
Faraggi et al. Human Genomics           (2024) 18:89  
https://doi.org/10.1186/s40246-024-00655-z

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Human Genomics

Rapid discrimination between deleterious 
and benign missense mutations in the CAGI 6 
experiment
Eshel Faraggi1,2*, Robert L. Jernigan3 and Andrzej Kloczkowski4,5,6 

Abstract 

We describe the machine learning tool that we applied in the CAGI 6 experiment to predict whether single resi-
due mutations in proteins are deleterious or benign. This tool was trained using only single sequences, i.e., with-
out multiple sequence alignments or structural information. Instead, we used global characterizations of the protein 
sequence. Training and testing data for human gene mutations was obtained from ClinVar (ncbi.nlm.nih.gov/pub/
ClinVar/), and for non-human gene mutations from Uniprot (www.uniprot.org). Testing was done on post-training 
data from ClinVar. This testing yielded high AUC and Matthews correlation coefficient (MCC) for well trained examples 
but low generalizability. For genes with either sparse or unbalanced training data, the prediction accuracy is poor. The 
resulting prediction server is available online at http://​www.​mamir​is.​com/​Shoni.​cagi6.

Introduction
In recent years, the field of genetic interpretation is bur-
geoning. As of March 7, 2023, a Google Scholar search 
of the terms ‘predict gene variant’ gives 1,960,000 results. 
Valuable applications are emerging from these mutation 
studies. To mention a few examples: genetic variation 
and response to cancer treatment [1], mental health [2], 
geographic location of a specimen [3], educational attain-
ment and longevity [4, 5], splicing [6], schizophrenia [7], 

non-alcoholic fatty liver disease  [8], and obesity  [9]. 
The Critical Assessment of Genome Interpretation 
(CAGI) [10, 11] experiment was developed to objectively 
assess computational methods for predicting the pheno-
typic outcomes of genomic variations, and to monitor the 
progress of research in this field. The work described here 
participated in the sixth round of the CAGI experiment.

Predicting the effects of genetic variations is a funda-
mental problem in biology and medicine. Machine learn-
ing based methods have proven to be the most successful 
approaches for protein structure prediction [12–14] and 
are promising contenders to tackle the problem of pre-
dicting the effects of gene variants as well. Distinguish-
ing computationally, between variants that are associated 
with damage (deleterious) and those that are not (benign 
or neutral) is a major aim of this research. [9, 15–34]

Our participation in CAGI was restricted to Missense 
Mutations (MM): a change in a single codon that results 
in a different amino acid. MMs conserve the length of the 
protein and result in a single amino acid change in the 
expressed protein. Sometimes the terms Single Amino 
acid Variant (SAV)  [35] or NonSynonymous Variant 
(NSV)  [36] are used to describe such mutations. Our 
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participation in the CAGI6 experiment involved the pre-
diction of the impact of MMs of the human gene Aryl-
sulfatase A (ARSA) on its enzymatic activity. ARSA 
breaks down cerebroside 3-sulfate into cerebroside and 
sulfate. Cerebrosides are a group of lipids involved in 
animal muscle and nerve cell membranes. Variations in 
ARSA are implicated in Metachromatic Leukodystrophy, 
a disorder characterized by neuro-cognitive decline. In 
severe forms of the disease patients only survive to early 
childhood. [37]

Our approach for CAGI6 focused on predicting the 
phenotype of a MM purely from the amino acid sequence 
without additional input from structural information or 
evolutionary information from multiple sequence align-
ments. Instead, we tried to capture the local and global 
physical environment of a residue and the protein. As 
was shown in our earlier work  [38], such an approach 
coupled with training machine learners on a large data-
base, can compensate for some loss of information and 
provide robust predictions when alignments are unavail-
able. Additionally, due to the vast number of possible 
genetic variations, the time it takes to make predictions 
about their impact is crucial for large scale studies.

