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Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, 
persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been 
designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to 
evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, 
and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced 
pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent 
studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different 
donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this 
study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to 
PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived 
cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were 
used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the 
tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide 
range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 
19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For 
most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 
100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also 
demonstrated the feasibility of using a population-based human in vitro method to quantify population variability 
and identify cardiotoxicity risks of emerging contaminants.
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Introduction
Per- and poly-fluoroalkyl substances (PFAS) have utility 
in many industrial and consumer-use products because 
of their repellant and lubricating properties, as well as 
resistance to high temperatures. High-volume produc-
tion, wide-spread use, and resistance to degradation has 
resulted in ubiquitous presence of PFAS in the environ-
ment; humans can be exposed through water, soil, food 
and by inhalation [1–6]. Indeed, exposure and biomoni-
toring studies detected PFAS in nearly all tested human 
and environmental samples [7, 8]. Even though there 
are thousands of PFAS on various chemical inventories, 
there is little to no data on the potential human health 
hazards for the vast majority of these substances [9, 10]. 
Some PFAS have been shown to be harmful to humans 
[11–13]; however, only a handful of these have been 
studied in detail. Even fewer PFAS have sufficient data to 
establish causal associations with human disease because 
approaches relying on epidemiological data and studies 
in animals are not possible to scale up to dozens or hun-
dreds of PFAS that are produced in large volumes.

Cell-based assays have been proposed as a sensible 
approach to test various PFAS in a time- and resource-
efficient manner [10, 14, 15]. Many PFAS have already 
been tested in cells from the liver, immune, nervous, and 
other organ systems [16–21]. Still, other tissues/cell types 
have been suggested to be potential targets for PFAS 
toxicity in humans [8] and additional testing is needed. 
Recent studies using diverse human cell types from 
potential target organs (human induced pluripotent stem 
cell (iPSC)-derived hepatocytes, neurons, and cardio-
myocytes, primary human hepatocytes, endothelial and 
HepG2 cells) showed that PFAS demonstrated cell-spe-
cific activity highlighting the potential complexity of their 
effects [22, 23]. Interestingly, by evaluating PFAS effects 
on different cell types, these studies corroborated previ-
ous mechanistic and laboratory animal research suggest-
ing that PFAS could contribute to cardiovascular disease 
[24]. Because cardiovascular disease is a leading public 
health burden worldwide and environmental risk fac-
tors are known to contribute to the global burden of car-
diovascular disease [25], additional studies of potential 
effects of PFAS on human cardiomyocytes are warranted.

iPSC-derived cardiomyocytes are not only a powerful 
tool for determining what drugs and chemicals might 
exert adverse effects on the human heart [26–28], but 
they can also be used as a population-wide human in 
vitro model to better understand susceptibility [29, 30]. 
Many previous studies showed that these cells are an 
effective model for characterization of cardiotoxicity 
hazard, risk, and population variability of environmen-
tal chemicals and can be used in a medium- to high-
throughput format to test large numbers of substances 
[31–36]. Characterization of inter-individual variability 

in hazardous effects of chemicals is often an unaddressed 
need in risk assessment [37], and in vitro methods have 
been proposed to replace default assumptions on the 
extent of inter-individual variability with chemical-spe-
cific data [38].

Therefore, in this study, we used a human population-
based in vitro model of iPSC-derived cardiomyocytes 
from multiple donors to evaluate the potential cardio-
toxicity and quantify the inter-individual variability in 
responses to a structurally diverse set of 56 PFAS. These 
data were then interpreted in the context of risk assess-
ment by comparing the observed bioactivity to measured 
or predicted exposures to establish margins of exposure. 
The bioactivity data also was used to identify structure-
bioactivity relationships that can be used to group these 
chemicals and infer potential hazards and risks of other 
PFAS that are yet to be tested [39, 40].

Experimental methods
Chemical and biological reagents
Plating and maintenance media for the iPSC-derived 
cardiomyocytes were obtained from Fujifilm Cellular 
Dynamics International (Madison, WI). Penicillin-strep-
tomycin (Cat#10378016), Hoechst 33,342 (Cat# H3570), 
and MitoTracker Orange (Cat# M7510) were obtained 
from LifeTechnologies (Grand Island, NY). The EarlyTox 
Cardiotoxicity Assay Kit (Cat# R8211) was obtained from 
Molecular Devices (San Jose, CA). Isoproterenol (CAS# 
768-59-2), propranolol (CAS# 525-66-6), and sotalol 
(CAS# 959-24-0), compounds used as positive controls 
for cardiomyocyte assays, were obtained from Molecu-
lar Devices. Tissue-culture treated 384-well black/clear 
bottom plates were obtained from Corning (Cat# 3764, 
Kennebunk, ME). Trypan Blue 0.4% solution (Cat# 
T8154-100ML), and gelatin from porcine skin (CAS# 
9000-70-8) were obtained from MilliporeSigma (Cat# 
T8154-100ML, Burlington, MA). Tetra-octyl ammo-
nium bromide (TAB, CAS# 14866-33-2, cat#D2438) was 
obtained from SigmaAldrich (St. Louis, MO). Tissue-
culture grade dimethyl sulfoxide (DMSO, CAS# 67-68-5, 
cat# sc-358801) was obtained from Santa Cruz Biotech-
nology (Dallas, TX).

A panel of human iPSC-derived cardiomyocytes 
(n = 16, Tables 1and S1) were obtained from Fujifilm Cel-
lular Dynamics International (Madison, WI).

These cells were derived from donors with no known 
or family history of cardiovascular disease (as verified 
by Fujifilm Cellular Dynamics) and were meant to rep-
resent “healthy” individuals. The selection of 16 donors 
used herein was based on cell availability from the manu-
facturer and previous analyses that showed that for esti-
mating inter-individual variability, cohorts of around 20 
donors are needed [31]. The cell lines used herein were 
from five race/ethnicity subpopulations that represented 
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various ancestral backgrounds and had equal represen-
tation of males and females (Fig.  1). The populations 
included European, Asian, African American, Hispanic/
Latino, and individuals of mixed ancestry (e.g., mixed 
African American and European).

Test chemicals
PFAS used herein (see Table 2 and S2 for chemical infor-
mation, abbreviations, and supplier) were gifted by the 
US Environmental Protection Agency (Research Triangle 

Park, NC). These substances were procured from various 
commercial sources by MRI Global (Kansas City, MO).

Chemicals were supplied frozen at concentrations of 
∼20 mM in 100% tissue culture grade DMSO and stored 
at − 80  °C until use. A total of 56 PFAS were tested in 
this study and were selected to represent various chemi-
cal classes, chain length, and to include both legacy and 
more contemporary substances (see PCA of PFAS tested 
herein versus OECD list of PFAS, Fig. S1). Selected PFAS 
represent 8 subclasses which include: (i) PFCA (n = 17), 

Table 1 Donor identification and characteristics of iPSC-derived cardiomyocytes used in this study. Additional details can be found in 
Table S1
Cell Line ID Source Sex Ancestral Background Batch # Catalog Number Lot #
1434 CDI Female Mixed African American/ European 1,5,6 CMC-100-010-001 105,008
1565 FDA Male 5 DDP-CMC-1 × 01565.104 101,514
30,171 CIRM Female European 3 CW30171HH1 101,998
1309 CDI 2 DDP-CMC-1 × 103,046 103,046
1531 FDA 2 DDP-CMC-1 × 101,317 101,317
1368 NHLBI 3 DDP-CMC-0.5 × 01368.716 1368.716
30,145 CIRM 4 CW30145AA1 102,118
1392 NHLBI Male 1 DDP-CMC-0.5 × 01392.734 1392.734
1518 FDA 6 DDP-CMC-1 × 101,421 101,421
1516 FDA Female African American 6 DDP-CMC-1 × 01516.102 102,177
1083 NHLBI 1 DDP-CMC-0.5 × 01083.758 1083.758
1535 FDA Male 3 DDP-CMC-1 × 01535.102 102,176
11,235 CDI 5 DDP-CMC-1 × 11235.106 102,328
1118 NHLBI 4 DDP-CMC-0.5 × 01118.704 1118.704
20,084 CDI Male Hispanic/ Latino 2 DDP-CMC-1 × 102,668 102,668
20,032 CIRM Male Asian 4 CW20032AA1 102,500

Fig. 1 Overall study design to evaluate the potential toxicity of 56 diverse per- and poly-fluoroalkyl substances (PFAS) using human induced pluripotent 
stem cell (iPSC)-derived cardiomyocytes from multiple donors. Human iPSC-derived cardiomyocytes were from 16 donors and used to test 56 structural-
ly-diverse PFAS in concentration response. Intra- and inter-plate replicates, as well as positive and negative controls, were included to ensure experimental 
reproducibility. Following exposure to PFAS, functional and cytotoxic phenotypes were evaluated. The concentration-response bioactivity data were used 
to derive donor-specific phenotypic points of departure (PODs), which were then used to estimate the extent of inter-individual variability and compared 
to exposure estimates to calculate margins of exposure
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Subclass Assignment Abbreviated Name Chemical Name
ALCOHOL PFUd2OH 1-(Perfluorofluorooctyl)propane-2,3-diol

