
Wang et al. Human Genomics (2024) 18:114
https://doi.org/10.1186/s40246-024-00666-w

RESEARCH

Fast and accurate DNASeq variant calling
workflow composed of LUSH toolkit
Taifu Wang1,2†, Youjin Zhang1,2†, Haoling Wang1,2†, Qiwen Zheng1,2, Jiaobo Yang1,2, Tiefeng Zhang1,2,
Geng Sun1,2, Weicong Liu1,2, Longhui Yin1,2, Xinqiu He1,2, Rui You1,2, Chu Wang1,2, Zhencheng Liu1,2,
Zhijian Liu1,2, Jin’an Wang1,2, Xiangqian Jin1,2* and Zengquan He1,2* 

Abstract 

Background  Whole genome sequencing (WGS) is becoming increasingly prevalent for molecular diagnosis, stag-
ing and prognosis because of its declining costs and the ability to detect nearly all genes associated with a patient’s
disease. The currently widely accepted variant calling pipeline, GATK, is limited in terms of its computational speed
and efficiency, which cannot meet the growing analysis needs.

Results  Here, we propose a fast and accurate DNASeq variant calling workflow that is purely composed of tools
from LUSH toolkit. The precision and recall measurements indicate that both the LUSH and GATK pipelines exhibit
high levels of consistency, with precision and recall rates exceeding 99% on the 30x NA12878 dataset. In terms of pro-
cessing speed, the LUSH pipeline outperforms the GATK pipeline, completing 30x WGS data analysis in just 1.6 h,
which is approximately 17 times faster than GATK. Notably, the LUSH_HC tool completes the processing from BAM
to VCF in just 12 min, which is around 76 times faster than GATK.

Conclusion  These findings suggest that the LUSH pipeline is a highly promising alternative to the GATK pipeline
for WGS data analysis, with the potential to significantly improve bedside analysis of acutely ill patients, large-scale
cohort data analysis, and high-throughput variant calling in crop breeding programs. Furthermore, the LUSH pipeline
is highly scalable and easily deployable, allowing it to be readily applied to various scenarios such as clinical diagnosis
and genomic research.

Keywords  LUSH, GATK, Whole genome sequencing, DNASeq, Variant calling

Introduction
With advances in sequencing technology and lower
sequencing costs, whole-genome sequencing (WGS) is
playing an increasingly important role in single-gene

disease screening or diagnosis, individualized cancer
therapy, and pharmacogenomic screening [1, 7, 8, 14, 17].
Because it allows for the rapid, simultaneous detection
of virtually all genes in a patient that may be associated
with disease, which is particularly effective for patients
with very rare or novel diseases, atypical clinical pres-
entations, or prognostic responses [2, 22, 24, 26]. How-
ever, the large volume of WGS sequencing data presents
new challenges in terms of analysis time and accuracy.
Delayed clinical decisions may lead to severe morbidity
or mortality, especially in acutely ill patients with poten-
tially treatable genetic disorders [23, 25]. Therefore, rapid
and efficient WGS analysis tools or pipelines are essential

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Human Genomics

†Taifu Wang, Youjin Zhang and Haoling Wang have contributed equally to this
work and shared the co-first authorship.

*Correspondence:
Xiangqian Jin
jinxiangqian@genomics.cn
Zengquan He
hezengquan@genomics.cn
1 BGI Genomics, Shenzhen 518083, China
2 Clin Lab, BGI Genomics, Shenzhen 518083, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-024-00666-w&domain=pdf

Page 2 of 10Wang et al. Human Genomics (2024) 18:114

for timely molecular diagnosis, staging and prognosis,
and pharmacogenomics-based guidance.

Currently, the GATK best practices proposed by Broad
Institute are widely accepted standards for WGS variant
calling pipeline [15]. It usually consists of several steps:
preprocessing, alignment to genome, sort alignments,
mark duplicates, base quality score recalibration, and
variant calling, each corresponding to a recommended
tool. However, this process requires tens of hours to
perform analysis on a single set of WGS data [9], which
cannot meet the current demand for urgent medical
detection of patients with tumors or severe genetic dis-
eases. To solve this problem, several ultrafast WGS anal-
ysis tools have been developed, such as Genalice [19]
and Isaac [20], but the accuracy of these algorithms are
not widely recognized or validated as they do not fol-
low GATK best practices. Although sentieon DNASeq
claims to follow the GATK algorithm, it requires a license
to use it [10], which restricts its widespread application.
Recently, some WGS pipelines based on heterogeneous
computing have been proposed. The representative tools
are Dynamic Read Analysis for Genomics (DRAGEN)
[16] and NVIDIA Parabricks [18], which respectively
adopt highly configurable field-programmable gate array
(FPGA) and graphics processing unit (GPU) hardware
technologies to significantly accelerate computationally
intensive genomic analysis processes. However, the utili-
zation of such tools is often constrained by the need for
specific, costly hardware, such as GPUs or FPGAs, which
may limit their versatility and increase the overall cost of
implementation. Therefore, there is still a need to develop
more tools that are fast, accurate, economical, and easy
to access and deploy.

