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Abstract 

Background Whole genome sequencing (WGS) is becoming increasingly prevalent for molecular diagnosis, stag-
ing and prognosis because of its declining costs and the ability to detect nearly all genes associated with a patient’s 
disease. The currently widely accepted variant calling pipeline, GATK, is limited in terms of its computational speed 
and efficiency, which cannot meet the growing analysis needs.

Results Here, we propose a fast and accurate DNASeq variant calling workflow that is purely composed of tools 
from LUSH toolkit. The precision and recall measurements indicate that both the LUSH and GATK pipelines exhibit 
high levels of consistency, with precision and recall rates exceeding 99% on the 30x NA12878 dataset. In terms of pro-
cessing speed, the LUSH pipeline outperforms the GATK pipeline, completing 30x WGS data analysis in just 1.6 h, 
which is approximately 17 times faster than GATK. Notably, the LUSH_HC tool completes the processing from BAM 
to VCF in just 12 min, which is around 76 times faster than GATK.

Conclusion These findings suggest that the LUSH pipeline is a highly promising alternative to the GATK pipeline 
for WGS data analysis, with the potential to significantly improve bedside analysis of acutely ill patients, large-scale 
cohort data analysis, and high-throughput variant calling in crop breeding programs. Furthermore, the LUSH pipeline 
is highly scalable and easily deployable, allowing it to be readily applied to various scenarios such as clinical diagnosis 
and genomic research.

Keywords LUSH, GATK, Whole genome sequencing, DNASeq, Variant calling

Introduction
With advances in sequencing technology and lower 
sequencing costs, whole-genome sequencing (WGS) is 
playing an increasingly important role in single-gene 

disease screening or diagnosis, individualized cancer 
therapy, and pharmacogenomic screening [1, 7, 8, 14, 17]. 
Because it allows for the rapid, simultaneous detection 
of virtually all genes in a patient that may be associated 
with disease, which is particularly effective for patients 
with very rare or novel diseases, atypical clinical pres-
entations, or prognostic responses [2, 22, 24, 26]. How-
ever, the large volume of WGS sequencing data presents 
new challenges in terms of analysis time and accuracy. 
Delayed clinical decisions may lead to severe morbidity 
or mortality, especially in acutely ill patients with poten-
tially treatable genetic disorders [23, 25]. Therefore, rapid 
and efficient WGS analysis tools or pipelines are essential 
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for timely molecular diagnosis, staging and prognosis, 
and pharmacogenomics-based guidance.

Currently, the GATK best practices proposed by Broad 
Institute are widely accepted standards for WGS variant 
calling pipeline [15]. It usually consists of several steps: 
preprocessing, alignment to genome, sort alignments, 
mark duplicates, base quality score recalibration, and 
variant calling, each corresponding to a recommended 
tool. However, this process requires tens of hours to 
perform analysis on a single set of WGS data [9], which 
cannot meet the current demand for urgent medical 
detection of patients with tumors or severe genetic dis-
eases. To solve this problem, several ultrafast WGS anal-
ysis tools have been developed, such as Genalice [19] 
and Isaac [20], but the accuracy of these algorithms are 
not widely recognized or validated as they do not fol-
low GATK best practices. Although sentieon DNASeq 
claims to follow the GATK algorithm, it requires a license 
to use it [10], which restricts its widespread application. 
Recently, some WGS pipelines based on heterogeneous 
computing have been proposed. The representative tools 
are Dynamic Read Analysis for Genomics (DRAGEN) 
[16] and NVIDIA Parabricks [18], which respectively 
adopt highly configurable field-programmable gate array 
(FPGA) and graphics processing unit (GPU) hardware 
technologies to significantly accelerate computationally 
intensive genomic analysis processes. However, the utili-
zation of such tools is often constrained by the need for 
specific, costly hardware, such as GPUs or FPGAs, which 
may limit their versatility and increase the overall cost of 
implementation. Therefore, there is still a need to develop 
more tools that are fast, accurate, economical, and easy 
to access and deploy.

In this paper, we develop a novel, fast and accurate 
pipeline for DNASeq variant calling, consisting of multi-
ple LUSH components. The LUSH pipeline reconstructs 
analysis tools SOAPnuke [4], BWA [13] and GATK [15] 
using C/C++, and employs a new parallel computing 
architecture. The primary focus of engineering optimi-
zation in LUSH encompasses the elimination of super-
fluous I/O operations, utilization of thread pools and 
memory pools for efficient task and memory allocation, 
and attainment of task load equilibrium. We confirm that 
the LUSH workflow presents a compelling substitute for 
GATK best practices as it demonstrates commensurate 
levels of accuracy while exhibiting substantial superiority 
over GATK in computational speed.