PFPOH 1 H,1 H,5 H-Perfluoropentanol
PFBOH 1-Pentafluoroethylethanol
AmFPrOH 2-Aminohexafluoropropan-2-ol
PFHp2OH 3-(Perfluoro-2-butyl)propane-1,2-diol
7 H 6:1 FTOH Dodecafluoroheptanol
C7F3ETOH Fluorinated triethylene glycol monomethyl ether
HpFBOH Heptafluorobutanol
CFHx2OH Hexafluoroamylene glycol

n:2 FTOH 4:2 FTOH 4:2 Fluorotelomer alcohol
6:1 FTOH 6:1 Fluorotelomer alcohol
6:2 FTOH 6:2 Fluorotelomer alcohol
8:2 FTOH 8:2 Fluorotelomer alcohol

n:2 FTS 6:2 FTS 6:2 Fluorotelomer sulfonic acid
8:2 FTS 8:2 Fluorotelomer sulfonic acid

PFAN PFAM PFHpAM Heptafluorobutyramide
PFNAM Nonafluoropentanamide
PFOAM Perfluorooctanamide
PFO2AM Octafluoroadipamide
PFPAM Perfluoropentanamide

FASA PFHxSA Perfluorohexanesulfonamide
MeFOSE N-Methyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide

PFAA PFOAMD Perfluorooctanamidine
PFCA 4 H-PFBA 2,2,3,3,4,4-Hexafluorobutanoic acid

5:3 FTCA 2 H,2 H,3 H,3 H-Perfluorooctanoic acid
PFIpOA 3-(Perfluoroisopropyl)-2-propenoic acid
TFPrOA 3,3-Bis(trifluoromethyl)-2-propenoic acid
7:3 FTCA 3-Perfluoroheptylpropanoic acid
Cl-PFNA 9-Chloro-perfluorononanoic acid

PFCA NH4PFOA Ammonium perfluorooctanoate
PFHx2OA Octafluoroadipic acid
PFBA Perfluorobutanoic acid
PFDA Perfluorodecanoic acid
PFHpA Perfluoroheptanoic acid
PFHxA Perfluorohexanoic acid
PFNA Perfluorononanoic acid
PFOA Perfluorooctanoic acid
PFPeA Perfluoropentanoic acid
PFPrA Perfluoropropanoic acid
PFUnDA Perfluoroundecanoic acid

PFECA MePF2ETOA Methylperfluoro(3-(1-ethenyloxypropan-2-yloxy)propanoate)
PFMBA Perfluoro(4-methoxybutanoic) acid
PFPE-6 Perfluoro-3,6,9-trioxatridecanoic acid
NFDHA Perfluoro-3,6-dioxaheptanoic acid
PFHx2Et2OA Perfluoro-3,6-dioxaoctane-1,8-dioic acid
PFMPA Perfluoro-3-methoxypropanoic acid
PFPE-1 Perfluoro-4-isopropoxybutanoic acid

PFSA ET-PFBS 2,2,2-Trifluoroethyl perfluorobutanesulfonate
4:2 FTS 4:2 Fluorotelomer sulfonic acid
PFBS Perfluorobutanesulfonic acid
PFHxS Perfluorohexanesulfonic acid
PFOS Perfluorooctanesulfonic acid
PFBS-K Potassium perfluorobutanesulfonate

Table 2 PFAS used in this study. Additional chemical details can be found in Table S2
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(ii) alcohols (n = 9), (iii) PFAN (n = 8), (iv) PFECA (n = 7), 
(v) PFSA (n = 6), (vi) n:2 FTOH (n = 4), (vii) n:2 FTS 
(n = 2), (viii) others (n = 3) (Fig. 1). From stock solutions, 
a master plate (200×) was prepared where each chemical 
was serially (10×) diluted with 100% DMSO three times 
from a top concentration of 20 mM. In addition, positive 
controls were included on each master plate (see plate 
design Fig. S2). These plates were stored sealed at − 80 °C 
until experiments.

In vitro experiments
Human iPSC-derived cardiomyocyte cell lines were 
divided into 6 testing batches, sex and ancestral back-
grounds were balanced among batches. The cell culture 
conditions were performed as described in previous pub-
lications [41, 42]. Briefly, the tissue-culture treated 384-
well plates were coated with 25 µL/well of 0.1% (w/v) 
gelatin solution (gelatin from porcine skin diluted in cell 
culture grade water), the plates were then incubated for 
2 h at 37  °C and 5% CO2. Cells were removed from liq-
uid nitrogen storage and thawed in a 37  °C water bath 
for 3 min. Cell concentration calculations accounted for 
manufacturer-provided viability and plating efficiency 
estimates; in addition, the cells were counted using the 
Cellometer™ Auto T4 Plus (Nexcelom Bioscience, Law-
rence, MA) to confirm live cell count and viability prior 
to plating. The cell suspension was then added drop-
wise into room temperature plating medium containing 
1:500 penicillin/streptomycin solution and the volume of 
cell culture medium was adjusted to a concentration of 
2 × 105 cells/mL. Immediately before plating, the gelatin 
solution was aspirated from all wells in the plates, and 
25 µL of the cell suspension was added into each well 
in the 384-well plate (excluding the outer wells), result-
ing in a seeding density of 5,000 cells/well in 308 wells/
plate. The outer wells of each plate were filled with 65 µL 
of sterile phosphate-buffered saline solution. The plates 
were kept at room temperature for 30 min to avoid “edge-
effect”, they were then incubated at 37  °C and 5% CO2. 
After 48-h post-plating, 17.5 µL of plating medium was 
removed, and exchanged with 32.5 µL of maintenance 
medium containing 1:500 penicillin/streptomycin solu-
tion (complete maintenance medium), for a total volume 
of 40 µL/well. The plates were incubated for a duration 
of 13 days; every 48–72 h 25 µL of maintenance medium 
was exchanged with 25 µL/well of fresh pre-warmed 
complete maintenance medium. Prior to media changes, 
the cells were inspected under the microscope to verify 

that the cells in all wells began to exhibit spontaneous 
and synchronous beating (typically around day 7 post-
plating). In the evening of day 13 post-plating, the entire 
volume in each well was aspirated (carefully to ensure 
that the monolayer was not disturbed) and replaced with 
25 µL/well of fresh pre-warmed complete maintenance 
medium. The chemical assays were performed on day 14.

Functional phenotyping of iPSC-derived cardiomyocytes
The EarlyTox Cardiotoxicity Ca2+ flux assay kit was used 
to evaluate the functional effects of the PFAS on the 
iPSC-derived cardiomyocytes as demonstrated previ-
ously [41, 42]. Intracellular Ca2+ flux is measured using 
a series of time-resolved images (8 frames per s) using 
FLIPR Tetra Cellular Screening System (Molecular 
Devices) as a quantitative functional readout based on a 
fluorescent Ca2+ probe. Ca2+ flux reads are recorded at 
baseline prior to chemical treatment and after chemical 
exposures. As indicated by the manufacturer’s (Molecu-
lar Devices) protocol, the assay was performed by first 
preparing the Ca2+ dye by equilibrating the reagents in a 
37  °C water bath. An equal volume (25 µL) of the Ca2+ 
dye reagent was added manually to each well in the plate 
with cells, resulting in a total volume of 50 µL/well. The 
plates were then incubated at 37 °C and 5% CO2 for 2 h, 
and imaged for the baseline Ca2+ flux reading in the 
entire plate simultaneously using the FLIPR Tetra Cel-
lular Screening System (Molecular Devices) instrument 
that was kept at 37 °C. Ca2+ flux was recorded at the rate 
of 8 frames per s for 100  s (n = 800 total images) with 
stage temperature = 37  °C, λexc = 470–495 nm, λem = 515–
575 nm, gain = 2000, and exposure time = 0.05 s.

