adjusted using 
Bonferroni correction, multiplying the raw p-value by 
the total number of serum or CyTOF variables analyzed. 
A significance level of 0.05 was set. Logistic regression 
binomial models were built using the glm function. The 
stepAIC function from MASS v.7.3 package was specified 
with the direction argument set to “both”, allowing for 
feature selection through both removals and additions 
of variables to the model. Analyses involving R packages 
were performed with R v 4.1.3.

Results
Association of symptomatology between groups of 
patients
A summary cohort description can be found in Table 1. 
Supplemental figures and tables can be found in Sup-
plementary Material 2: Supplementary figures and 
tables.  Prior to our analysis of the T-lymphocyte rep-
ertoire, we conducted studies to investigate changes in 
symptom distribution based on patient severity, sex, and 
age group. The results can be found in Supplementary 
Table 1. The chi-square analysis did not reveal significant 
associations between severity and the variables of sex, 
age group, or the combined group of both variables (Sup-
plementary Table 2).

A significant association between patient severity and 
the presence of various symptoms was found. These 
symptoms include dermatological conditions (p = 0.004), 
agneusia (p = 0.04), myalgias (p < 0.001), fever (p < 0.001), 
dyspnea (p < 0.001), asthenia (p < 0.001), and cough 
(p < 0.001). Fever (Cramer’s V = 0.66), shortness of breath 
(Cramer’s V = 0.59), and asthenia (Cramer’s V = 0.508) 
were the most strongly associated symptoms. When cat-
egorized according to age groups (< 55 and > = 55), no 
significant associations were found. However, there was 
a weak association between fever and gender, with fever 
being more frequent in women than men (p = 0.011, Cra-
mer’s V = 0.197).

Changes in TCR repertorie diversity, clonality and overlap
For the comparative analysis of T lymphocyte repertoires, 
we performed sample normalization through downsam-
pling. After downsampling, our TCRseq libraries yielded 
a total of 334,599 clones (Supplementary Fig. 1).

When comparing richness estimators, diversity indi-
ces, and clonality indices, we found significant differences 
between patients under 55 years old and those who were 
≥ 55 years old (details in Supplementary Fig. 2). Specifi-
cally, for patients aged ≥ 55 years old, we observed a rep-
ertoire with reduced clone richness (Chao1: p = 0.034, 

Table 1  Main characteristics of the study population and patient 
groups

Mild 
(n = 98)

Severe 
(n = 75)

Total 
(n = 173)

Severity subgroup, n (%)
Asymptomatic 37 (37.8%) 37 (21.4%)
Mild 61 (62.2%) 61 (35.3%)
Severe 65 (86.7%) 65 (37.6%)
Severe/Critical 10 (13.30%) 10 (5.80%)
Sex, n (%)
Male 45 (45.9%) 40 (53.3%) 85 (49.1%)
Female 53 (54.1%) 35 (46.7%) 88 (50.9%)
Age (yr), median [Q1, Q3] 52 [46, 62] 55 [48.5, 63] 53 [48, 64.5]
More tan 55 years, n (%)
< 55 58 (59.2%) 35 (46.7%) 93 (53.8%)
≥ 55 40 (40.8%) 40 (53.3%) 80 (46.2%)
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rrb=0.188), as well as decreased overall diversity (nor-
malized Shannon-Wiener: p = 0.034, rrb=0.188) and 
diminished diversity targeted towards more expanded 
clonotypes (Gini-Simpson: p = 0.006, rrb=0.258). This 
reduction in clonotype richness and diversity led to a 
poorer repertoire as evidenced by a decrease in Gini 
index (Gini: p = 0.004, d = 0.450) and higher clonal domi-
nance (DE50: p = 0.006, rrb=0.244).

No significant differences were observed when dividing 
patients into mild and severe categories. However, when 
severity and age groups are combined, severe patients 
under 55 years old have a less diverse and more oligoclo-
nal repertoire than mild patients of the same age group. 
Additionally, the results indicate that the diversity and 
clonality of this group of patients is similar to that of older 
patients, either mild or severe. (Supplementary Table 3, 
Supplementary Tables 4, and Fig. 1A). These differences 
exhibited a moderate effect size for all metrics (Chao1: 
p < 0.001, E2

R2 = 0.071, normalized Shannon-Wiener: 
p < 0.001, E2

R = 0.096, Gini-Simpson: p < 0.001, E2
R = 0.100, 

Gini: p < 0.001, E2
R = 0.107, DE50: p < 0.001, E2

R = 0.095). 
No significant differences were found in diversity metrics 
based on patient sex, nor in the combined group of sex 
and severity (see Supplementary Table 3). However, sig-
nificant differences were observed in the combined group 
of sex and age, indicating a diverse repertoire in female 
patients under 55 years old and a moderate increase in 

male patients under 55, suggesting a substantial influence 
of age when comparing these metrics.