Materials and methods
WGS benchmarking datasets
NA12878 (HG001) WGS data
Raw paired-end FASTQ files of NA12878 were down-
loaded from NIST’s Genome in a Bottle (GIAB) project 

at https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ 
giab/ data/ NA128 78/. Then, 20X, 30X, 40X, 60X, 
80X,100X data sets are obtained by down-sampling the 
original WGS data set under a series of gradient cover-
age. The gold standard truth variant calls and high confi-
dence genomic intervals (NIST v3.3.2) were downloaded 
from https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS 
amples/ giab/ relea se/ NA128 78_ HG001/ NISTv3. 3.2/.

“CHM‑synthetic‑diploid” WGS data
CHM-synthetic-diploid was constructed from the PacBio 
assemblies of two independent CHM cell lines using pro-
cedures largely orthogonal to the methodology used for 
short-read variant calling, which makes it more com-
prehensive and less biased in comparison to existing 
benchmark datasets [12]. Paired-end FASTQ files were 
downloaded from the European Nucleotide Archive 
with accession number ERR1341793 (https:// www. ebi. 
ac. uk/ ena/ brows er/ view/ ERR13 41793). The benchmark 
truth call-sets and high-confidence regions of CHM-
Synthetic-diploid were downloaded were included in the 
CHM-eval kit [12] and available at https:// github. com/ 
lh3/ CHM- eval.

Two trios WGS data
This data set includes two son/father/mother trios of 
Ashkenazi Jewish (HG002/NA24385, HG003/NA24149, 
HG004/NA24143) and Han Chinese ancestry (HG005/
NA24631, HG006/NA24694, HG007/NA24695) from 
the Personal Genome Project. Raw paired-end FASTQ 
files were downloaded from NIST GIAB repositories at 
https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ 
giab/ data/ Ashke nazim Trio/ and https:// ftp- trace. ncbi. 
nlm. nih. gov/ Refer enceS amples/ giab/ data/ Chine seTrio/. 
The truth call-sets and high-confidence regions used for 
benchmark were obtained from https:// ftp- trace. ncbi. 
nlm. nih. gov/ Refer enceS amples/ giab/ relea se/ with the lat-
est version.

Implementation of LUSH pipeline and GATK pipeline
The GATK pipeline was built according to best practices 
from https:// gatk. broad insti tute. org/ hc/ en- us/ secti ons/ 
36000 72266 51- Best- Pract ices- Workfl ows. Since most 
raw sequencing data require preprocessing operations to 
obtain clean data, such as removing adapters, low qual-
ity sequences and high N-base sequences, we include the 
SOAPnuke tool in the first step to preprocess the data, 
although this is not emphasized in GATK best practices.

GATK features an open-source Spark implementa-
tion, which serves as the software for executing multi-
threaded tasks and represents a form of parallelization 
that allows computers (or clusters) to complete tasks 
more rapidly. It is currently in the testing phase and has 
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been marked as unsafe for practical use cases. We have 
also included it in our tests for performance comparison, 
encompassing MarkDuplicatesSpark, BaseRecalibrat-
orSpark, ApplyBQSRSpark, and HaplotypeCallerSpark. 
During practical application, we found GATK Haplo-
typeCallerSpark was unable to finish processing certain 
samples, even with the latest GATK version. We found 
related issues on the GATK official website (https:// 
github. com/ broad insti tute/ gatk/ issues/ 7199), with no 
current solution available. As a result, some GATK Hap-
lotypeCallerSpark results in the main text are presently 
unavailable, and we have denoted these instances with 
"N/A" in our findings. Additionally, as there is no Spark 
implementation for GATK GenotypeGVCFs, we have 
also represented these results with "N/A".

The LUSH pipeline followed a similar procedure as 
described for GATK best practices, including preproc-
essing, alignment to genome, sorting alignments, mark-
ing duplicates, base quality score recalibration and 
variant calling, consists of three LUSH components: 
LUSH_Aligner, LUSH_BQSR and LUSH_HC (Fig.  1, 
Table 1).