Materials and methods
We would like to numerically describe the local and 
global information from the amino acid sequence, as 
a substitute for information extracted from multiple 
sequence alignments. We would also like to find a rep-
resentation of a given protein that is independent of its 
length. We do this by calculating projections of proper-
ties of the sequence on a set of preselected functions. 
Here we use discrete periodic functions as explained 
later. Reliance on global features instead of multiple 
sequence alignments follows the same approach that was 
used for ASAquick  [38]. We will also use ASAquick as 
part of the input features. The Accessible Surface Area 
(ASA), sometimes called Solvent-Accessible Surface 
Area, is the surface area of a protein accessible to a sol-
vent and is usually measured in Å

2.
Numerically capturing the local and non-local informa-

tion from the amino acid sequence of a protein is crucial 
for any predictions from that sequence. We also wish to 
find a representation of a protein that is independent of 
its length. We would like to characterize an observable 
quantity, a, along the sequence. That is, characterize the 
set of values {ai}Si=1

 , with S the number of residues in the 
sequence. For example, ai could be the value of the ASA 
for the residue at position i.

We name the first method as ‘joint’, and express its 
value, for a given periodicity, n, as, Mj(n) . To calculate 
Mj(n) , we take the first 2n residues, sum up the observa-
bles ai for i = 1, .., n , and subtract the observables ai for 

i = n+ 1, ..., 2n . We repeat this for the rest of the 2n 
blocks in the sequence. We ignore any remaining tail that 
is not covered by the 2n blocks. We then normalize this 
sum by dividing by 4 S0.2 . We chose this normalization 
constant after some testing, to obtain distributions visu-
ally in the interval [−1, 1] independent of the length of 
the sequence.

The second method is termed ‘disjoint’, and its value is 
expressed by Md(n) , for a given periodicity n. To obtain 
Md(n) for n > 1 , we sequentially labeled each residue in 
the sequence as {1, 2, ..., n, 1, 2, ..., n, 1, 2, ...} . We will use li 
below to denote this label. We again ignore any remain-
ing sequence tail that does not fit exactly within the 
n-blocks. We then calculate

For n = 1 , the sum in Eq.  (1) is taken as four times 
the average value of ai along the sequence. Note that 
Mj(1) = Md(2) . We again selected the normalization to 
obtain distributions visually in the interval [−1, 1] inde-
pendent of the length of the sequence.

To represent a given sequence, we calculated for it 
Mj(n) and Md(n) with n = 1, .., 400 . For a given n we 
z-scored the values of Mj(n) across all mutation data, and 
similarly for Md(n) . Note that for a given mutation these 
values are calculated for the mutated sequence. By using 
this method we are able to represent a sequence by its 
patterns of discrete periodicity, irrespective of its length. 
Because of some similarity with moment integrals, we 
will use the term to refer to them here. Other efforts 
have been made to represent sequences in length invari-
ant ways [39–45]. However, these approaches are derived 
from discretization of the continuum assumption.

ASAquick  [38] is our single sequence ASA predic-
tor. We also used features developed for it here. These 
include the length of the chain divided by 1000, the resi-
due type density of the whole chain (25 values), and the 
directional residue-pair density (625 values). We have 25 
residue types because we account for atypical residues 
(‘B’,‘Z’), unknowns (‘X’), and chain gaps (‘!’,‘-’). The out-
put and inputs are stored in separate files in a directory 
named for that specific mutant.

For a given residue mutation, we also used a window of 
neighboring residues as input. Based on previous experi-
ence we chose a 10-residue window on both sides of the 
mutated residue (21 residues total), capturing some of the 
local sequential environment of the residue. Each residue 
in this window is represented by its ASAquick average 
RASA prediction and the associated standard deviation 
of the prediction, and seven parameters characterizing 
their physical and chemical properties. These include a 

(1)Md(n) =
1

3 · S0.2

S∑
i=1

(
−1+

2li
n− 1

)
ai ( For n > 1)
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steric parameter (graph shape index), hydrophobicity, 
volume, polarizability, isoelectric point, helix probability, 
and sheet probability  [46, 47]. We also include the pre-
diction of ASAquick for this window size on the original 
(unmutated) sequence. Additionally, we take the differ-
ence between the RASA predicted for the original and 
mutated sequence over a window of 15 residues (31 resi-
dues total) and the differences between their predicted 
errors. We include in this input the average difference in 
RASA and error predictions over the entire window. The 
nomenclature, size, and short explenation of the input 
features is given in Table 1.