In this paper, we develop a novel, fast and accurate
pipeline for DNASeq variant calling, consisting of multi-
ple LUSH components. The LUSH pipeline reconstructs
analysis tools SOAPnuke [4], BWA [13] and GATK [15]
using C/C++, and employs a new parallel computing
architecture. The primary focus of engineering optimi-
zation in LUSH encompasses the elimination of super-
fluous I/O operations, utilization of thread pools and
memory pools for efficient task and memory allocation,
and attainment of task load equilibrium. We confirm that
the LUSH workflow presents a compelling substitute for
GATK best practices as it demonstrates commensurate
levels of accuracy while exhibiting substantial superiority
over GATK in computational speed.

Materials and methods
WGS benchmarking datasets
NA12878 (HG001) WGS data
Raw paired-end FASTQ files of NA12878 were down-
loaded from NIST’s Genome in a Bottle (GIAB) project

at https://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​amples/​
giab/​data/​NA128​78/. Then, 20X, 30X, 40X, 60X,
80X,100X data sets are obtained by down-sampling the
original WGS data set under a series of gradient cover-
age. The gold standard truth variant calls and high confi-
dence genomic intervals (NIST v3.3.2) were downloaded
from https://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​
amples/​giab/​relea​se/​NA128​78_​HG001/​NISTv3.​3.2/.

“CHM‑synthetic‑diploid” WGS data
CHM-synthetic‑diploid was constructed from the PacBio
assemblies of two independent CHM cell lines using pro-
cedures largely orthogonal to the methodology used for
short-read variant calling, which makes it more com-
prehensive and less biased in comparison to existing
benchmark datasets [12]. Paired-end FASTQ files were
downloaded from the European Nucleotide Archive
with accession number ERR1341793 (https://​www.​ebi.​
ac.​uk/​ena/​brows​er/​view/​ERR13​41793). The benchmark
truth call-sets and high-confidence regions of CHM-
Synthetic‑diploid were downloaded were included in the
CHM-eval kit [12] and available at https://​github.​com/​
lh3/​CHM-​eval.

Two trios WGS data
This data set includes two son/father/mother trios of
Ashkenazi Jewish (HG002/NA24385, HG003/NA24149,
HG004/NA24143) and Han Chinese ancestry (HG005/
NA24631, HG006/NA24694, HG007/NA24695) from
the Personal Genome Project. Raw paired-end FASTQ
files were downloaded from NIST GIAB repositories at
https://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​amples/​
giab/​data/​Ashke​nazim​Trio/ and https://​ftp-​trace.​ncbi.​
nlm.​nih.​gov/​Refer​enceS​amples/​giab/​data/​Chine​seTrio/.
The truth call-sets and high-confidence regions used for
benchmark were obtained from https://​ftp-​trace.​ncbi.​
nlm.​nih.​gov/​Refer​enceS​amples/​giab/​relea​se/ with the lat-
est version.

Implementation of LUSH pipeline and GATK pipeline
The GATK pipeline was built according to best practices
from https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​secti​ons/​
36000​72266​51-​Best-​Pract​ices-​Workf​lows. Since most
raw sequencing data require preprocessing operations to
obtain clean data, such as removing adapters, low qual-
ity sequences and high N-base sequences, we include the
SOAPnuke tool in the first step to preprocess the data,
although this is not emphasized in GATK best practices.

GATK features an open-source Spark implementa-
tion, which serves as the software for executing multi-
threaded tasks and represents a form of parallelization
that allows computers (or clusters) to complete tasks
more rapidly. It is currently in the testing phase and has

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/NISTv3.3.2/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/NISTv3.3.2/
https://www.ebi.ac.uk/ena/browser/view/ERR1341793
https://www.ebi.ac.uk/ena/browser/view/ERR1341793
https://github.com/lh3/CHM-eval
https://github.com/lh3/CHM-eval
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/ChineseTrio/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows
https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows

Page 3 of 10Wang et al. Human Genomics (2024) 18:114 	

been marked as unsafe for practical use cases. We have
also included it in our tests for performance comparison,
encompassing MarkDuplicatesSpark, BaseRecalibrat-
orSpark, ApplyBQSRSpark, and HaplotypeCallerSpark.
During practical application, we found GATK Haplo-
typeCallerSpark was unable to finish processing certain
samples, even with the latest GATK version. We found
related issues on the GATK official website (https://​
github.​com/​broad​insti​tute/​gatk/​issues/​7199), with no
current solution available. As a result, some GATK Hap-
lotypeCallerSpark results in the main text are presently
unavailable, and we have denoted these instances with
"N/A" in our findings. Additionally, as there is no Spark
implementation for GATK GenotypeGVCFs, we have
also represented these results with "N/A".