Following the baseline read recording, chemicals were 
added to each well as follows. On the day of the experi-
ment (day 14 of iPSC-derived cardiomyocyte culture), 
the chemical master plate (200×) was diluted 40-fold in 
cardiomyocyte maintenance medium to yield a 5× work-
ing solution in 2.5% DMSO for each test compound. 
Then, 12.5 µL of the 5× working solution was added 
simultaneously to each well with cells already contain-
ing 50 µL (25 µL maintenance media and 25 µL of cal-
cium flux dye) using the automated liquid handler in the 
FLIPR Tetra (Molecular Devices) to yield the final con-
centrations of 0.1, 1, 10, 100 µM (each in 0.5% DMSO) for 
each test substance. The concentration of 0.5% DMSO 
in assay wells was consistent with previous studies and 
it itself has no effect on the viability of cardiomyocytes 
[42, 43]. FLIPR Tetra settings were set to mix and then 

Subclass Assignment Abbreviated Name Chemical Name
Other FTCA 3:3 FTCA 3:3 Fluorotelomer carboxylic acid

PFPA 8:2 FTPA ((Perfluorooctyl)ethyl)phosphonic acid
non-PFAA PFHx2ON 3 H,3 H-Perfluoro-2,4-hexanedione

Table 2 (continued) 
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transfer test chemicals from the 5× plate to the plate 
with cells at height = 40 µL, speed = 1 µL/s, and removal 
speed = 6  mm/s. After the chemical addition, the cells 
were then incubated at 37  °C and 5% CO2 for 90  min. 
The exposure duration was based on optimized protocols 
from previous studies that evaluated functional read-
outs after various exposure durations [35, 43]. After the 
90 min incubation with the chemicals, the Ca2+ flux again 
was simultaneously recorded on all wells of the plate.

Cytotoxicity phenotyping of iPSC-derived cardiomyocytes
After the 90  min Ca2+ flux measurements were com-
pleted as detailed above, cytotoxicity phenotypes were 
evaluated using high-content imaging in the ImageXpress 
Micro Confocal Imaging System (Molecular Devices) as 
detailed previously [35]. The high-content imaging assay 
was performed by first aspirating the total volume of 
maintenance medium containing the Ca2+ dye reagent 
and replacing it with 25 µL/well of pre-warmed staining 
solution. The staining solution comprised of fluorescent 
probes for nuclei (2.2 µg/mL Hoechst 33342) and mito-
chondria (0.2 M MitoTracker Orange) in complete main-
tenance medium. Upon adding the staining solution to 
the plates, they were placed in the incubator for 15 min, 
the stain was then fully aspirated and replaced with 25 
µL/well of pre-warmed complete maintenance medium 
before proceeding to image acquisition. Images were cap-
tured at 10× magnification using the following fluores-
cent filters: DAPI (Hoechst 33342 for nuclear staining), 
TRITC (MitoTracker Orange for mitochondrial staining), 
and FITC (Ca2+ dye).

Image analysis and data processing
The data collected from both the Ca2+ functional assay 
and the cytotoxicity high-content imaging assay were 
processed using algorithms detailed elsewhere and used 
for concentration-response analysis [35]. A total of 5 phe-
notypes (4 functional and 1 cytotoxic) have been selected 
for in vitro cardiotoxicity assessments based on the 
previous analyses of human relevance of iPSC-derived 
cardiomyocyte in vitro readouts [26, 44]. The Ca2+ flux 
assay data was processed using a custom script [26]. The 
Ca2+ flux data yields four functional cardiotoxic pheno-
types that were evaluated: “[+]/positive chronotrope”, 
representing an increase in beating frequency compared 
to baseline unpaced rate; “[-]/negative chronotrope”, a 
decrease in beating frequency; “decay-to-rise ratio”, the 
ratio of the time from peak maximum to baseline to the 
time from baseline to peak maximum which is repre-
senting QT interval length; and “asystole”, indicative of 
cell quiescence where the peak frequency reaches zero 
but there is no evidence of cell death. The cytotoxicity 
phenotype was assessed using the image processing and 
quantification methods on the multi-wavelength cell 

scoring module on the MetaXpress software (Molecular 
Devices). The total cell number parameter was used as 
the measure of “cytotoxicity”, which was quantified as the 
total number of nuclei in a representative imaging field.

Assessment of assay reproducibility
Reproducibility of these multi-plate/-well experiments 
was evaluated both within and among plates using nega-
tive and positive controls, intra-plate replicates, and 
inter-plate replicates. Within each plate, in addition to 
the negative (vehicle (0.5% DMSO) [n = 15] and media 
[n = 5] wells) and 3 positive controls (isoproterenol, 
sotalol, and propranolol), 6 chemicals were tested as 
intra-plate replicates in concentration-response: perfluo-
rooctanoic acid (PFOA) 3,3-bis(trifluoromethyl)-2-pro-
penoic acid (TFPrOA), perfluoro-3,6,9-trioxatridecanoic 
acid (PFPE-6), 1 H,1 H,5 H-perfluoropentanol (PFPOH), 
dodecafluoroheptanol (7  H 6:1FTOH), and perfluoro-
hexanesulfonamide (PFHxSA). Inter-plate reproducibility 
was evaluated with plate replicates.

The raw phenotypic values for intra-plate replicate 
chemicals and positive controls were used to assess the 
Pearson correlation coefficients and associated p-values. 
Inter-plate reproducibility was assessed from the Pear-
son correlation coefficient and corresponding p-values of 
the identical wells using the raw data from each cell line 
that was screened on multiple plates. Further, in addition 
to examining the certificates of analysis from the manu-
facturer, we ensured that each well was functional and 
exhibited expected cardiomyocyte phenotypes after plat-
ing. For this, both negative and positive control data were 
evaluated. The positive compounds included: isoproter-
enol, propranolol, and sotalol; all of these were tested in 
concentration response (0.1, 1, 10, and 100 µM) and have 
been well characterized as positive controls using the 
iPSC-derived cardiomyocyte model [42, 43].

Bayesian population-based concentration-response 
modeling
First, raw phenotypic data in each experimental well were 
normalized to the average of the wells containing vehicle 
(0.5% DMSO). After normalization, quality control was 
assessed by verifying the positive and negative control 
wells, the data was then fit to a concentration-response 
model for each chemical across the various phenotypes 
of interest using a hierarchal Bayesian random effects Hill 
model as described elsewhere [26, 44]. The concentra-
tion-response profiles were used to derive chemical- and 
phenotype-specific points of departure (PODs). PODs 
for positive/negative chronotropes were defined as the 
concentration at which the response increased/decreased 
peak frequency by 5% from vehicle controls (media with 
0.5% DMSO, EC05). Similarly, the POD for QT prolonga-
tion was defined as the concentration at which there was 
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a 5% increase in the decay-to-rise ratio from the vehicle 
controls (EC05). The POD for asystole was defined as the 
concentration at which there was a 95% decrease from 
the vehicle controls, represented by the EC95. The cyto-
toxic POD was defined by a 10% decrease in the total 
number of cells from the vehicle controls (EC10), consis-
tent with previous studies [45, 46].

For Bayesian modeling, all parameters in the Hill model 
were fitted under natural-log transformation to ensure 
the parameters were strictly positive. The prior distri-
bution settings for parameters were the same as those 
previously described elsewhere [44]. Sampling of the 
posterior distribution for each parameter was conducted 
using Markov chain Monte Carlo simulation with the 
Rstan package (version 2.21.5). Each chemical-pheno-
type combination simulation consisted of four indepen-
dent Markov chains with 8,000–32,000 iterations. All the 
iterations were processed with the first half discarded 
and the last half applied to evaluate convergence. The 
estimated potential scale reduction factor (R ̂) ≤ 1.2 [47] 
was used to diagnose the convergence of each simulation 
and to determine the final number of iterations needed 
for each chemical-phenotype combination. When con-
verged, a total of 1,000 posterior samples extracted, con-
sisting of 250 randomly sampled iterations from each of 
four chains, and utilized to derive POD and other further 
analysis. PODs for the population 5th (sensitive) and 
50th (median) %iles and for each individual donor were 
derived (Tables S3–S5).

Data integration using toxicological priority index (ToxPi) 
approach
The ToxPi Graphical User Interface (ToxPi GUI) [48], was 
utilized for data integration and visualization. Following 
the standard ToxPi data analysis protocol, we used the 
donor-specific PODs across all phenotypes as the quan-
titative input for the bioactivity profiling, the input POD 
data can be found in the supplementary material (Table 
S5). After inputting the data into the ToxPi GUI, a ToxPi 
score is calculated and assigned to each PFAS. ToxPi 
scores range on a 0 to 1 scale, with 0 representing the 
highest PODs (i.e., the lowest observed bioactivity) and 1 
representing the lowest PODs (i.e., the highest observed 
bioactivity). The ToxPi scores are then used to rank the 
chemicals and identify which phenotype is the most/least 
bioactive (Table S6).

Phenotype- and chemical-specific activity calls
Results for each chemical-phenotype combination was 
determined to be active based on criteria similar to those 
previously detailed [44]: (i) the convergence needed to 
be adequate with R̂ ≤ 1.2; (ii) the coefficient of variabil-
ity for model fit was required to be less than 20%; (iii) 
the POD estimate for the population median individual 

need to be lower than 3× the maximum tested concen-
tration (100 µM); and (4) 5th %ile of maximum response 
(Emax) was larger than a 10% change. Results for specific 
chemical-phenotype combinations that meet all the 
above-mentioned criteria were considered “active” for 
the cardiotoxicity hazard at the population median level 
for the given endpoint.