We use a two-vector for the output. We code the phe-
notype, neutral or deleterious, as, (−1, 1) or (1,−1) , 
respectively. This scale is used since we are using a bi-
level hyperbolic tangent for our activation function, 
meaning that our networks predict in the [−1, 1] interval. 
When making a phenotype assignment we reverse the 
sign of the second coordinate and take the average over 
the two-vector. We tested several architectures for our 
networks. We used a momentum value of 0.035 and 0.05, 
a hyperbolic tangent activation function with an activa-
tion parameter of 0.05, a learning rate of 0.00021 and 
trained the networks until there was no improvement 
in the over-fit protection set accuracy for 400 epochs 
(training iterations). The networks achieved this point 
after a few hundred to a few thousand epochs. For this 
study we used a general two hidden layer neural network 
(GENN)  [48]. The parameters were selected based on 
previous experience and by grid searches on random sets 
with a few thousand instances.

Data for human MMs was collected on May 27, 2021 
from the ClinVar database  [49–52] (ncbi.nlm.nih.gov/
pub/ClinVar/) which provides information about the 
association between disease and mutation for human 
genes. This data is a list of mutations and their clinical 

associations. Sequence changes are described by a gene 
identifier, mutation positions, and the sequence change. 
To limit the complexity of the prediction problem, we 
collected only MMs. We found approximately 2,300,000 
entries in ClinVar. Out of these, approximately 700,000 
were of the ‘single nucleotide variant’ type, with approxi-
mately 80,000 MM entries with conclusive or likely path-
ogenic label.

We have found instances of MMs with multiple entries 
in ClinVar. For 610 of these MMs, their pathogenicity 
labels were identical and we accepted them as labeled to 
the dataset. For four MMs the pathogenicity labels were 
in conflict. Out of these four, for three the deleterious 
labels involved a specific disease association. We accepted 
these three to the dataset as deleterious instances. One 
entry without specific disease association and conflicting 
pathogenicity was removed from the dataset.

Non-human data was collected from the Swiss-Prot 
dataset  [53, 54] (www.uniprot.org). There are two types 
of sequence variation described in Swiss-Prot: naturally 
occurring sequence variants and mutagenesis variants. 
For some of the mutagenesis entries, clear phenotype 
information is given. Unfortunately, there is little uni-
formity in the description of phenotypes. We down-
loaded the Swiss-Prot database and then developed 
manually curated key-word searches to assign a given 
phenotype descriptor in Swiss-Prot as benign or deleteri-
ous. We consider the natural variant entries to be benign 
mutations. For mutagenesis variants, we use terms 
such as “abolish” and “inhibit” to find MMs that cause a 
change in phenotype. In May 2021 we collected 71,460 
non-human MMs. Out of these, 18,873 MMs were cat-
egorized as benign and 52,587 as deleterious.

On December 6, 2021 we again collected data. In this 
case we gathered 81,902 human MMs and 72,094 non-
human MMs. In the December dataset, 3325 human 

Table 1  Input features description

Description of individual-input-file-predictors. 
a The number of values in the input file

File Size
a Description

physpar.zs 147 z-scored physical parameters in 21-residue window

asawinprf.zs 42 z-scored RASA prediction and standard deviation in 21-residue window

asawinprfmut 42 RASA prediction and standard deviation in 21-residue window for mutated sequence

momintdj.asa 400 Disjoint moment integral for predicted RASA for n = 1, ..., 400

genn.gin.orig 651 Single and two residue composition and sequence size for unmutated sequence

genn.gin 651 Single and two residue composition and sequence size for mutated sequence

asamutdif.zs 70 Predicted RASA change upon mutation

momintdj.asa.err 400 Disjoint moment integral for RASA estimated error

momintj.asa 400 Joint moment integral for predicted RASA

momintj.asa.err.zs 400 z-scored joint moment integral for RASA estimated error
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MMs and 634 non-human MMs were new and not pre-
sent in the May dataset. Out of the new human MMs, 
2638 were categorized as benign and 687 as pathogenic. 
Out of the new non-human MMs, 31 MMs were catego-
rized as benign and 603 MMs as deleterious. The predic-
tion server used in CAGI6 was trained with the datasets 
collected in Dec. 2021. Estimated prediction accuracy 
was obtained from the prediction of exclusive December 
data by networks trained on May 2021 data. The size of 
the datasets is summarized in Table 2.