The LUSH pipeline followed a similar procedure as
described for GATK best practices, including preproc-
essing, alignment to genome, sorting alignments, mark-
ing duplicates, base quality score recalibration and
variant calling, consists of three LUSH components:
LUSH_Aligner, LUSH_BQSR and LUSH_HC (Fig. 1,
Table 1).

The fundamental architecture of LUSH toolkit
LUSH_Aligner incorporates multiple functional mod-
ules such as SOAPnuke, Bwa MEM, Samtools sort, and
GATK-MarkDuplicates (Picard) while being entirely
redeveloped based on the original algorithm. The funda-
mental architecture is depicted in Supplemental Fig. S1.
LUSH_Aligner is composed of three primary functional
modules: ’FqFilterComponent’, ’bwaMEMComponent’,
and ’SortDuplicateComponent’, which manage filtering,
alignment, as well as sorting-alignments and marking-
duplicates tasks, respectively. Each functional module
encompasses several workers to concurrently perform
the associated operations, while distinct modules com-
municate via the intermediary conveyor belt system. Spe-
cifically, the raw sequencing reads are first loaded into the
FqFilterComponent module through the FastQReader.
Within this module, a cohort of FqfilterWorker threads
executes filtering operations on the reads. Concurrently,
the quality-controlled reads are stored in the CleanFq file
while also being transmitted to the downstream ’bwaM-
EMComponent’ module. Herein, the bwaMEMworker
performs parallel alignment of the reads, which subse-
quently get transmitted to the ’SortDuplicateCompo-
nent’. Within this component, the SortDuplicateWorkers
undertake the crucial tasks of sorting-alignments and
marking-duplicates, culminating in the generation of
a sorted and deduplicated bam file. The entire process
adheres to the paradigm of pipeline computing (Supple-
mental Fig. S1). This design significantly enhances CPU

utilization and diminishes redundant IO consumption,
ultimately leading to an increased processing speed.

The base quality scores generated by sequencing
machines are influenced by various systematic (non-
random) technical errors, leading to overestimation or
underestimation of the quality scores in the data. The
purpose of Base Quality Score Recalibration (BQSR) is
to empirically model these errors using machine learn-
ing and adjust the quality scores accordingly. It mainly
consists of two steps: Base Recalibration and apply-
ing BQSR. LUSH_BQSR implements a producer–con-
sumer parallel computing structure to optimize task
parallelism and improve CPU utilization (Supplemental
Fig. S2). In the Base Recalibration phase, the producer
threads read the input BAM file for data distribution,
and the distributed tasks enter the queue for processing
by consumer threads, which involve data processing and
computational activities (such as calculating different
covariates and max posterior probability). Once all the
tasks are completed, the recal-table is printed, and then
the downstream apply BQSR phase is entered. LUSH_
BQSR applies numerical corrections to each individual
base based on the Base Recalibration table in the mem-
ory pool. Different consumer threads perform different
batches of reads base quality correction tasks. Finally,
the sorted results are collected and outputted to the final
BAM file (Supplemental Fig. S2). The number of threads
engaged in the producer or consumer roles can be con-
trolled through external parameters, making it possible
to adapt to different machine configurations and improve
overall thread utilization.

HaplotypeCaller employs a local de-novo assembly
approach within active regions for accurate detection of
single nucleotide polymorphisms (SNPs) and insertion-
deletion (indel). This process involves four sequential
steps: identification of active regions, local assembly of
active regions to infer haplotypes, estimation of likeli-
hood values utilizing the Pair Hidden Markov Model
(HMM), and determination of genotypes based on Bayes-
ian inference. To facilitate efficient task distribution and
scheduling, we have implemented a dedicated dispatcher
for each step within the LUSH_HC architecture (Supple-
mental Fig. S3). Prior to entering the ActiveRegionDis-
patcher, read alignments from the Binary Alignment
Map (BAM) file undergoes filtering and downsampling.
ActiveRegionDispatcher further subdivides tasks based
on chromosome coordinates, enabling the calculation
of likelihood values for each specific candidate inter-
val. Completed tasks are then merged in ActiveRegion-
Reduce to determine the ActiveRegions. The resulting
ActiveRegions are subsequently dispatched to the
AssembleDispatcher, where tasks are queued and exe-
cuted. Upon completion, the processed data proceeds to

https://github.com/broadinstitute/gatk/issues/7199
https://github.com/broadinstitute/gatk/issues/7199