Several additional criteria were applied to determine if 
the results were sufficiently robust for estimating popu-
lation variability: [5] the 90% confidence interval for the 
population median POD spanned less than 100-fold, [6] 
the 90% confidence interval for the sensitive (population 
5th %ile) POD spanned < 100 fold, and [7] at least half of 
the individuals had (non-zero) data at three concentra-
tions in addition to controls. Toxicodynamic variability 
factors (below) were derived for chemicals-phenotype 
combinations that fulfill these additional criteria.

Derivation of toxicodynamic variability factors (TDVF05)
Once the simulation results of a PFAS for a given phe-
notype were found to fulfill all the criteria for population 
variability analysis, population variability in the POD 
can be derived. To analyze inter-individual variability in 
responses to the PFAS, the toxicodynamic variability fac-
tor at population 5th %ile (TDVF05) is defined as the ratio 
of the POD for the median individual to the POD for the 
most sensitive 5th %ile individual. Using asystole as an 
example, its POD was defined as the EC95 correspond-
ing to a 95% decreasing peak frequency. Here, the symbol 
EC50

95 is the estimated EC95 for the median individual and 
EC05

95 is the estimated EC95 for the sensitive individual 
(5th %ile); then, the equation for the TDVF is expressed 
as TDV F 05 = EC50

95/EC
05
95. The default uncertainty fac-

tor for toxicodynamic variability was considered to be 
101/2 = 3.16 [49] and was used as a benchmark to com-
pare against our derived TDVF05. Derived TDVF05 values 
can be found in Table S7.

Derivation of margins of exposure using a probabilistic in 
vitro-to-in vivo extrapolation
Margins of exposure (MOE) for the PFAS were calcu-
lated to further characterize the potential cardiotoxic risk 
in responses to these chemicals. MOE assessments are 
an equivalent measurement to margin of safety (MOS) 
evaluations that are used for pharmaceutical compounds 
[50]. The human exposure data of the tested PFAS were 
sourced from the U.S EPA Computational Toxicol-
ogy Chemistry Dashboard (CompTox Dashboard) [51]. 
[51], and consisted of the median estimate and 95th %ile 
confidence bound of the predicted population median 
exposure in mg/kg body weight/day. These were fit to an 
equivalent lognormal distribution, and values were sam-
pled via Monte Carlo simulation. To compare to the POD 
values, the oral exposure estimates were subsequently 
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converted to a steady-state plasma concentration (Css) 
using the following equation:

 

Css, oral exposure estimates (µ M) = oral exposure estimates (mg/kg BW/day)

×
Css, 1 mg/kg BW/day (µ M)

1 mg/kg BW/day

Where Css,1 mg/kg BW/day means the Css under daily oral 
dosing with 1 mg/kg-day of the given chemical. The val-
ues of Css,1 mg/kg BW/day were obtained by two alterna-
tive methods: (i) if the chemical is available from httk 
database, the parameterize_steadystate function was 
executed to extract parameters used in the three-com-
partment steady state (3compartmentss) equation in R 
httk package [52] (version 2.2.1), then these parameters 
were used as input into 3compartmentss equation; and 
(ii) the fraction unbound in plasma as detailed elsewhere 
[53] and [54] was used in the same Css equation with the 
assumption of no hepatic clearance. In addition to the 
predicted Css values, biomonitoring blood concentrations 
were also collected from the literature and used as expo-
sure estimates (details are shown in Table S8).

Two types of POD distributions for each PFAS and 
phenotype were constructed by Monte Carlo sampling 
from the population median POD and a “random” indi-
vidual POD. The “random” individual POD was estimated 
by randomly sampling the population medians, popula-
tion variances and Z-scores for each parameter. Note that 
only for the chemicals fulfilling the criteria for an active 
call of population variability did we derive the “random” 
individual POD. MOE estimates were calculated for the 
chemicals with available exposure estimates and were 
bioactive in at least one phenotype. Based on the types of 
PODs, two MOEs were calculated as follows: (i) the MOE 
for population median, was estimated by dividing the 5th 
%ile confidence bound POD from the population median 
distribution by the 95th %ile confidence bound internal 
concentration (Css or biomonitoring value) from expo-
sure to PFAS; and (ii) the MOE for random individual, 
estimated by dividing the 5th %ile POD from the random 
individual distribution by the 95th %ile confidence bound 
internal concentration (Css or biomonitoring value) from 
exposure to PFAS. If a given chemical has more than one 
“active” phenotype, the MOE was calculated by using the 
most sensitive (lowest) POD across all phenotypes. The 
minimum MOEs were calculated by using two types of 
Css and biomonitoring blood concentration were chosen 
for overall cardiotoxicity risk characterization. Tradition-
ally, a margin < 1 is considered likely to be of concern; a 
margin between 1 and 100 is considered of potential con-
cern; and a margin ≥ 100 is considered “protective” in 
risk assessments of environmental chemicals. The MOE 
summary data can be found in Table S9 and Fig. S3.

Correlation analyses and cross-validated predictions 
for bioactivity using chemical descriptors and 
physicochemical properties of PFAS
Correlation analyses were conducted to thoroughly 
evaluate the relationships between PFAS structure (as 
described by a diverse array of chemical molecular 
descriptors) and effects on cardiomyocytes from each 
donor. For these analyses, we used Saagar descriptors 
[55], a collection of diverse chemical sub-structures (i.e., 
atoms, atom pairs, and local “motifs” that are searched 
and counted in each query molecule). Open (Quanti-
tative) Structure-activity/property Relationship App 
(OPERA) physicochemical descriptors were pulled from 
the National Institute of Health (NIH) Integrated Chemi-
cal Environment (ICE) database and Saagar descriptors 
were derived from basic chemical functionalities, includ-
ing metrics such as alkyl halogen counts, di-halogen atom 
pairs, etc. The overall chemical matrix for both OPERA 
(9 OPERA descriptors and molecular weight, formula, 
and carbon chain length) and Saagar (834) descriptors for 
tested PFAS is provided in Table S10 and the bioactivity 
data matrix (arranged by phenotype and donor) is pro-
vided in Table S11. The 5 bioactivity phenotypes, were 
evaluated by donor and we also computed minimum 
PODs for each phenotype across all donors, resulting in 
a final set of 85 bioactivity phenotypes for these analy-
ses. Additional data reduction was performed for Saagar 
descriptors because the descriptors failing the variation 
criterion have almost no power to detect associations. 
The filtering method required at least two samples with a 
feature to differ from the remaining samples. After apply-
ing this filter, 123 Saagar descriptors were retained.

For pairwise correlation analyses (using Saagar and 
OPERA descriptors separately), we calculated Spear-
man rank correlations for each set of Saggar descriptors 
vs. the 5 bioactivity phenotypes, with two-sided p-values 
adjusted for the multiple testing [56] and considered sig-
nificant at q < 0.1.

For cross-validated prediction analyses, we used a pre-
viously reported approach [57] to determine if chemical 
descriptors (either Saagar or OPERA) could be used pre-
dict bioactivity (either a minimum POD across all donors, 
or responses of the individual donors). This approach is 
based on multivariate ridge regression with a common 
penalty parameter across features and n-fold cross-vali-
dation. To further guard against overfitting, 10,000 per-
mutations of the procedure were performed for each set 
of descriptors, resulting in an empirical p-value for the 
correlation between the cross-validated predictions of 
each phenotype and the actual observed phenotype val-
ues. Multiple testing corrections used Holm’s method 
(denoted as padj) [58] and the Benjamini-Hochberg false 
discovery rate (BH-FDR, denoted as q-values) corrected 
for the number of bioactivity phenotypes [56]. The results 
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matrix for the cross-validated predictions can be found 
in Tables S12-S14 and Figs. S4-S6.

Results
An overall study design is shown in Fig.  1. We used 
iPSC-derived cardiomyocytes from 16 donors that were 
representative of multiple race/ethnicity backgrounds 
and balanced for sex ratio. Cells were treated in concen-
tration-response (0.1 to 100 µM) with 56 structurally 
diverse PFAS in 384-well plate format and a number of 
functional and cytotoxicity phenotypes were collected. 
After assessing both quality control and reproducibil-
ity, the data were then used for concentration-response 
modeling to derive points of departure (PODs) for each 
substance/donor and to determine hazard, risk, and 
inter-individual variability. Specifically, the PODs were 
used to (i) rank tested chemicals using ToxPi, (ii) quan-
tify the variability in responses to PFAS, and (iii) derive 
chemical-specific estimate for the margin of exposure 
(MOE).

Even though human iPSC-derived cardiomyocytes 
from multiple healthy donors have been previously 
shown to exhibit reproducible donor-specific differences 
in baseline function and drug-induced effects [59], we 
evaluated functionality and reproducibility of the data in 
this large-scale experiment (Fig. 2).