At the beggining of this project we applied a naive 
and quick approach of generating training and over-
fit sets. We randomly selected those sets from the col-
lected MM data. An outcome of this is that the server 
that participated in the CAGI 6 experiment was trained 
on unbalanced sets in terms of pathogenicity assignment. 
Additionally, training and over-fit sets contained different 
variations of identical genes. The underpinning assump-
tion is that pathogenicity is determined by local bio-
chemistry. This ignores complex and non-local processes 
that premeate biology. These effects resulted in skewed 
input feature importance ranking and poor prediction 
quality in CAGI 6.

We report accuracy in several ways. We used the RMSE 
between predicted and labeled states as the main accu-
racy measure used by the neural networks during train-
ing. We also estimated the classification ability of the 
predictor using the Area Under the the receiver operat-
ing Curve (AUC), and the Matthews Correlation Coeffi-
cient (MCC).

For the CAGI6 experiment we generated six models 
with different combinations of trained weights. For each 
model we selected 12 networks that performed best on 
their respective over-fit set. We averaged the predicted 
pathogenicity from the 12 networks and used the stand-
ard deviation as error estimates. For models 1–3 we 
used networks with 42 nodes per hidden layer. Weights 
for model 1 were trained exclusively on human MMs, 
weights for model 2 were trained exclusively on non-
human MMs, and weights for model 3 were trained on 
both human and non-human MMs. For models 4–6 we 
used networks with 22 and 32 nodes per hidden layer. 
Weights for model 4 were trained exclusively on human 
MMs, weights for model 5 were trained exclusively on 

non-human MMs, and weights for model 6 were trained 
on both human and non-human MMs.

Results
The choice which input features to use in this prediction 
server was critical and involved several considerations. 
The first was the speed of generating the input feature. 
For the work here we use only single sequence features, 
i.e., features that don’t need multiple sequence align-
ment to be calculated. We then considered the effec-
tiveness of these features. The server that participated 
in the CAGI 6 experiment was trained on a unbalanced 
sets and somewhat noisy data. As we shall see below that 
resulted in skewed input feature importance ranking and 
poor prediction quality. In Table 3 we show the average 
over-fit protection set (30% of data excluded from train-
ing) prediction accuracy for each individual input feature. 
For some features a clear advantage is evident. To obtain 
the list of features for our predictor, we added individual 
input features, ranked by lowest error, until adding them 
does not improve the prediction, the line in the table rep-
resents this cutoff. Note that we have also tested adding 
an input feature to the top performing feature (genn.gin.
zs) and arrived at a list similar to the one in Table 3. In 
this case we found input features genn.gin.zs and genn.
gin.orig.zs are most effective. This is an artifact from the 
unbalanced nature of our data. Since for many genes 
the distribution of phenotypes in the database is heavily 
skewed in one direction (benign or deleterious), the net-
work found that it would be most effective to recognize 
the gene as a way of determining the assignment. Work 

Table 2  Datasets

 Summary of data used for generating and testing server

May 27, 2021 December 6, 2021

Human Non-Human Human Non-Human

Benign 41,123 18,873 44,342 18,931

Pathogenic 36,339 52,587 37,560 53,163

Table 3  Test set prediction error for individual input features

 Individual test set error for each of the input features used (above line) and 
some input feature not used (below line) in our server

Feature Error STDEV

genn.gin.orig.zs 0.58 0.03

genn.gin.zs 0.59 0.01

asamutdif.zs 0.61 0.03

momintdj.asa.zs 0.65 0.01

physpar.zs 0.65 0.02

genn.gin 0.66 0.03

momintj.asa.err 0.66 0.03

momintj.asa.err.zs 0.66 0.03

momintdj.asa.err.zs 0.66 0.02

genn.gin.orig 0.67 0.02

momintj.asa 0.67 0.03

physpar 0.68 0.01

momintdj.asa 0.68 0.02

momintj.asa.zs 0.69 0.02

asamutdif 0.99 0.00
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done following the completion of the CAGI 6 experiment 
demonstrates that physpar.zs is the most informative fea-
ture from our set of predictors.