Page 4 of 10Wang et al. Human Genomics (2024) 18:114

downstream stages, including the PairHMMDispatcher
and GenotypeDispatcher. Each dispatcher promptly sub-
mits upstream tasks to the thread pool, and dynamically
allocates computing resources (i.e., threads) based on the
computing load of each task. Once the task is finalized,
the computing resources are released back to the thread

pool and marked as available for other tasks to use (Sup-
plemental Fig. S3). Furthermore, certain active region
intervals may contain a substantial number of candidate
haplotypes, leading to a significant computational bur-
den during PairHMM calculations and uneven task dis-
tribution among threads, thereby resulting in inefficient

Fig. 1  Overview of LUSH variant calling workflow. The LUSH DNASeq workflow is an optimized pipeline based on GATK best practices and consists
of LUSH_Aligner, LUSH_BQSR, LUSH_HC, and LUSH_GenotypeGVCFs

Page 5 of 10Wang et al. Human Genomics (2024) 18:114 	

CPU utilization. To overcome this challenge, LUSH_HC
employs a further task subdivision strategy combined
with dynamic resource allocation in these regions to
achieve load balance and optimize resource allocation
(Supplemental Fig. S3). This comprehensive approach
effectively maximizes the utilization of system resources,
ultimately enhancing the overall performance and effi-
ciency of the system.

Methodology evaluation
For NA12878 and Two trios WGS data sets, we used
the haplotype comparison tool hap.py (v0.3.14, default
comparison engine) for the comparison of diploid geno-
types at the haplotype level to calculate the performance
metrics. The variant calling accuracy of CHM-Syn-
thetic‑diploid WGS dataset was evaluated using RTG in
CHM-evalkit (Version 20180222) [12]. The definitions
of true positive (TP), false positive (FP), and false nega-
tive (FN) were based on the types of variant matching
stringencies “genotype match”, and Precision, Recall, and
F1-score were calculated as TP/(TP + FP), TP/(TP + FN)
and 2*TP/(2*TP + FN + FP), respectively. Tools-specific
SNPs and INDELs were annotated using the SNPEFF
(v4.3) [5] with default parameters.

We evaluated the computational performance of all the
tools on the same Linux machine, measuring both total
runtime and maximum memory consumption using the
“/usr/bin/time” command. All analyses were run on a
Linux machine featuring an Intel(R) Xeon(R) Gold 6348
CPU 56-core processor and 500 GB memory and were
performed on a shared storage disk Dell EMC Isilon
H500.

Results
Overview of LUSH DNAseq workflow
The LUSH DNASeq workflow is an optimized pipeline
based on GATK best practices. Its main components are
LUSH_Aligner, LUSH_BQSR, LUSH_HC, and LUSH_
GenotypeGVCFs (Fig. 1, Table 1).

LUSH_Aligner is a comprehensive computational
framework that seamlessly integrates four distinct func-
tional modules: preprocessing, alignment to the refer-
ence genome, sort alignments, and mark duplicates.
These modules correspond to well-established software
tools: SOAPnuke, Bwa mem, Samtools sort [6] and
GATK-MarkDuplicates ([6], Picard), achieving seam-
less communication through an intermediate transmis-
sion system (Supplemental Fig. S1, details see Methods).
LUSH_BQSR utilizes a parallel computing architecture
with a producer–consumer pattern to implement base
quality score recalibration (Supplemental Fig. S2, see
Methods). LUSH_HC involves four sequential steps:
identification of active regions, assembly of active regions
to infer haplotypes, estimation of likelihood values utiliz-
ing Pair Hidden Markov Model (PairHMM), and deter-
mination of genotypes based on Bayesian inference. To
facilitate efficient task distribution and scheduling, we
have implemented a dedicated dispatcher for each step
within the LUSH_HC architecture (Supplemental Fig.
S3, see Methods for more details). Moreover, LUSH_HC
also implements the GVCF mode algorithm to meet the
demand of GVCF files in cohort studies. Correspond-
ingly, the C/C++ re-implementation of LUSH_Geno-
typeGVCFs is used to perform joint genotyping on one
or more samples.