Several baseline and drug (positive control)-elicited 
parameters were collected to ensure data quality for 
subsequent interpretation of PFAS effects. As expected, 
[31, 32, 44, 59, 60], iPSC-derived cardiomyocytes from 
multiple donors demonstrated inter-individual variabil-
ity in their baseline spontaneous beating parameters. 
Figure 2A shows examples of inter- and intra-individual 
variability in spontaneous cell beat rate and decay-to-
rise ratio (an indicator of the QT interval). Mean donor-
specific beat rate varied between 36 (Donor ID: 1535) 
and 14 (Donor ID: 1531) beats per min, the range that is 
similar to that reported previously for the cells from the 
same donors [59]. Decay-to-rise ratio varied less than the 
beat frequency, again similar to previously reported val-
ues. Figure 2B shows histograms of relative technical and 
biological contributions to total observable variability for 
these two representative phenotypes; for the beat rate, 
inter-individual variability was the dominant contributor 
to overall variability, it was also s most dominant factor 
for the decay-to-rise ratio phenotype. Figure  2C shows 
that inter-individual variability was the dominant con-
tributor to overall variability for beat frequency (28.1% 
coefficient of variability (CV) for the donor vs. 34.2% CV 
for total variability) and decay-to-rise ratio (13.6% vs. 
25.4%), with very little contribution from technical vari-
ability (plate, vehicle, and batch). Finally, for each donor, 
cardio-specific positive controls, including sotalol (induc-
ing long QT), isoproterenol (increasing the beat rate), 

and propranolol (decreasing the beat rate) were used, 
and compared to the negative controls – vehicle (DMSO 
0.5%) and media-only wells (Fig.  2D). Even though 
expected donor-specific responses to the positive control 
drugs were observed, the population median values were 
affected in accord with the known pharmacological (iso-
proterenol and propranolol) and pathological (sotalol) 
effects of these drugs. Overall, these experiments con-
firmed the functionality of the cells and the reproducibil-
ity of the overall experiment. Inter-plate reproducibility 
was assessed for donors with plate replicates, see Table 
S15 for inter-plate replicate comparisons.

Next, the effects of PFAS were assessed across donors 
(Fig.  3). Concentration-response analyses were per-
formed for each of the 5 phenotypes across all 16 iPSC-
derived cardiomyocyte lines. The box plots in Fig.  3A 
show the range of chemical-specific PODs across all 
donors. A decrease in cell beat rate was the phenotype 
affected by the largest number of PFAS, albeit the effects 
were mostly observed at concentrations above 10 µM. 
Interestingly, QT prolongation was the most sensitive 
endpoint as for many chemicals there was at least one 
donor that showed an effect at the lowest concentration 
tested. The PFAS were ordered in this figure based on the 
overall effect across all 5 phenotypes, as indicated by the 
ToxPi scores (Fig.  3B). No tested compound was active 
in all 5 phenotypes – among 56 tested PFAS, the most 
bioactive substance (fluorinated triethylene glycol mono-
methyl ether, C7F3ETOH) had a ToxPi score of 0.48, on 
a scale ranging from 0 to 1. For each compound, the cor-
responding PFAS subclass is indicated by the colored 
circles, the interspersed colors across the ToxPi rankings 
indicate that there were no clear trends based on the tra-
ditional PFAS structure-based subclasses.

As evident from the range of PODs across all donors 
and phenotypes, inter-individual variability in responses 
to PFAS was substantial; therefore, we examined chemi-
cal effects for each donor separately (Fig.  4A). Donors 
from different sub-populations were interspersed in 
these box plots as shown by colors. The intra-donor vari-
ability depended on the chemical and phenotype of inter-
est and some PFAS showed effects. The widest range 
of responses among 56 tested PFAS was observed for 
donors 1531 (female) and 1518 (male), both subjects of 
European descent, which had PODs for QT prolongation 
spanning the entire testing range. As shown in Fig.  4B, 
we used donor-specific PODs to determine which donor 
and phenotype was the most susceptible using the low-
est PODs for each of the 56 PFAS. Overall, three donors 
(Donor IDs: 1531, 1518, and 1516) were more sensitive 
in comparison to the other donors tested (Fig. 4B). Simi-
larly, there were multiple donors (Donor IDs: 1535, 1392, 
1368, and 1309) that were more resistant in responses 
to PFAS, such that the lowest POD was never derived 
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Fig. 2 Inter-individual variability in baseline beating parameters and quality control assessment. (A) Baseline unstimulated beat rate (beats per min, top) 
and decay-to-rise ratio (bottom) for vehicle (DMSO, 0.5%) and media-treated wells across all donors were arranged by donor with the highest median 
baseline BPM rate. Boxes represent the interquartile range, with a line at the median and the whiskers at 10th to 90th %ile. (B) Histograms of technical 
and biological factor contributions for the total observed variability for both beat rate (top) and decay-to-rise ratio (bottom). The contributions to total 
variability include: Donor = diversity between donors, Plate = inter-plate variability, Vehicle = difference between effects of 0.5% DMSO (vehicle) and cell 
culture media, and Other = intra-plate variability. (C) Coefficients of variability (CV) for total (including both technical and biological) and biological (donor 
only) replicates. Box plots represent the interquartile range, and the whiskers show the 5th to 95th %ile across all donors. (D) Quality control assessment 
across various phenotype-specific (as indicated above each plot) positive control compounds (names and concentrations are shown). Box plots represent 
the interquartile range, and the whiskers show the 10th to 90th %ile across all donors
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from those donors. Upon examining the “sensitive” and 
“resistant” donor data (Fig.  4C), it is also evident that 
the lowest PODs were most often derived from the QT 
prolongation endpoint (44.9%). Furthermore, there were 
chemicals (9.3% of total) that were deemed as inactive 
across all donors (Fig. 4C).

Population-level cardiotoxicity hazard was evaluated by 
designating PFAS as active or inactive based on the pop-
ulation median POD (Fig.  4D) or more conservatively, 

using the 5th %ile population POD (Fig. 4E). For chemi-
cals determined to be active for population variability (a 
total of 19 out 56 tested PFAS), the TDVF05 was calcu-
lated using the ratio of the POD (i.e., 5% change) for the 
median individual to the POD for the most sensitive 5th 
%ile individual. The distributions shown in Fig.  5 show 
PFAS and phenotypes for which TDVF05 could be cal-
culated. Across all phenotypes, 2 chemicals had TDVF05 
values that fell below the default value of 101/2 and 10 

Fig. 3 PFAS-specific effects on iPSC-derived cardiomyocytes and variability among donors. (A) PODs for five phenotypes are shown and chemicals are 
sorted by the overall ToxPi score (B). For each phenotype and PFAS, box-and-whisker plots include data from all tested donors. Boxes show the interquar-
tile range, with a line at the median and the whiskers illustrate the 10th to 90th %ile. (B) The PODs for all five phenotypes were integrated (equal weight) 
into a ToxPi score for each tested PFAS as described in the Methods. A higher score (and rank) indicates higher potency (i.e., lower POD) for cardiotoxicity 
as evaluated by all five phenotypes combined. Colors of the dots represent the corresponding PFAS subclass as indicated by the legend insert
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chemicals had a TDVF05 between 101/2 and 10. Close to 
50% (7 of 19) of the chemicals had a TDVF05 above the 
total default uncertainty factor of 10. Previously, inter-
individual variability in responses to chemicals has been 

evaluated in different in vitro, in vivo, and clinical studies, 
and in many cases both toxicodynamic and total intra-
species variability exceeded 10-fold [45, 61–63]. Simi-
lar results have been observed in human iPSC-derived 

Fig. 4 Donor-specific effects of PFAS. (A) For each phenotype and donor, box-and-whisker plots include data from all tested PFAS. Boxes are the inter-
quartile range; the whiskers are the 10th to 90th %ile and the dots are chemical PODs outside of the 10th -90th range. Boxes are colored based on the 
subpopulation for the corresponding donor (blue – European, pink – African-American, yellow – mixed African-American/European (other), beige – His-
panic/Latino, and green – Asian). Donors are sorted by the median PODs. (B) Stacked bar graphs show the number of times each donor had the lowest 
POD for a given PFAS and the colors of the stacked bars illustrate from which phenotype the lowest POD was derived. The pie chart insert shows the 
frequency at which the lowest POD corresponded to each of the 5 phenotypes. Colors in the stacked bars and pie graph represent the phenotypes (light 
purple – QT prolongation, pink – positive chronotrope, orange – negative chronotrope, dark purple – cytotoxicity, yellow – asystole, and grey for inactive 
chemicals). (C) Cardiotoxicity hazard characterization. The stacked bars represent the percentage of compounds that were active and passed criteria for 
population variability analysis (Active + Pop. Var. – black), active but failed criteria for population variability (Active – grey), and inactive (Inactive – white). 
Data are shown for PFAS tested in this study (n = 56) as well as data for other environmental chemicals (n = 82), and CiPA drugs (n = 15)
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cardiomyocytes exposed to a wide range of environmen-
tal chemicals and drugs [59, 60].