The following describes the nomenclature used in 
Table 3. genn.gin contains the length of the mutated pro-
tein divided by 1000 (1 value), the residue composition 
with 25 residue types accounting for atypical residues, 
unknowns and chain gaps (25 values), and the direc-
tional two-residue composition (625 values); genn.gin.
orig is identical to genn.gin except that it is calculated 
for the original (unmutated) sequence; asamutdif con-
tains the average and standard deviation, taken along the 
sequence, for the difference between the predicted RASA 
for the mutated and original protein, and similarly for 
predicted RASA error (4 values), the same procedure is 
done for the absolute value of the difference in predicted 
RASA and its error between mutated and original protein 
(4 values), and, it contains the difference in RASA and 
error prediction, between mutated and original protein, 
for a window of 15 residues to each side of the mutated 
residue (62 values); momint refers to the moment integral 
with the suffices ‘j’ for joint and ‘dj’ for disjoint, and ‘asa’ 
and ‘asa.err refer to the predicted RASA and its error 
respectively (400 values). An ending of ‘zs’ indicated that 
the input features were z-scored, its absence indicates 
that features were not z-scored.

We also analyzed the benefit of averaging over dif-
ferent realizations of the networks. In Fig. 1 we present 
the AUC and MCC, for prediction of phenotype on the 
validation set, as a function of the number of networks 
used in the average. From the plot it appears that in this 
case there is no significant improvement in accuracy 
for averaging over more than about a dozen networks. 
Therefore, we trained six randomly initialized networks 
with a momentum value of 0.035 and six randomly ini-
tialized networks with a momentum value of 0.05. We 
then average the 12 networks for each case to obtain both 
an average prediction and a prediction error estimate for 
the server. We assign a prediction by averaging the raw 
score of the networks and use the standard deviation for 
error estimate. Estimated over-fit prediction error and 
standard deviation for the trained networks are 0.411 and 
0.004 respectively.

Evaluation of the prediction was done by recollect-
ing new MMs from the ClinVar dataset, and testing our 
approach on this new data. To evaluate the accuracy of 
phenotype prediction we calculated the MCC and AUC. 
Student’s t-test analysis revels for this case a t-value of 
2.6 with more than 3000 degrees of freedom indicating 
more than 99% confidence in rejecting the assumption of 
no connection between phenotype prediction and label. 
We have compared our prediction server to the predic-
tions of Provean [28, 55] and PolyPhen-2 [24, 56] on our 

validation test set. For Provean we find an AUC of 0.835 
and an MCC of 0.481, while for PPH2 we find an AUC of 
0.811 and an MCC of 0.471. Our approach gives an AUC 
of 0.953 and an MCC of 0.780 for this set. One should 
stress that our high predictive power here results from 
the unbalanced nature of ClinVar data, and reflects the 
neural networks ability to learn this artifact; and not to 
discern between deleterious and benign MMs. This is 
further displayed in the low ranking our method received 
in CAGI6.

Discussion
For our limited training dataset with an unbalanced dis-
tribution of phenotypes, global features became more 
dominant, as shown in Table 3. In our data, 4829 human 
genes had only benign MMs and 1131 had only delete-
rious MMs. 3243 had both phenotypes, however, 1210 
of these had a single MMs example for one of the phe-
notypes. Our testing allows us some confidence in the 
usefulness of our predictor for genes for which balanced 
training data exist. However, properly balanced data is 
a critical issue, and gathering and processing it for this 
work was a major difficulty.

Conclusions
We have designed and built a fast machine learning 
server for the prediction of the phenotype of MMs in a 
single sequence-based approach. Its speed results from 
not using sequence alignments. To compensate for some 
of the information loss due to the lack of sequence align-
ments, we designed a new type of input feature that cap-
tures some of the sequence information at the global level 

Fig. 1  Values for the area under the receiver operating curve (AUC) 
and the Matthews correlation coefficient (MCC) for the prediction 
of missense mutation, versus the number of neural networks 
averaged over, in a simulated read-world test. Networks trained 
on human ClinVar data up to May 27, 2021 and tested with MMs 
collected from ClinVar on Dec. 6, 2021 that do no appear in the May 
27, 2021 dataset
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by integrating the sequence with periodic weights. The 
method produced fast and relatively accurate predictions 
for human genes as estimated from testing on post-train-
ing data from ClinVar. However, further examination 
of the prediction reveals a strong bias in the predictor 
resulting from an unbalanced training set and noisy data. 
For genes for which the training data is either sparse or 
unbalanced the prediction accuracy is poor. Although 
global features were found useful, more work, especially 
on capturing the phase information in the sequence, 
can potentially significantly improve their usefulness in 
protein properties prediction. The resulting prediction 
server is available on-line at http://​www.​mamir​is.​com/​
Shoni.​cagi6.
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