Computational performance on different threads
and sequencing depth
The computational performance of the pipelines may
not necessarily improve with the increase of the num-
ber of cores used. Application performance can be lim-
ited due to multiple bottlenecks including contention for
shared resources such as caches and memory. Thus, we
specified 12, 24, 36, 48 and 56 (max) threads at a single
node to test the single-node scalability of the LUSH pipe-
line. As shown in Fig. 2, the runtime of all LUSH tools
in this pipeline decreases significantly as the threads are
increased. The pipeline completed in ~ 4.89 h when run-
ning at 12 threads and ~ 1.6 h when running at 56 threads

Table 1  The composition of LUSH pipeline and GATK pipeline

Pipeline step GATK/GATK-spark pipeline LUSH pipeline

Preprocessing SOAPnuke LUSH_Aligner

Alignment to genome Bwa mem

Sort alignments Samtools sort

Mark duplicates MarkDuplicates/MarkDuplicatesSpark

Base quality score recalibration BaseRecalibrator & ApplyBQSR/BaseRecalibratorSpark & Apply-
BQSRSpark

LUSH_BQSR

Variant calling HaplotypeCaller/HaplotypeCallerSpark LUSH_HC

Joint genotyping GenotypeGVCFs LUSH_GenotypeGVCFs

Page 6 of 10Wang et al. Human Genomics (2024) 18:114

(Fig. 2A), indicating that the LUSH pipeline has great
thread scalability.

We then generated NA12878 WGS datasets with 20X,
40X, 60X, 80X and 100X coverage depths by down-
sampling. Each dataset was performed with the LUSH
DNASeq pipeline to investigate the effect of sequencing
depth on performance. Each task was run on the maxi-
mum available cores (56). The runtime of all LUSH tools
and the entire pipeline increases almost linearly with
increasing sequencing depth (Fig. 2B).

Speed of LUSH pipeline relative to GATK pipeline
To compare the performance of each component of
the LUSH pipeline with that of the GATK and GATK-
Spark pipeline, we analyzed the NA12878 30X sample
on a maximum 56-core machine. Each software thread
parameter was adjusted to the maximum available.
LUSH_Aligner integrates four functional modules for the
FASTQ to BAM process, including pre-processing, align-
ment to the genome, sorting alignments, and marking
duplicates. LUSH_Aligner completed FASTQ to BAM
on 30x NA12878 dataset in less than 1.3 h, which is more
than 5 times faster than the 6.88 h of GATK pipeline
(Fig. 3A). Despite the acceleration of the marking-dupli-
cates step by MarkDuplicatesSpark, the improvement
in performance was not substantial. LUSH_BQSR inte-
grates BaseRecalibrator and ApplyBQSR of GATK pipe-
line to greatly improve thread utilization. On the 30x
NA12878 dataset, LUSH_BQSR demonstrated remark-
able efficiency by completing the task in approximately

5 min. This represents a 60-fold increase in performance
compared to the 5.22 h required by the GATK pipeline
and a 4.5-fold improvement over the 0.39 h taken by the
GATK-Spark pipeline (Fig. 3B). To produce a VCF from
a BAM file, GATK-HaplotypeCaller was widely recog-
nized as the most time-consuming step in the GATK
best-practice pipeline. It took ~ 15 h to complete the
30x NA12878 dataset, while LUSH_HC took only about
12 min (Fig. 3C). During the application of GATK-Spark
in VCF-mode, a prevalent issue was observed for which
no resolution is presently available (see methods). This
finding implies that GATK-Spark may not be sufficiently
mature for implementation in production environments.
The GVCF mode was commonly used in the cohort-wide
analysis, which can then be used for joint genotyping
of multiple samples in a very efficient way. This enables
rapid incremental processing of samples as they roll off
the sequencer, as well as scaling to a very large cohort
size. Thus, we also implanted GVCF mode in LUSH_HC.
In GVCF mode, LUSH_HC used only 0.28 h, while the
GATK pipeline took 18.35 h to process the same data-
set (Fig. 3D). GATK-Spark required 0.76 h to complete
the task, demonstrating a performance approximately
2.7 times less efficient than that of LUSH. Regarding the
performance of single sample joint genotyping, LUSH_
GenotypeGVCFs (0.21 h) was 5X faster than GATK-Gen-
otypeGVCFs (1.13 h) (Fig. 3E).

For the whole pipeline from FASTQ to VCF, the LUSH
pipeline greatly reduced the runtime in both non-GVCF
and GVCF modes, taking less than 2 h for 30X WGS

Fig. 2  Computational performance of the LUSH pipeline at different threads and sequencing depth on NA12878. A Running time with 12, 24, 36,
48 and 56 threads on NA12878 (30X). B Running time at sequencing depth 20X, 30X, 40X, 60X, 80X, 100X. Each data point is the average of two
replicates

Page 7 of 10Wang et al. Human Genomics (2024) 18:114 	

data, about 17 times faster than the GATK pipeline and
4.5 times faster than the GATK-Spark pipeline (Fig. 3F,G).
Likewise, the LUSH pipeline had a similar performance
on CHM-Synthetic‑diploid (Supplemental Fig. S5) and
two-trios WGS datasets (Supplemental Table S2).