To put the bioactivity data in the context of risk char-
acterization, we compared the in vitro PODs to mea-
sured and/or predicted PFAS exposure levels to derive 
chemical-specific margins of exposure (MOE), as shown 
in Fig. 6. MOEs could be derived for 20 PFAS, these sub-
stances had at least one active phenotype and informa-
tion on human exposure. Bioactivity for most of these 
PFAS showed little overlap with exposure data and/or 
estimates. Most PFAS (~ 60%) had MOEs above 100, 7 
had MOEs between 1 and 100, and 1 (ammonium per-
fluorooctanoate (NH4PFOA)) had an MOE below 1 

indicating potential human health concern at current 
population median exposure levels.

To examine structure-activity relationships among 
tested PFAS, we utilized previously established struc-
ture-based subclasses (Table 2) to determine if there are 
subclass-specific similarities in PODs (Fig.  7A), ToxPi 
rankings (Fig.  7B), TDVF05 values (Fig.  7C), and MOEs 
(Fig.  7D). In each subclass, there were few discernable 
patterns in potency, activity, population variability, or 
risk. These results are consistent with previous studies 
that demonstrated that structure-based subclasses are 
not a feasible way to group PFAS [22, 23]. Specifically, 
for each of the four indicators, there is not a subclass 

Fig. 5 Inter-individual variability in PFAS-associated cardiotoxicity phenotypes. TDVF05 values were derived for PFAS that passed variability and activity 
criteria for each phenotype shown. Box-and-whisker plots show distributions of the TDVF05 values with boxes depicting the interquartile range and 
whiskers illustrating the 10th to 90th %iles. The vertical red dashed lines represent the default inter-individual toxicodynamic variability factor of 101/2. 
The vertical blue dashed lines represent the default total inter-individual variability factor of 10. Chemical-specific TDVF05 data can be found in Table S7
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that is significantly different in comparison to the oth-
ers with the exception of alcohols and PFCA in the MOE 
comparison.

In addition, we evaluated specific chemical structural 
descriptors as to their potential relationship to bioactiv-
ity (Table  3). Upon calculating all pair-wise correlations 

(Spearman rank) among all in vitro phenotypes and 
Saagar descriptors and adjusting for multiple compari-
sons, a large number of significant negative correlations 
(presence of the feature in a molecule indicated greater 
effect, i.e. lower POD) were observed. Descriptors were 
grouped by type such as atoms/atom pairs present, 

Fig. 6 Margin of exposure (MOE) estimates for tested PFAS. Chemical-specific MOEs were derived from the most sensitive iPSC-derived cardiomyocyte 
POD (from all donors and phenotypes) and chemical-specific exposure data (using levels measured in humans and supplementing it with predicted 
exposure data when needed). (A-C) Density plots illustrating distributions for three phenotypes with at least one PFAS for which an MOE could be de-
rived. Distributions for exposure (green histograms – predicted exposures using plasma protein binding assumptions, orange histograms – predicted 
exposures using the HTTK assumptions, black bars – the range (5th to 95th %ile) of reported blood levels) and bioactivity (blue histograms –population 
median PODs, purple – random individual PODs) are shown. (D) The distribution of the MOEs for both the sensitive individual and the population median. 
The ratio between exposure and bioactivity was calculated as the MOE (on a log scale). Box plots represent the interquartile range and whiskers showing 
the range from minimum to maximum, and individual dots show values for specific chemicals. The vertical dashed lines are drawn at 1 (no margin of 
safety) and 100 (the value considered to be “protective” in many human health risk assessments). Chemical-specific MOE estimates can be found in Table 
S9 and Fig. S3
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bioavailability, functional groups, and topology and the 
phenotype, number of donors, and number of PFAS for 
which the associations were significant are included. 
The specific chemicals and the highlighted features are 
shown in Fig.  S7. Many of the molecular features that 
were significant for negative chronotrope were found to 
be significant for most donors and all (or the majority 
of ) tested PFAS and were indicators of the overall size of 
the molecule and the carbon chain length. Interestingly, 
the positive chronotrope, asystole and QT prolongation 
associations were donor- and chemical-specific, indicat-
ing the potential molecular features that can be indica-
tive of substructure-specific effects and inter-individual 
variability.

Previous studies have revealed trends between descrip-
tors such as carbon chain length and molecular weight, 
and in vitro bioactivity [18–21]. Therefore, in addition to 
exploring the associations between bioactivity and Saagar 
descriptors, we also tested the correlation between bio-
activity and physicochemical descriptors extracted from 
the OPERA database (Tables S16-S17). Upon accounting 
for multiple testing, we found that both donor-specific 
and all donor PODs were significantly negatively cor-
related (Spearman rank) with molecular weight, carbon 
chain length, Henry’s Law Constant, melting point, and 
octanol-water partition coefficient. Additional descrip-
tors (boiling point, octanol-water distribution coefficient, 
vapor pressure, and water solubility) were significantly 
negatively correlated with responses in the individual 
donors and some phenotypes.

Because Saagar descriptors and physicochemical prop-
erties showed associations with bioactivity, we next 
tested whether Saagar descriptors can be used to infer 
in vitro data. This question is relevant because in vitro 
testing of additional PFAS will be time consuming and 
if a predictive model can be developed, considerable 
time and resource savings can be achieved by prioritiz-
ing future analyses. Using a regression model with rigor-
ous cross-validation, we found that some bioactivity data 
could be predicted (Tables S12-S14). For example, the 
minimum POD across all donors and for some individ-
ual donors and phenotypes could be predicted from the 
Saagar features alone (r = 0.53–0.66 and padj=0.001–0.047 
for [-] chronotrope; r = 0.56–0.63 and padj = 0.002–0.021 
for asystole). For both negative chronotrope and asystole 
phenotypes, the highest cross-validated prediction was 
achieved for the minimum POD across all donors. When 
the same analyses were performed using the OPERA-
derived physicochemical properties, the only significant 
prediction was achieved for the minimum POD across all 
donors for negative chronotrope and asystole phenotypes 
(r = 0.54 and padj=0.028 for [-] chronotrope; r = 0.56 and 
padj=0.019 for asystole).

Fig. 7 PFAS subclass effects on iPSC-derived cardiomyocytes. Data are 
presented separately for each PFAS subclass (see Table 1). Box plots rep-
resent the interquartile range and whiskers showing the range from mini-
mum to maximum, and individual dots show values for specific chemicals. 
Colors represent the various subclasses and are arranged by subclass 
with most chemicals to least chemicals. (A) The lowest PODs across all 
phenotypes for each chemical in a subclass. (B) Overall ToxPi rankings 
aggregated by subclass. All tested PFAS were included in panels A and 
B. (C) Toxicodynamic Variability Factors 5th %ile organized by subclass. 
Only chemicals that were active and passed the criteria for population 
variability were included. The vertical red dashed line represents the de-
fault inter-individual toxicodynamic variability factor of 101/2. The vertical 
blue dashed line represents the default total inter-individual variability 
factor of 10. (D) Chemical-specific MOE estimates arranged by subclass. 
The vertical dashed lines are drawn at 1 (red, no margin of safety) and 100 
(blue, the value considered to be “protective” in many human health risk 
assessments)
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Descriptor IDa Phenotype(s) N of Donorsb N of Subst.c Descriptor Meaning
Atoms
SGR10004 [-] Chronotrope 11 56 Fluorine (≥ 5 fluorine atoms present)

Asystole 4
SGR10013 [-] Chronotrope 7 56 Any carbon

Asystole 5
SGR10022 [-] Chronotrope 8 56 sp3 Carbon

Asystole 5
SGR10029 [-] Chronotrope 10 56 Any non-carbon

Asystole 4
Cytotoxicity 2

SGR10043 [-] Chronotrope 12 56 Tetrasubstituted sp3 carbon
Asystole 4
Cytotoxicity 1

SGR10068d [+] Chronotrope 1 9 Oxygen with two heavy atom substitutions
SGR10032d [+] Chronotrope 2 3 Methyl-group
Atom Pairs
SGR10521 [-] Chronotrope 11 54 Two halogens, 3 bonds away (≥ 4 occurrences)

Asystole 3
SGR10553 [-] Chronotrope 12 53 Two halogens, 4 bonds away (≥ 4 occurrences)

Asystole 3
SGR10583 [-] Chronotrope 10 44 Two halogens, 5 bonds away (≥ 4 occurrences)

Asystole 4
Cytotoxicity 2

SGR10786d [+] Chronotrope 5 8 OH-mediated intramolecular hydrogen-bonds
SGR10112d [+] Chronotrope 4 7 Two oxygens, 3 bonds away
SGR10199d [+] Chronotrope 2 3 Two oxygens, 5 bonds away
Bioavailability
SGR10261,
SGR10780