The fundamental architecture of LUSH toolkit
LUSH_Aligner incorporates multiple functional mod-
ules such as SOAPnuke, Bwa MEM, Samtools sort, and 
GATK-MarkDuplicates (Picard) while being entirely 
redeveloped based on the original algorithm. The funda-
mental architecture is depicted in Supplemental Fig. S1. 
LUSH_Aligner is composed of three primary functional 
modules: ’FqFilterComponent’, ’bwaMEMComponent’, 
and ’SortDuplicateComponent’, which manage filtering, 
alignment, as well as sorting-alignments and marking-
duplicates tasks, respectively. Each functional module 
encompasses several workers to concurrently perform 
the associated operations, while distinct modules com-
municate via the intermediary conveyor belt system. Spe-
cifically, the raw sequencing reads are first loaded into the 
FqFilterComponent module through the FastQReader. 
Within this module, a cohort of FqfilterWorker threads 
executes filtering operations on the reads. Concurrently, 
the quality-controlled reads are stored in the CleanFq file 
while also being transmitted to the downstream ’bwaM-
EMComponent’ module. Herein, the bwaMEMworker 
performs parallel alignment of the reads, which subse-
quently get transmitted to the ’SortDuplicateCompo-
nent’. Within this component, the SortDuplicateWorkers 
undertake the crucial tasks of sorting-alignments and 
marking-duplicates, culminating in the generation of 
a sorted and deduplicated bam file. The entire process 
adheres to the paradigm of pipeline computing (Supple-
mental Fig. S1). This design significantly enhances CPU 

utilization and diminishes redundant IO consumption, 
ultimately leading to an increased processing speed.

The base quality scores generated by sequencing 
machines are influenced by various systematic (non-
random) technical errors, leading to overestimation or 
underestimation of the quality scores in the data. The 
purpose of Base Quality Score Recalibration (BQSR) is 
to empirically model these errors using machine learn-
ing and adjust the quality scores accordingly. It mainly 
consists of two steps: Base Recalibration and apply-
ing BQSR. LUSH_BQSR implements a producer–con-
sumer parallel computing structure to optimize task 
parallelism and improve CPU utilization (Supplemental 
Fig. S2). In the Base Recalibration phase, the producer 
threads read the input BAM file for data distribution, 
and the distributed tasks enter the queue for processing 
by consumer threads, which involve data processing and 
computational activities (such as calculating different 
covariates and max posterior probability). Once all the 
tasks are completed, the recal-table is printed, and then 
the downstream apply BQSR phase is entered. LUSH_
BQSR applies numerical corrections to each individual 
base based on the Base Recalibration table in the mem-
ory pool. Different consumer threads perform different 
batches of reads base quality correction tasks. Finally, 
the sorted results are collected and outputted to the final 
BAM file (Supplemental Fig. S2). The number of threads 
engaged in the producer or consumer roles can be con-
trolled through external parameters, making it possible 
to adapt to different machine configurations and improve 
overall thread utilization.

HaplotypeCaller employs a local de-novo assembly 
approach within active regions for accurate detection of 
single nucleotide polymorphisms (SNPs) and insertion-
deletion (indel). This process involves four sequential 
steps: identification of active regions, local assembly of 
active regions to infer haplotypes, estimation of likeli-
hood values utilizing the Pair Hidden Markov Model 
(HMM), and determination of genotypes based on Bayes-
ian inference. To facilitate efficient task distribution and 
scheduling, we have implemented a dedicated dispatcher 
for each step within the LUSH_HC architecture (Supple-
mental Fig. S3). Prior to entering the ActiveRegionDis-
patcher, read alignments from the Binary Alignment 
Map (BAM) file undergoes filtering and downsampling. 
ActiveRegionDispatcher further subdivides tasks based 
on chromosome coordinates, enabling the calculation 
of likelihood values for each specific candidate inter-
val. Completed tasks are then merged in ActiveRegion-
Reduce to determine the ActiveRegions. The resulting 
ActiveRegions are subsequently dispatched to the 
AssembleDispatcher, where tasks are queued and exe-
cuted. Upon completion, the processed data proceeds to 
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downstream stages, including the PairHMMDispatcher 
and GenotypeDispatcher. Each dispatcher promptly sub-
mits upstream tasks to the thread pool, and dynamically 
allocates computing resources (i.e., threads) based on the 
computing load of each task. Once the task is finalized, 
the computing resources are released back to the thread 

pool and marked as available for other tasks to use (Sup-
plemental Fig. S3). Furthermore, certain active region 
intervals may contain a substantial number of candidate 
haplotypes, leading to a significant computational bur-
den during PairHMM calculations and uneven task dis-
tribution among threads, thereby resulting in inefficient 