Variant calling accuracy of the LUSH pipeline
We then compared the accuracy of the LUSH pipeline
with that of the GATK and GATK-Spark pipeline. The
underlying algorithm of LUSH is roughly the same as
that of GATK or GATK-Spark, so they were expected to
produce identical results. We ran each of the three data-
sets mentioned above using two pipelines. The generated
VCFs were compared with their respective truth sets
using the haplotype comparison tool hap.py or CHM-
evalkit. The comparison was limited to the high-confi-
dence regions of each dataset (see Methods). Due to the
common use of GVCF mode in cohort studies, we also
add GVCF mode to the comparison. As expected, LUSH,
GATK and GATK-Spark demonstrated almost the same
precision, recall and F1-score on the NA12878 (Fig. 4A,
B) and CHM-Synthetic-diploid datasets (Fig. 4C, D), both
for the SNP and INDEL. Interestingly, the comparison of
the results obtained from the non-GVCF mode and the
GVCF mode for both the LUSH and GATK pipelines
showed that the former exhibited higher precision and
slightly lower recall. Specifically, the F1 scores revealed
that the non-GVCF mode exhibited better performance
in terms of accuracy for both pipelines (Fig. 4A–D). The
findings are also in full agreement with the Two trios
WGS data (Supplemental Table S3).

We then analyzed the intersection of the LUSH pipe-
line and the GATK pipeline. All variants detected by
both pipelines were used for the analysis. As expected,
approximately 99.11–99.14% of SNPs and 98.92–99.08%
of INDELs were co-reported by the two pipelines, both
in the non-GVCF mode (Fig. 5A, B) and GVCF mode
(Fig. 5C, D), indicating a high consistency of the LUSH
and GATK pipelines. Among these LUSH-only and
GATK-only variants, the observed TP rates for SNP
were 1.54% and 0.74%, respectively. For INDEL, the TP
rates were 5.33% and 2.51%, respectively (Fig. 5A, B).
The TP rates in GVCF mode were consistent with these
results (Fig. 5C, D). We then annotated genomic regions
for LUSH or GATK-specific SNPs and INDELs using
SNPEFF. Among these few pipeline-specific variants,
LUSH-only and GATK-only variants showed consist-
ent distribution across the genome, and more than 97%
of the variants were located in non-functional regions
(sum of INTERGENIC, INTRON, DOWNSTREAM,
UPSTREAM).

Moreover, we also explored the intersection of variants
in non-GVCF mode and GVCF mode. The results were
highly consistent in both modes, with 99.13% (GATK)
and 99.25% (LUSH) of co-detected SNPs and 99.11%
(GATK) and 99.18% (LUSH) of co-detected INDELs
(Supplemental Fig. S6). GVCF mode significantly
detected more specific SNPs and INDELs.

Computer resource utilization of the LUSH toolkit
We have recorded the average CPU load and maximum
memory consumption for each LUSH component during

Fig. 3  Runtime of LUSH, GATK and GATK-Spark Variant Calling pipelines on NA12878. A Runtime of each component from FASTQ to BAM. B
Runtime of base quality score recalibration. C Runtime of variant calling in non-GVCF mode. D Runtime of variant calling in GVCF mode. E Runtime
of joint genotyping on one sample. F Total elapsed time in non-GVCF mode. G Total elapsed time in GVCF mode. N/A: Not applicable

Page 8 of 10Wang et al. Human Genomics (2024) 18:114

Fig. 4  Accuracy of LUSH, GATK and GATK-Spark Variant Calling pipelines. Based on two benchmark datasets, the precision and recall, as well
as the F1 scores, were utilized to measure the accuracy of detected SNPs (Left panel) and INDELs (Right panel). A, B On NA12878 dataset. C, D On
CHM-synthetic‑diploid dataset

Fig. 5  The intersection of variants called by different pipelines on NA12878. The pie chart shows the overlap of SNPs (left panel) and INDELs
(right panel) identified by the LUSH and GATK pipelines in two different modes. The co-detected variants are depicted in grey, while the LUSH
and GATK specific variants are shown in red and blue, respectively. Additionally, the adjacent red and blue bars illustrate the genomic distribution
of LUSH-only and GATK-only variants. The modes of analysis are categorized as A, B non-GVCF mode. C, D GVCF mode

Page 9 of 10Wang et al. Human Genomics (2024) 18:114 	

the examination of the NA12878 dataset at 30x coverage,
and juxtaposed these findings with the tools of the GATK
and GATK-Spark workflows. Consistent with prior analy-
ses, the LUSH, GATK, and GATK-Spark workflows were
executed on a 56-core machine, with the parameters
of each tool configured to the maximum of 56 threads,
where applicable. Our findings reveal that the CPU uti-
lization of the LUSH workflow components is notably
elevated, akin to that of GATK-Spark, while GATK, with
the exception of the preceding alignment, sorting, and
marking-duplicates stages, predominantly employs 1–2
threads (Supplemental Table. S4). Regarding memory
usage, the peak memory consumption of the LUSH work-
flow reaches 42G during the LUSH_Aligner step, slightly
lower for other stages, akin to GATK-Spark, and surpass-
ing that of GATK, which hovers around 10G.