[-] Chronotrope 13 56 F-C-F group (≥ 3 occurrences)
Asystole 4

SGR10805 [-] Chronotrope 6 51 X-C-X moiety (X = O, N, or F)
Asystole 3

SGR10633,
SGR10708d

[+] Chronotrope 1 17 Primary alkyl bonded to O, N,S, or P atoms

SGR10275,
SGR10295d

[+] Chronotrope 1 12 Primary alcohol

SGR10169d [+] Chronotrope 1 8 Dialkyl ether
SGR10795d Cytotoxicity 1 4 Primary carbon bonded to 2 fluorines

Asystole 1
SGR10290d [+] Chronotrope 5 3 Ethylene glycols and their mono-ethers
SGR10418,
SGR10493,
SGR10684,
SGR10736 d

[+] Chronotrope 2 3 Secondary alcohol

SGR10354d [+] Chronotrope 5 2 Isopropanol moiety
SGR10668d [+] Chronotrope 3 2 Methoxy or methylamino group
Functional Groups
SGR10009
SGR10205

[-] Chronotrope 11 56 Fluorine bonded to aliphatic carbon (≥ 5 occurrences)
Asystole 4

SGR10308 [-] Chronotrope 10 56 Potential hydrogen-bond acceptors (≥ 6 occurrences)
Asystole 4
Cytotoxicity 2

SGR10829 [+] Chronotrope 1 55 Potential hydrogen-bond donors

Table 3 Chemical structure descriptors that were significantly negatively correlated with iPSC-derived cardiomyocyte bioactivity 
phenotypes after exposure to PFAS
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Discussion
This study is first to evaluate the extent of inter-individ-
ual variability in responses of human cardiomyocytes to 
many PFAS. Previous reports suggested that PFAS have 
effects on human iPSC-derived cardiomyocytes [22, 23]; 
this study independently corroborated those findings 
made in cells from one donor. In addition, our results 
demonstrate that such effects are occurring in cells from 
different individuals, and that inter-individual variabil-
ity in the effects can be quantified and used in the con-
text of risk characterization. Our observation of negative 
chronotrope as a main effect of PFAS corroborates our 
two previous PFAS studies [22, 23], experiments that 
performed using commercially-available human iPSC-
derived cardiomyocytes from the “standard” donor 
(Donor ID: 1434) instead of a diverse population of 
donors. Our findings offer insight into several areas of 
importance, contributing not only to the overall body of 
knowledge in cardiovascular toxicology, but also for deci-
sion-making regarding a class of compounds that is of 
great concern to a number of regulators worldwide [64].

Cardiovascular disease is an important public health 
burden and several environmental risk factors, such as 
air pollution, smoking, and exposure to heavy metals 
are well-established contributors [25]. Several mecha-
nistic and laboratory animal studies suggest that PFAS 

could also contribute to the global burden of cardiovas-
cular disease [24]. However, there is a limited number 
of studies that examine cardiotoxicity of PFAS and the 
mechanisms by which these effects may be induced as 
compared to evidence on other chemical classes. In fact, 
a recent systematic mapping review demonstrated that 
most environmental exposure and cardiotoxicity stud-
ies are focused on air pollution, heavy metals and pesti-
cides [65]. Several epidemiological studies have evaluated 
cardiovascular outcomes (e.g., ischemic heart disease, 
hypertension, stroke, cardiovascular disease, myocar-
dial infarction, and pregnancy-induced hypertension) 
in relation to the body burden of, or exposure to, PFAS 
[66], however, only a few found significant associations. 
Studies that reported strong associations showed posi-
tive relationships between PFAS exposure and risk of 
stroke, hypertension, and atherosclerosis [66, 67]. In vivo 
PFAS studies, in both rodents and non-human primates, 
have shown no histological alterations in the heart [66]. 
Recent systematic evidence maps of PFAS evaluated both 
scientific publications and regulatory submission docu-
ments have identified several additional potential adverse 
effects of some PFAS [12, 68]. These effects consisted of 
incidental findings of decreases in absolute and/or rela-
tive heart weights in studies of rodents, most were from 
28- or 90-day inhalation or oral exposures. Only one 

Descriptor IDa Phenotype(s) N of Donorsb N of Subst.c Descriptor Meaning
SGR10428 [-] Chronotrope 11 54 1,2-Dihalogenated ethyl (≥ 4 occurrences)

Asystole 3
SGR10092 [-] Chronotrope 10 53 1,1,2,2-Tetrafluorinated ethyl

Asystole 3
SGR10797 [-] Chronotrope 6 50 -CF2- or -O-CF- moiety

Asystole 3
SGR10057 [-] Chronotrope 9 47 1,2,3-Trifluorinated propyl (≥ 6 occurrences)

Asystole 3
SGR10072, SGR10761d [+] Chronotrope 1 14 Hydroxyl attached to sp3 carbon
SGR10203d [+] Chronotrope 1 8 Ether
SGR10153d [+] Chronotrope 1 7 Sulfur bonded to 3 heavy atoms
SGR10109d [+] Chronotrope 2 3 CH-OH moiety
SGR10343d [-] Chronotrope 1 3 Any primary amine
SGR10289d [+] Chronotrope 5 2 Ethylene glycol diol
SGR10587, SGR10099, SGR10703d [+] Chronotrope 3 2 Sulfonamide

Asystole 2
Topology
SGR10704d Cytotoxicity 11 2 Polyether motifs as in PEGs

[+] Chronotrope 2
SGR10749d [+] Chronotrope 5 2 1,2-disubstituted ethanol
a Saagar descriptors that were significantly correlated with iPSC-derived cardiomyocyte phenotypes can be found in Table S18. Correlation coefficients and 
corresponding q-values for the donors and phenotypes with significant (q < 0.1) associations can be found in Table S19
b Number of donors with significant (q < 0.1) associations from a total of 16 tested
c Number of PFAS with significant (q < 0.1) associations from a total of 56 tested
d Saagar descriptors with corresponding structural features for each PFAS, highlighting the region that describes the particular Saagar descriptor can be found in 
Fig. S7

Table 3 (continued) 
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study in beagle dogs showed that inhalation exposures to 
trifluoroiodomethane or 1,1,2,2,3,3,3-heptafluoro-1-io-
dopropane (compounds not tested in our study) resulted 
in cardiac sensitization to adrenaline [69]. Cardiac sensi-
tization effects have been associated with exposures to a 
number of other halogenated molecules, including halo- 
and fluoro-carbons [70]; however, no such in vivo studies 
have been performed with higher fluorinated PFAS.

Recent epidemiological studies that focused on car-
diovascular disease and PFAS have measured vascu-
lar thickness as a sign of atherosclerosis [71], or used 
echocardiography to study morphology and function 
of the myocardium [72]. Still, the objective measures of 
the heart rhythm (e.g., pulse and/or electrocardiogra-
phy) are not frequently included in studies of PFAS in 
humans, and almost never in laboratory animal stud-
ies of non-pharmaceuticals. Therefore, in vitro studies 
in human iPSC-derived cardiomyocytes provide impor-
tant information about potential cardiotoxic hazards for 
both pharmaceuticals and environmental chemicals. The 
translational value of this in vitro model has been dem-
onstrated in terms of its ability to replicate genetic dis-
orders affecting heart rhythm [28], and clinical effects of 
various cardio-active and -toxic drugs [26, 43, 73]. More 
importantly, iPSC-derived cardiomyocytes are one of the 
very few human in vitro models available to study inter-
individual variability in responses to drugs and chemi-
cals [29, 37]. The iPSC-derived cardiomyocytes can be 
utilized as a model for personalized chemotherapy [30], 
or an experimental tool to quantify the extent of variabil-
ity in drug effects in a population [26, 59] which also has 
been demonstrated. Our observation that negative chro-
notrope was the most frequent functional effect on iPSC-
derived cardiomyocytes across all tested PFAS stands out 
in comparison to our previous findings for drugs, and 
different non-PFAS environmental and industrial chemi-
cals. Specifically, QT prolongation was the most pro-
nounced effect of comprehensive in vitro proarrhythmia 
assay (CiPA) drugs, while positive chronotrope was the 
most frequently impacted functional phenotype across 
~ 1000 diverse environmental chemicals [32, 44]. This 
observation raises two questions – why there is such a 
difference in effects, and how our findings of a decreased 
beating frequency may relate to the epidemiological evi-
dence of PFAS and cardiovascular disease, and overall 
human hazard and risk?