The proportion of hyperexpanded clones is signifi-
cantly higher in the ≥ 55 group (p = 0.003, rrb=0.261) as 
illustrated in Supplementary Fig.  2B. A non-significant 
increase in the proportion of hyperexpanded clones was 
also observed in severe patients as compared to mild 
patients (p = 0.052, rrb=0.172) (details in Supplementary 
Fig. 2B and Supplementary Fig. 3). As with previous met-
rics, the combined classification of patients by severity 
and age group indicates that severe patients under the 
age of 55 have a distribution of hyperexpanded and rare 
clones that is more similar to those over the age of 55 
than mild patients in the same age group. (rare: p = 0.003, 
E2

R = 0.081, hyperexpanded: p < 0.001, E2
R = 0.116, Fig. 1B 

and Supplementary Table 4). According to sex com-
parisons, changes were only observed in the group that 
combine with age (Supplementary Tables 5 and 6). A sig-
nificant decrease in the proportion of hyper-expanded 
clones was observed in female patients under 55, consis-
tent with diversity results.

Regarding overlap metrics (public clonotypes, Jaccard 
index and Morisita’s index), we have found a high level of 
uniqueness, considering a clonotype the combination of 
its CDR3 amino acid sequence and its V and J allele (Sup-
plementary Fig.  5A). This uniqueness is also reported 
when we compare the overlap at different repertoire 

Fig. 1  Main results in α-diversity and clonality analyses for the combined age and severity group. (A) CHAO1 richness estimator, normalized Shannon-
Wiener α-diversity indices and Gini-Simpson index, DE50 clonality index and Gini coefficient of inequality for patient groups. (B) Differences in the pro-
portion of hyperexpanded, large, medium, small and rare clones. Classification of clones from their clonal expansion is based on the frequency intervals 
of a clonotype in a repertoire: Rare (0-1e-5), Small (1e-5-1e-4), Medium (1e-4-0.001), Large (0.001–0.01), Hyperexpanded (0.01-1). For comparisons of more 
than two groups, one-way Krsukal-Wallis test with Dunn’s test as posteriori test. For multiple post-hoc comparisons the p-value was corrected with the 
Bonferroni-Holm method. Significance level of 0.05
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depths (first 50,000, 10,000, 5000, 1000, 500 and 100 
expanded clonotypes) and also the hyperexpanded ones 
(Supplementary Fig. 5B, Supplementary Fig. 6). The more 
clonally expanded, the less degree of overlap. When com-
paring the overlap between patients within the same 
group, we found that mild and severe patients maintain a 
certain degree of overlap, particularly with the Morisita’s 
index. These findings suggest that the degree of overlap 
is inversely proportional to the level of clonal expan-
sion. When comparing the overlap between patients 
within the same group, we found that mild and severe 
patients maintained a certain degree of overlap, particu-
larly in Morisita’s index. It is interesting to note that mild 
patients younger than 55 years showed greater similarity 
in their repertories, in contrast to severe patients older 
than 55 years. Additionally, we observed similar trends 
when considering only the CDR3 amino acid sequence as 
clonotype. (Supplementary Fig. 7).

V and J allele usage in severity and age groups
The main differences in TCR repertoire architecture are 
related to severity and age. This section studies sever-
ity, age and their combination. The analysis of V allele 
usage revealed significant changes in allele frequencies 
when examining severity, age groups, and combined 
groups (see Fig. 2A-C). The results indicated a decrease 
in TRBV19 allele frequency in severe patients (p = 0.008, 
rrb=0.236). Additionally, the frequencies of TRBV12-3 
(p = 0.002, rrb = 0.271) and TRBV10-3 (p = 0.045, 
rrb = 0.177) were found to be reduced in the ≥ 55 group. 
TRBV14 frequencies exhibited a significant decrease 
among severe patients (p = 0.029, rrb = 0.194) and in 
those aged ≥ 55 (p = 0.041, rrb = 0.181), with even more 
pronounced changes observed in TRBV6-4 (p < 0.001, 
rrb = 0.314 and p < 0.001). When comparing the combined 
age and severity groups, the results are consistent with 
the previously reported changes in diversity and clonality 
in the frequencies of V alleles such as TRBV14 (p = 0.001, 
E2