Discussion
Genome sequencing has been commonly used for molec-
ular diagnosis, staging, and prognosis, and the massive
sequencing data presents a challenge in terms of analysis
time. We have developed a LUSH pipeline consisting of
LUSH toolkit enabling rapid and precise results. It takes
only 1.6 h to process 30X WGS data from FASTQ to VCF
and ~ 12 min from BAM to VCF, with accuracy compa-
rable to GATK, which is extremely critical for acutely ill
patients, such as infants in the Pediatric Intensive Care
Unit (PICU) and Neonatal Intensive Care Unit (NICU).

We tested the performance of the LUSH pipeline at dif-
ferent thread scales and showed that the LUSH pipeline
has remarkable thread scalability. The LUSH component
is based on a parallel computing architecture of producer
and consumer, which allows it to achieve optimal perfor-
mance on any machine with a reasonable configuration
of parameters. The LUSH pipeline also scales well linearly
at different sequencing depths.

LUSH is based on the original WGS "best practices"
with a C/C++ implementation that follows the underly-
ing algorithms of the original pipeline. In terms of speed,
the optimization of the underlying language, multi-
threaded architecture, and algorithmic framework gives
the LUSH pipeline an absolute advantage over GATK.
Each step in the LUSH pipeline is at least 5 times faster
for the same work, and the step LUSH_HC even reaches
a speed increase of 76 times. In terms of accuracy, the
results of the LUSH pipeline and GATK are equally accu-
rate and highly consistent. The annotation results for spe-
cific variants show no meaningful differences in reliability
between them. We also demonstrated both high accuracy
and hyper speed for the LUSH pipeline on multiple data-
sets of standards. Moreover, it is crucial to highlight that
LUSH can effectively accelerate the analysis of all types
of DNAseq data (such as WGS, WES, PANEL, etc.), even

though the present study’s focus on comparing LUSH’s
performance solely in the context of WGS data, as WGS
has the extensive volume and prolonged analysis dura-
tion. The BAM files generated by LUSH can also be used
for subsequent detection of structural variants (SV) and
copy number variations (CNV), serving as input for com-
mon SV callers such as Manta [3], Delly [21], and Lumpy
[11] etc., because it follows the original BWA algorithm.

Conclusions
In summary, the LUSH pipeline displays considerable
potential as a viable alternative to the GATK pipeline for
DNASeq Variant Calling, with the added advantage of
being easily deployable. Consequently, its implementa-
tion is expected to enhance the bedside analysis of criti-
cally ill patients, facilitate analysis of large-scale cohort
data, and expedite high-throughput variant calling in
crop breeding programs.

Abbreviations
WGS	� Whole genome sequencing
DRAGEN	� Dynamic read analysis for genomics
FPGA	� Field-programmable gate array
GPU	� Graphics processing unit
GIAB	� Genome in a bottle
SNPs	� Single nucleotide polymorphisms
Indel	� Insertion and deletion
BQSR	� Base quality score recalibration
HMM	� Hidden Markov model
TP	� True positive
FP	� False positive
FN	� False negative
PICU	� Pediatric intensive care unit
NICU	� Neonatal intensive care unit

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40246-​024-​00666-w.

Additional file 1.

Additional file 2.

Additional file 3.

Additional file 4.

Additional file 5.

Acknowledgements
The authors are grateful to the people in their research group for support and
valuable suggestions.

Author contributions
TW, YZ and HW devised the study, analyzed the data, interpreted the results
and drafted the manuscript. TW, JY and QZ conducted the experiments and
revised the manuscript. YZ, HW, QZ, TZ, GS, WL, LY, XH and RY implemented
the algorithm. CW, ZL and ZL performed data analyses. JW provided critical
intellectual comments. XJ and ZH supervised the study and reviewed the
manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

https://doi.org/10.1186/s40246-024-00666-w
https://doi.org/10.1186/s40246-024-00666-w

Page 10 of 10Wang et al. Human Genomics (2024) 18:114

Availability of data and materials
All data generated or analyzed during this study are included in this published
article and its supplementary information files. Benchmarking scripts and
commands for LUSH pipeline are available at https://​github.​com/​Bgi-​LUSH/​
LUSH-​DNASeq-​pipel​ine.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 19 November 2023 Accepted: 22 August 2024

References
	1.	 Ashley EA, et al. Clinical assessment incorporating a personal genome.

Lancet. 2010;375(9725):1525–35.
	2.	 Bick D, et al. Case for genome sequencing in infants and children with

rare, undiagnosed or genetic diseases. J Med Genet. 2019;56(12):783–91.
	3.	 Chen X, et al. Manta: rapid detection of structural variants and indels

for germline and cancer sequencing applications. Bioinformatics.
2016;32(8):1220–2.