Fig. 1 Overview of LUSH variant calling workflow. The LUSH DNASeq workflow is an optimized pipeline based on GATK best practices and consists 
of LUSH_Aligner, LUSH_BQSR, LUSH_HC, and LUSH_GenotypeGVCFs
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CPU utilization. To overcome this challenge, LUSH_HC 
employs a further task subdivision strategy combined 
with dynamic resource allocation in these regions to 
achieve load balance and optimize resource allocation 
(Supplemental Fig. S3). This comprehensive approach 
effectively maximizes the utilization of system resources, 
ultimately enhancing the overall performance and effi-
ciency of the system.

Methodology evaluation
For NA12878 and Two trios WGS data sets, we used 
the haplotype comparison tool hap.py (v0.3.14, default 
comparison engine) for the comparison of diploid geno-
types at the haplotype level to calculate the performance 
metrics. The variant calling accuracy of CHM-Syn-
thetic-diploid WGS dataset was evaluated using RTG in 
CHM-evalkit (Version 20180222) [12]. The definitions 
of true positive (TP), false positive (FP), and false nega-
tive (FN) were based on the types of variant matching 
stringencies “genotype match”, and Precision, Recall, and 
F1-score were calculated as TP/(TP + FP), TP/(TP + FN) 
and 2*TP/(2*TP + FN + FP), respectively. Tools-specific 
SNPs and INDELs were annotated using the SNPEFF 
(v4.3) [5] with default parameters.

We evaluated the computational performance of all the 
tools on the same Linux machine, measuring both total 
runtime and maximum memory consumption using the 
“/usr/bin/time” command. All analyses were run on a 
Linux machine featuring an Intel(R) Xeon(R) Gold 6348 
CPU 56-core processor and 500  GB memory and were 
performed on a shared storage disk Dell EMC Isilon 
H500.

Results
Overview of LUSH DNAseq workflow
The LUSH DNASeq workflow is an optimized pipeline 
based on GATK best practices. Its main components are 
LUSH_Aligner, LUSH_BQSR, LUSH_HC, and LUSH_
GenotypeGVCFs (Fig. 1, Table 1).

LUSH_Aligner is a comprehensive computational 
framework that seamlessly integrates four distinct func-
tional modules: preprocessing, alignment to the refer-
ence genome, sort alignments, and mark duplicates. 
These modules correspond to well-established software 
tools: SOAPnuke, Bwa mem, Samtools sort [6] and 
GATK-MarkDuplicates ([6], Picard), achieving seam-
less communication through an intermediate transmis-
sion system (Supplemental Fig. S1, details see Methods). 
LUSH_BQSR utilizes a parallel computing architecture 
with a producer–consumer pattern to implement base 
quality score recalibration (Supplemental Fig. S2, see 
Methods). LUSH_HC involves four sequential steps: 
identification of active regions, assembly of active regions 
to infer haplotypes, estimation of likelihood values utiliz-
ing Pair Hidden Markov Model (PairHMM), and deter-
mination of genotypes based on Bayesian inference. To 
facilitate efficient task distribution and scheduling, we 
have implemented a dedicated dispatcher for each step 
within the LUSH_HC architecture (Supplemental Fig. 
S3, see Methods for more details). Moreover, LUSH_HC 
also implements the GVCF mode algorithm to meet the 
demand of GVCF files in cohort studies. Correspond-
ingly, the C/C++ re-implementation of LUSH_Geno-
typeGVCFs is used to perform joint genotyping on one 
or more samples.

Computational performance on different threads 
and sequencing depth
The computational performance of the pipelines may 
not necessarily improve with the increase of the num-
ber of cores used. Application performance can be lim-
ited due to multiple bottlenecks including contention for 
shared resources such as caches and memory. Thus, we 
specified 12, 24, 36, 48 and 56 (max) threads at a single 
node to test the single-node scalability of the LUSH pipe-
line. As shown in Fig.  2, the runtime of all LUSH tools 
in this pipeline decreases significantly as the threads are 
increased. The pipeline completed in ~ 4.89 h when run-
ning at 12 threads and ~ 1.6 h when running at 56 threads 

Table 1 The composition of LUSH pipeline and GATK pipeline

Pipeline step GATK/GATK-spark pipeline LUSH pipeline

Preprocessing SOAPnuke LUSH_Aligner

Alignment to genome Bwa mem

Sort alignments Samtools sort

Mark duplicates MarkDuplicates/MarkDuplicatesSpark

Base quality score recalibration BaseRecalibrator & ApplyBQSR/BaseRecalibratorSpark & Apply-
BQSRSpark

LUSH_BQSR

Variant calling HaplotypeCaller/HaplotypeCallerSpark LUSH_HC

Joint genotyping GenotypeGVCFs LUSH_GenotypeGVCFs
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(Fig.  2A), indicating that the LUSH pipeline has great 
thread scalability.