Mechanistically, the unique physicochemical proper-
ties of PFAS, specifically their surfactant-related ten-
dency to be sorbed or concentrated on non-aqueous 
phase liquid-water interfaces [74], provide one hypoth-
esis for explaining the differences observed. Specifically, 
the plasma membrane of all cells contains cholesterol-
enriched lipid rafts which are critical to deliver proteins 
to the membrane and for sequestering proteins in close 

physical proximity to control their functional interactions 
[75]. Indeed, cardiac ion channels are known to be local-
ized into lipid rafts, which are critical for their function 
and trafficking at the plasma membrane [76]. In addition, 
calcium and other ion channels in cardiomyocytes have 
been shown to be impacted by changes in membrane 
fluidity by various surface-active compounds [77]. PFAS 
have been shown to concentrate in cell membranes; for 
example, accumulation of PFOA in platelet membranes 
was shown to result in a more fluid state which can alter 
cell permeability and ion channel structure and func-
tion [78]. The membrane-disrupting effects of these sub-
stances have been observed in several cell types [79, 80]. 
Thus, exposure to PFAS and cardiovascular risk in vivo 
may involve endothelial dysfunction and activation of 
circulating platelets [67]. Taken together, these consid-
erations outline the potential reasons for the divergence 
in the effects of PFAS versus other chemicals and drugs 
on human iPSC-derived cardiomyocytes; however, addi-
tional studies are needed to provide mechanistic support 
for this hypothesis.

With respect to the relationship between our findings 
in human cardiomyocytes and clinical outcomes, the 
most frequent phenotypic effect we observed after expo-
sure to PFAS was a decrease in the beating rate, a pheno-
type analogous to the clinical syndrome of bradycardia. 
Heart rate is a well-established predictor of major cardio-
vascular disease types, such as atherosclerosis, in both 
the general population and patients with various car-
diovascular diseases [81]. However, an increase in heart 
rate is typically of greater clinical concern, because it is 
thought to lead to endothelial dysfunction and is associ-
ated with increased progression of coronary atheroscle-
rosis in animal models and patients. To the contrary, 
heart rate reduction has been shown to slow progres-
sion of atherosclerosis in animal models. Several epide-
miological studies examined the relationship between 
bradycardia and cardiovascular disease risk and yielded 
conflicting results. A study of 6,733 older adults from a 
“multi-ethnic” cohort in the United States showed that 
bradycardia was not associated with an increased inci-
dence of cardiovascular disease, but it was associated 
with mortality among participants who were on drugs 
that may slow heart rate [82]. A similarly-sized study 
in Japan found that both bradycardia and tachycardia 
are independent risk factors for future cardiovascular 
events in healthy men [83]. Given these previous reports, 
we cannot conclude that our findings of a slower beat 
rate after exposure to PFAS in vitro are without poten-
tial clinical relevance. The likely human health hazard 
concern from our data as a whole also comes from the 
finding that QT prolongation and positive chronotrope 
effects were two functional phenotypes that were most 
variable between individuals. The clinical importance of 
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both prolongation of the QT interval that may provoke 
Torsades de Pointes, and other arrhythmias that involve 
tachycardia is well-established [84]. However, while the 
mechanisms of some drug-associated arrhythmias are 
well known, in the case of environmental chemicals the 
mechanisms remain poorly understood and require fur-
ther studies.

In terms of the observed range in the functional effects 
of PFAS on human cardiomyocytes in vitro, it is note-
worthy that our analysis of the relationships between 
chemical structural features of PFAS and their effects 
across different individuals also offers additional poten-
tial insights. We found that PFAS size (e.g., fluorine and 
carbon content) was significantly associated with greater 
bioactivity on negative chronotrope. This finding cor-
roborated our previous analysis in a single cardiomyocyte 
donor [22], as well as studies in other cell types [18, 19, 
85]. Interestingly, more specific structural features that 
were significantly negatively correlated with positive 
chronotrope effects were observed in only a subset of the 
donors. This indicates that individual susceptibility to this 
type of arrhythmia may be related to specific head groups 
in certain PFAS, such as a sulfonamide, primary amine, or 
polyether functional groups or other molecular topology 
features. Collectively, these observations provide further 
information for the current debate, as to whether or not 
structural features can be used to group PFAS in order to 
offer a pragmatic approach to address the daunting task 
of evaluating PFAS, for which an overwhelming majority 
have no data to inform traditional hazard and risk evalu-
ations [86]. One commonly proposed testing strategy for 
PFAS involves prioritization based on chemical structure 
[87, 88]; however, little experimental evidence exists from 
cell-based assays suggests that specific structural fea-
tures, beyond molecular weight and carbon chain length, 
can be used as predictors. On the contrary, recent stud-
ies show that many of the tested PFAS elicit cell-based 
effects and gene expression signatures [22, 23] and that 
high throughput testing of the individual chemicals and 
their mixtures may be the most protective approach. In 
this respect, deriving information on both potential haz-
ard and inter-individual variability, the approach that was 
taken in our study, may be a sensible strategy for prioriti-
zation and risk characterization.

This study has several limitations that need to be 
acknowledged. First, while iPSC-derived cardiomyocytes 
have become a robust, reproducible and widely-used 
model to test for potential structural (e.g., cell viability) 
and functional (e.g. arrythmia-related) liabilities in drug 
development [28, 89, 90], the phenotypes that can be 
assessed using this model cover only some of the modali-
ties of cardiovascular disease. In addition, all phenotypes 
evaluated in this study were weighted equally to main-
tain an unbiased approach; however, it should be noted 

that the phenotypes evaluated herein may be of different 
clinical importance and that alternative analyses with 
increased emphasis on certain endpoints may be needed. 
Studies in other in vitro models that probe effects on 
cardiomyocyte contractility [91, 92] or (micro)vascu-
lature [93, 94] are needed but may require triaging of 
some PFAS for such testing because of the low-through-
put. Second, the library of PFAS tested and the number 
of iPSC-derived cardiomyocyte donors available were 
both limited. The former is a challenge as the availabil-
ity of high-purity PFAS is limited and the throughput of 
the experiments in cardiomyocytes is also an important 
practical barrier. Further, real-life exposures are to com-
plex mixtures; therefore, our data on the individual PFAS 
may need to be interpreted with caution and additional 
studies of mixtures are needed to account for potential 
additive or multiplicative effects. Secondly, the number 
of cardiomyocyte donors that are robust and reproduc-
ible is also an area where future solutions are needed. 
Commercial offerings of iPSC-derived cardiomyocytes 
from different donors are limited and greater appre-
ciation of the value of population-based human in vitro 
models is still evolving [37]. Third, confident risk charac-
terization depends on robust empirical human exposure 
information and on the confidence in extrapolating data 
from cell-based experiments to human exposures. While 
we have derived MOE estimates in this study, we could 
do so only on some of the PFAS tested because of the 
lack of human biomonitoring data and/or in vitro bio-
availability data. Moreover, exposure predictions in the 
absence of biomonitoring data were only predicted for 
the population median, with many orders of magnitude 
of uncertainty. Indeed, the overall uncertainty in expo-
sure is likely to be even greater, since these predictions do 
not include highly exposed subpopulations. Considerable 
efforts are underway to improve human data on blood 
levels of PFAS [95, 96], to better characterize exposure 
patterns [97, 98], and to provide toxicokinetic data to 
enable in vitro-to-in vivo extrapolations [53, 54].

In summary, this study demonstrates a feasible 
approach to characterize and quantify cardiotoxicity and 
inter-individual variability in responses to PFAS. Fur-
thermore, the data can be used to rank PFAS based on 
hazard potential and potency or based on risk through 
derivation of MOE estimates. Although, we did not find 
PFAS groupable by subclass structure, other molecular 
descriptors were correlated with the observed bioactivity, 
suggesting the potential for descriptor-based prioritiza-
tion. These data and methodologies provide invaluable 
information for performing cardiotoxicity risk charac-
terization of the thousands of PFAS to which people are 
exposed, and ultimately for informing decision-making 
for this critical public health concern.
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Abbreviations
PFAS  Per–and polyfluoroalkyl substances
PFOA  Perfluorooctanoic acid
PFOS  Perfluorooctane sulfonic acid
PCA  Principal components analysis
OECD  Organisation for Economic Co–operation and 

Development
US EPA  United States Environmental Protection Agency
iPSC  Induced pluripotent stem cells
TAB  Tetra–octyl ammonium bromide
DMSO  Dimethyl sulfoxide
TFPrOA  3,3–bis(trifluoromethyl)–2–propenoic acid
PFPE  6–perfluoro–3,6,9–trioxatridecanoic acid
PFPOH  1 H,1 H,5 H–perfluoropentanol
7H 6:1FTOH  Dodecafluoroheptanol
PFHxSA  Perfluorohexanesulfonamide
POD  Point(s) of departure
EC05,10,95  Effect concentration at which there is a 5, 10, or 95% 

effect observed compared to controls
ToxPi  Toxicological Priority Index
TDVF05  Toxicodynamic variability at 5%
MOE  Margin(s) of exposure
MOS  Margin(s) of safety
IVIVE  In vitro to in vivo extrapolation
CompTox Dashboard  Computational Toxicology Chemistry Dashboard
Css  Steady–state plasma concentration
httk  High–throughput toxicokinetics
OPERA  Open (Quantitative) Structure–activity/property 

Relationship App
NIH  National Institute of Health
ICE  Integrated chemical environment
CV  Coefficient of variability
C7F3ETOH  Fluorinated triethylene glycol monomethyl ether
CiPA  Comprehensive in vitro proarrhythmia assays
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