R = 0.09), TRBV6-4 (p < 0.001, E2
R = 0.106), and TRBV15 

(p = 0.0017, E2
R = 0.09). Hierarchical clustering using 

overall V and J allele counts does not clearly differentiate 
patient clusters by severity, age group, or sex (see Fig. 2D-
E). Nevertheless, some V and J alleles exhibit a higher 
usage across all patients. TRBV5-1, TRBV20-1, TRBV29-
1, TRBV19, TRBV7-2, and TRBV28 have the great-
est representation, whereas TRBV9 and TRBV10-3 are 
more frequent in certain individuals. TRBJ2-7, TRBJ2-1, 
TRBJ2-5, and TRBJ2-3 were the most prevalent J alleles, 
while another group consisting of TRBJ1-1, TRBJ1-2, and 
TRBJ2-2 displayed a more diverse distribution. The Jens-
sen-Shannon divergence index detected subgroups with 
comparable allelic usage distributions, specifically for V 
alleles (Supplementary Fig.  8). Hierarchical clustering 
dendrograms provided clearer classifications of clades, 

although heterogeneity in severity, age, and sex persisted 
within those clades.

The correlation analyses show the significance of a 
small group of V and J alleles with serum levels of CRP, 
ferritin, D-dimer, and LDH in different patient groups 
and subgroups (Supplementary Material 3). We highlight 
the previously mentioned TRBV15, which has a nega-
tive correlation with ferritin (Spearman’s rho = -0.302, 
p value = 0.007) and CRP (Spearman’s rho = -0.268, p 
value = 0.032) in the total patient group, as well as with 
D-dimer in mild patients (Spearman’s rho = -0.421, p 
value = 0.040). Additionally, a significant negative correla-
tion was detected for TRBV6-4 with CRP levels (Spear-
man’s rho = -0.267, p value = 0.033) in the total patient 
group and for TRBV19 with D-dimer levels in the same 
group (Spearman’s rho = -0.332, p value = 0.004).

Regarding the correlations with CyTOF populations, 
we highlight the one detected in mild patients between 
TRBV12-5 and NCM-CD11b+ (Spearman’s rho = 0.577, 
p value = 0.004), and between TRBV19 and the same cell 
group (Spearman’s rho = 0.497, p value = 0.033). We also 
highlight the negative correlation between TRBV6-4 and 
the T lymphocyte population (Spearman’s rho = 0.610, p 
value = 0.015).

CDR3b sequence inference by GLIPH2 and MIRA
We applied GLIPH2 to the top 100 most expanded clo-
notypes per repertoire, identifying 16 local- 20 global-
alignment clusters (Additional file 4). Each cluster has 
on average 5–6 CDR3b sequences, with some global 
clusters having 11–13 sequences. Network analysis of 
these 36 clusters revealed some composed exclusively of 
expanded CDR3b in mild (cluster LSPLA_4_22), severe 
(cluster S%GSYE_EGQST), or the severe subgroup 
under 55 years old combined with ≥ 55 patients (cluster 
YSSGE_4_22) (Fig.  3A, Additional file 3), aligning with 
diversity, clonality, and gene usage results. However, 
most clusters contained CDR3b sequences from all four 
patient subgroups or unrelated subgroups.

To enhance the functional significance, we filtered 
CDR3b sequences from the 36 global and local clusters, 
prioritizing those experimentally validated as COVID 
reactive in the MIRA assay (labelled as “COVID+”). We 
then extracted and summed the frequencies of these 
COVID + sequences by repertoire, grouping them by 
their GLIPH2 cluster. After this, the number of clusters 
was reduced reducing from 36 to 24 by eliminating clus-
ters without CDR3b COVID + sequences.

Our results showed that four clusters with CDR3b 
“COVID+” sequences (S%GYE_AEFGHLRSVWY, 
SS%YE_AGST, SP%YE_GHNRST, SL%SYE_DGNST)

exhibited significant frequency differences between 
combined severity and age groups, despite not being 
exclusive in the GLIPH2 network (Fig.  3B). Clusters 
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S%GYE_AEFGHLRSVWY and SL%SYE_DGNST were 
of particular interest as they showed a tendency for 
severe patients under 55 to have a profile similar to that 
of patients over 55, although not as pronounced as in 
the previous sections. This less pronounced tendency is 
reflected in the logistic regression models, with variable 

number of times each cluster is selected as relevant. 
However, another GLIPH2 cluster (SPT%AGE-ASV) is 
highlighted as a relevant motif in both age groups and in 
the combined age-severity groups (Supplementary Tables 
7 and 8).