We then generated NA12878 WGS datasets with 20X, 
40X, 60X, 80X and 100X coverage depths by down-
sampling. Each dataset was performed with the LUSH 
DNASeq pipeline to investigate the effect of sequencing 
depth on performance. Each task was run on the maxi-
mum available cores (56). The runtime of all LUSH tools 
and the entire pipeline increases almost linearly with 
increasing sequencing depth (Fig. 2B).

Speed of LUSH pipeline relative to GATK pipeline
To compare the performance of each component of 
the LUSH pipeline with that of the GATK and GATK-
Spark pipeline, we analyzed the NA12878 30X sample 
on a maximum 56-core machine. Each software thread 
parameter was adjusted to the maximum available. 
LUSH_Aligner integrates four functional modules for the 
FASTQ to BAM process, including pre-processing, align-
ment to the genome, sorting alignments, and marking 
duplicates. LUSH_Aligner completed FASTQ to BAM 
on 30x NA12878 dataset in less than 1.3 h, which is more 
than 5 times faster than the 6.88  h of GATK pipeline 
(Fig. 3A). Despite the acceleration of the marking-dupli-
cates step by MarkDuplicatesSpark, the improvement 
in performance was not substantial. LUSH_BQSR inte-
grates BaseRecalibrator and ApplyBQSR of GATK pipe-
line to greatly improve thread utilization. On the 30x 
NA12878 dataset, LUSH_BQSR demonstrated remark-
able efficiency by completing the task in approximately 

5 min. This represents a 60-fold increase in performance 
compared to the 5.22  h required by the GATK pipeline 
and a 4.5-fold improvement over the 0.39 h taken by the 
GATK-Spark pipeline (Fig. 3B). To produce a VCF from 
a BAM file, GATK-HaplotypeCaller was widely recog-
nized as the most time-consuming step in the GATK 
best-practice pipeline. It took ~ 15  h to complete the 
30x NA12878 dataset, while LUSH_HC took only about 
12 min (Fig. 3C). During the application of GATK-Spark 
in VCF-mode, a prevalent issue was observed for which 
no resolution is presently available (see methods). This 
finding implies that GATK-Spark may not be sufficiently 
mature for implementation in production environments. 
The GVCF mode was commonly used in the cohort-wide 
analysis, which can then be used for joint genotyping 
of multiple samples in a very efficient way. This enables 
rapid incremental processing of samples as they roll off 
the sequencer, as well as scaling to a very large cohort 
size. Thus, we also implanted GVCF mode in LUSH_HC. 
In GVCF mode, LUSH_HC used only 0.28  h, while the 
GATK pipeline took 18.35  h to process the same data-
set (Fig.  3D). GATK-Spark required 0.76  h to complete 
the task, demonstrating a performance approximately 
2.7 times less efficient than that of LUSH. Regarding the 
performance of single sample joint genotyping, LUSH_
GenotypeGVCFs (0.21 h) was 5X faster than GATK-Gen-
otypeGVCFs (1.13 h) (Fig. 3E).

For the whole pipeline from FASTQ to VCF, the LUSH 
pipeline greatly reduced the runtime in both non-GVCF 
and GVCF modes, taking less than 2  h for 30X WGS 

Fig. 2 Computational performance of the LUSH pipeline at different threads and sequencing depth on NA12878. A Running time with 12, 24, 36, 
48 and 56 threads on NA12878 (30X). B Running time at sequencing depth 20X, 30X, 40X, 60X, 80X, 100X. Each data point is the average of two 
replicates
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data, about 17 times faster than the GATK pipeline and 
4.5 times faster than the GATK-Spark pipeline (Fig. 3F,G). 
Likewise, the LUSH pipeline had a similar performance 
on CHM-Synthetic-diploid (Supplemental Fig. S5) and 
two-trios WGS datasets (Supplemental Table S2).