	4.	 Chen Y, et al. SOAPnuke: a MapReduce acceleration-supported software
for integrated quality control and preprocessing of high-throughput
sequencing data. Gigascience. 2018;7(1):1–6.

	5.	 Cingolani P, et al. A program for annotating and predicting the effects
of single nucleotide polymorphisms, SnpEff: SNPs in the genome
of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin).
2012;6(2):80–92.

	6.	 Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience.
2021;10(2):giab008.

	7.	 Dewey FE, et al. Clinical interpretation and implications of whole-
genome sequencing. JAMA. 2014;311(10):1035–45.

	8.	 Green ED, Guyer MS, National Human Genome Research, I. Charting
a course for genomic medicine from base pairs to bedside. Nature.
2011;470(7333):204–13.

	9.	 Heldenbrand JR, et al. Performance benchmarking of GATK3. 8 and
GATK4. BioRxiv. 2018;11:348565.

	10.	 Kendig KI, et al. Sentieon DNASeq variant calling workflow demon-
strates strong computational performance and accuracy. Front Genet.
2019;10:736.

	11.	 Layer RM, et al. LUMPY: a probabilistic framework for structural variant
discovery. Genome Biol. 2014;15(6):R84.

	12.	 Li H, et al. A synthetic-diploid benchmark for accurate variant-calling
evaluation. Nat Methods. 2018;15(8):595–7.

	13.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

	14.	 Lupski JR, et al. Whole-genome sequencing in a patient with Charcot–
Marie–Tooth neuropathy. N Engl J Med. 2010;362(13):1181–91.

	15.	 McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Res.
2010;20(9):1297–303.

	16.	 Miller NA, et al. A 26-hour system of highly sensitive whole genome
sequencing for emergency management of genetic diseases. Genome
Med. 2015;7:100.

	17.	 Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer
genomics and precision medicine. Cancer Sci. 2018;109(3):513–22.

	18.	 O’Connell KA, et al. Accelerating genomic workflows using NVIDIA
Parabricks. BMC Bioinform. 2023;24(1):221.

	19.	 Pluss M, et al. Need for speed in accurate whole-genome data analysis:
GENALICE MAP challenges BWA/GATK more than PEMapper/PECaller and
Isaac. Proc Natl Acad Sci U S A. 2017;114(40):E8320–2.

	20.	 Raczy C, et al. Isaac: ultra-fast whole-genome secondary analysis on
Illumina sequencing platforms. Bioinformatics. 2013;29(16):2041–3.

	21.	 Rausch T, et al. DELLY: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28(18):i333–9.

	22.	 Sanford E, et al. Clinical utility of ultra-rapid whole-genome sequenc-
ing in an infant with atypical presentation of WT1-associated nephrotic
syndrome type 4. Cold Spring Harb Mol Case Stud. 2020;6(4):a005470.

	23.	 Saunders CJ, et al. Rapid whole-genome sequencing for genetic
disease diagnosis in neonatal intensive care units. Sci Transl Med.
2012;4(154):154ra135.

	24.	 Shigemizu D, et al. Whole-genome sequencing reveals novel ethnicity-
specific rare variants associated with Alzheimer’s disease. Mol Psychiatry.
2022;27(5):2554–62.

	25.	 Willig LK, et al. Whole-genome sequencing for identification of Mende-
lian disorders in critically ill infants: a retrospective analysis of diagnostic
and clinical findings. Lancet Respir Med. 2015;3(5):377–87.

	26.	 Xing R, et al. Whole-genome sequencing reveals novel tandem-dupli-
cation hotspots and a prognostic mutational signature in gastric cancer.
Nat Commun. 2019;10(1):2037.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/Bgi-LUSH/LUSH-DNASeq-pipeline
https://github.com/Bgi-LUSH/LUSH-DNASeq-pipeline

	Fast and accurate DNASeq variant calling workflow composed of LUSH toolkit
	Abstract
	Background
	Results
	Conclusion

	Introduction
	Materials and methods
	WGS benchmarking datasets
	NA12878 (HG001) WGS data
	“CHM-synthetic-diploid” WGS data
	Two trios WGS data

	Implementation of LUSH pipeline and GATK pipeline
	The fundamental architecture of LUSH toolkit
	Methodology evaluation

	Results
	Overview of LUSH DNAseq workflow
	Computational performance on different threads and sequencing depth
	Speed of LUSH pipeline relative to GATK pipeline
	Variant calling accuracy of the LUSH pipeline
	Computer resource utilization of the LUSH toolkit

	Discussion
	Conclusions
	Acknowledgements
	References