Fig. 2  Main results of the analyses using genes. For allele selection we excluded those clonotypes with ambiguous TRBV and TRBJ annotation. (A) V 
alleles with significant differences in frequency between mild and severe patients and (B) patients younger and older than 55 years. (C). Significative 
TRBV frequencies between the combined age and severity group. The allele frequency is calculated by weighting the degree of clonal expansion of the 
clonotype in which it is found. (D) Heatmap with hierarchical clustering of the total number of patients with the total number of V alleles and (E) J alleles 
detected. The expression levels in both heatmaps have been represented by z-score standardization of the total counts for each allele. Mann-Whitney U 
test was performed for two-group comparisons and one-way Kruskal-Wallis test for 4-group comparisons, plus post-hoc comparisons by Dunn’s test and 
corrected by the Bonferroni-Holm method (significance level of 0.05)
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Differences between repertoires were notable upon 
visualizing the frequencies of CDR3b ‘COVID+’ 
sequences in each group (see Supplementary Fig.  9). 
These differences remained significant after removing 
outliers. WebLogo analysis identified signature varia-
tions at intermediate positions in the CDR3b sequence 
(Fig.  3C), influencing antigen affinity based on mole-
cule type(s) or binding strength. Further examination of 
CDR3b COVID + sequences revealed several previously 
mentioned V alleles. Notably, TRBV12-3 was present in 
CDR3b chains of all four selected groups, with minor 
presence of TRBV5-5 and TRBV14/TRBV04-02, indicat-
ing ambiguous V allele coding (Supplementary Material 
4).

Discussion
Here, we reported a non-significant decrease in diver-
sity, as well as an increase in clonality in severe patients 
compared to mild patients, consistent with other stud-
ies [19, 20]. Present results are consistent with findings 
supporting that COVID-19 infection and its severity are 
associated with T-cell lymphopenia [20–23]. Addition-
ally, a reduction in diversity and the proportion of hyper-
expanded clones during convalescent phase compared to 
discharge phase has been reported in recovered patients 
[24]. Due to a more sustainable T-lymphocyte response 
and a greater clonal expansion in severe patients [19], the 
lack of significant diversity and clonality changes can be 
attributed to the transition of mild patients from a dis-
charge to a convalescent state.

Differences in diversity and clonality are more pro-
nounced when patients are divided into < 55 and ≥ 55 age 
groups, with significant differences observed. Previous 

Fig. 3  Main results of the GLIPH2 analysis. (A) Network with the 36 global and local clusters initially identified after selection of the 100 most expanded 
clonotypes of each repertoire. (B) Box-violin plot of the 4 clusters identified by GLIPH2 after selection and filtering of CDR3b COVID + sequences and 
with significant changes between age and sex groups. (C) Sequence logos of the CDR3b COVID + sequences of each GLIPH2 cluster shown in (B). Mann-
Whitney U test test was performed for two-group comparisons and one-way Kruskal-Wallis test for 4-group comparisons plus Dunn’s test and corrected 
by the Bonferroni-Holm method (significance level of 0.05)

 



Page 9 of 11Marín-Benesiu et al. Human Genomics           (2024) 18:94 

studies have shown that diversity of TCR repertoires of 
COVID-19 patients decreased with age [7, 25, 26]. How-
ever, our study has revealed that severe patients younger 
than 55 have significant changes in diversity and clonality, 
with values very similar to those patients older than 55, 
regardless of severity. Given the consistent production 
of naive T lymphocytes in younger patients, a plausible 
explanation for this phenomenon could be the dysfunc-
tion of interferon 1 (INF 1) in disease severity [27].

Regarding repertoire overlap, our findings indicate sig-
nificant disparity in the similarity of repertoires between 
mild and severe patients, particularly with hyperex-
panded clones. The level of repertoire overlap is low, and 
it decreases as clonal expansion increases. This result fol-
lows the findings of Chang et al., where a minimal shar-
ing of GLIPH2 clustered clonotypes between mild and 
severe patients was detected. A possible explanation for 
the limited overlap in repertoire between groups is the 
variation in antigen selection, leading to the use of differ-
ent sequence motifs targeting the same antigen [19, 28]. 
Previous studies have demonstrated a greater degree of 
overlap between patients within the same severity group.

In the present study, we identified a predominant use 
of V alleles TRBV7-2, TRBV20-1, and TRBV27 and J 
alleles such as TRBJ2-1, TRBJ2-3, and TRBJ2-7 in almost 
all COVID-19 patients. These alleles are involved in high 
skewness of V/J usage between COVID-19 patients and 
healthy donors [21–23, 28]. Our analyses show a sig-
nificant decrease in the frequency of TRBV19, TRBV15, 
TRBV6-4, and TRBV14 among severe patients compared 
to mild cases. These findings suggest a potential associa-
tion between the frequency of these alleles and disease 
severity. As the differential usage of V/J genes between 
different severity groups is limited [19], present finding 
is of relevance for the differentiation of mild and severe 
cases based on V alleles frequency.

Interestingly severe patients < 55 have a frequency of 
TRBV15, TRBV14 and TRBV6-4 similar to ≥ 55 patients, 
following the same line as diversity and clonality results. 
Several studies have reported noteworthy changes in 
mentioned alleles regarding COVID-19 severity [10, 
19]. Both, our study, and data from Chen et al., found 
lower frequencies of TRBV19, TRBV15, and TRBV6-4 
alleles. The exception was that Chen et al. found a pro-
nounced increase in TRBV14 allele frequency among 
severe patients. This event is mainly due to TCR affinity 
for superantigenic regions of SARS-Cov2 [10]. On the 
other hand, Li et al. reported decreased TRBV15 and 
other V alleles in convalescent patients [20]. Based on 
their findings, we suggest that these discrepancies may be 
due to significant changes in TRBV14 frequencies during 
the later phases of infection, which may have a greater 
impact. The decreased occurrence of TRBV6-4 allele in 
severe patients compared to mild ones is linked to lower 

presence of Tc17/MAIT cells; in both acute illness and 
post-infection phases as these cells have a preferential 
TRBV6-4 usage [27]. Moreover, TRBV19 and TRBV15 
vary T lymphocyte subpopulations at lower levels and 
changes in their frequencies are associated with an intri-
cate dynamic in T cell repertoires [27].

Finally, we have identified clusters with distinct motifs 
in central regions of CDR3, which is consistent with pre-
vious findings [19, 21, 29, 30]. We observed that certain 
clusters of CDR3b MIRA-positive sequences have a fre-
quency distribution in severe patients younger than 55; 
with a tendency that follows the same line as diversity, 
clonality and gene usage results. However, caution should 
be taken since the presence of sequence motifs could be 
influenced by cohort-specific characteristics. This phe-
nomenon was detected using deep learning analysis with 
variational autoencoder for finding CDR3b signatures 
linked to COVID-19 severity between two large TCR 
repertoire datasets  [31]. In addition, the frequencies of 
well differentiated GLIPH2 clusters can vary notably 
between samples belonging to the same group [32].

Present study has some limitations; TCR repertoire 
architecture changes could be influenced by Human 
Leukocyte Antigen (HLA) genotype and TCR capture 
methodology biases [7, 33]. In addition, bulk TCRb 
chain analysis cannot capture the absolute clonal iden-
tity which comprises paired alpha and beta chains  [34]. 
Another limitation to consider is that the collected data 
were without fractionating the PBMCs (Peripheral Blood 
Mononuclear Cells), making it difficult to distinguish 
specific responses from CD8 + or CD4 + T lymphocytes. 
In addition, TCR repertoires are strongly influenced 
by other variables intrinsic to the study cohort or at an 
individual level [32]. Finally, filtering CDR3b sequences 
in GLIPH2 clusters may have excluded unannotated 
sequences with unknown specificity to SARS-CoV-2 anti-
gens. Future studies, such as a more detailed inference of 
CDR3b sequences and HLA data, will address these limi-
tations using present reported data.

Conclusions
In summary, TCR repertoire analysis is a powerful tool 
to accurately study changes in T-cell populations, consid-
ering the complex dynamics to which they are subjected 
during COVID-19 infection. Present analysis shows that 
severe patients below 55 have a similar repertoire of 
characteristics in terms of diversity, clonality and gene 
usage to patients above 55 regardless of their prognosis.
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