Variant calling accuracy of the LUSH pipeline
We then compared the accuracy of the LUSH pipeline 
with that of the GATK and GATK-Spark pipeline. The 
underlying algorithm of LUSH is roughly the same as 
that of GATK or GATK-Spark, so they were expected to 
produce identical results. We ran each of the three data-
sets mentioned above using two pipelines. The generated 
VCFs were compared with their respective truth sets 
using the haplotype comparison tool hap.py or CHM-
evalkit. The comparison was limited to the high-confi-
dence regions of each dataset (see Methods). Due to the 
common use of GVCF mode in cohort studies, we also 
add GVCF mode to the comparison. As expected, LUSH, 
GATK and GATK-Spark demonstrated almost the same 
precision, recall and F1-score on the NA12878 (Fig. 4A, 
B) and CHM-Synthetic-diploid datasets (Fig. 4C, D), both 
for the SNP and INDEL. Interestingly, the comparison of 
the results obtained from the non-GVCF mode and the 
GVCF mode for both the LUSH and GATK pipelines 
showed that the former exhibited higher precision and 
slightly lower recall. Specifically, the F1 scores revealed 
that the non-GVCF mode exhibited better performance 
in terms of accuracy for both pipelines (Fig. 4A–D). The 
findings are also in full agreement with the Two trios 
WGS data (Supplemental Table S3).

We then analyzed the intersection of the LUSH pipe-
line and the GATK pipeline. All variants detected by 
both pipelines were used for the analysis. As expected, 
approximately 99.11–99.14% of SNPs and 98.92–99.08% 
of INDELs were co-reported by the two pipelines, both 
in the non-GVCF mode (Fig.  5A, B) and GVCF mode 
(Fig.  5C, D), indicating a high consistency of the LUSH 
and GATK pipelines. Among these LUSH-only and 
GATK-only variants, the observed TP rates for SNP 
were 1.54% and 0.74%, respectively. For INDEL, the TP 
rates were 5.33% and 2.51%, respectively (Fig.  5A, B). 
The TP rates in GVCF mode were consistent with these 
results (Fig. 5C, D). We then annotated genomic regions 
for LUSH or GATK-specific SNPs and INDELs using 
SNPEFF. Among these few pipeline-specific variants, 
LUSH-only and GATK-only variants showed consist-
ent distribution across the genome, and more than 97% 
of the variants were located in non-functional regions 
(sum of INTERGENIC, INTRON, DOWNSTREAM, 
UPSTREAM).

Moreover, we also explored the intersection of variants 
in non-GVCF mode and GVCF mode. The results were 
highly consistent in both modes, with 99.13% (GATK) 
and 99.25% (LUSH) of co-detected SNPs and 99.11% 
(GATK) and 99.18% (LUSH) of co-detected INDELs 
(Supplemental Fig. S6). GVCF mode significantly 
detected more specific SNPs and INDELs.

Computer resource utilization of the LUSH toolkit
We have recorded the average CPU load and maximum 
memory consumption for each LUSH component during 

Fig. 3 Runtime of LUSH, GATK and GATK-Spark Variant Calling pipelines on NA12878. A Runtime of each component from FASTQ to BAM. B 
Runtime of base quality score recalibration. C Runtime of variant calling in non-GVCF mode. D Runtime of variant calling in GVCF mode. E Runtime 
of joint genotyping on one sample. F Total elapsed time in non-GVCF mode. G Total elapsed time in GVCF mode. N/A: Not applicable
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Fig. 4 Accuracy of LUSH, GATK and GATK-Spark Variant Calling pipelines. Based on two benchmark datasets, the precision and recall, as well 
as the F1 scores, were utilized to measure the accuracy of detected SNPs (Left panel) and INDELs (Right panel). A, B On NA12878 dataset. C, D On 
CHM-synthetic-diploid dataset

Fig. 5 The intersection of variants called by different pipelines on NA12878. The pie chart shows the overlap of SNPs (left panel) and INDELs 
(right panel) identified by the LUSH and GATK pipelines in two different modes. The co-detected variants are depicted in grey, while the LUSH 
and GATK specific variants are shown in red and blue, respectively. Additionally, the adjacent red and blue bars illustrate the genomic distribution 
of LUSH-only and GATK-only variants. The modes of analysis are categorized as A, B non-GVCF mode. C, D GVCF mode
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the examination of the NA12878 dataset at 30x coverage, 
and juxtaposed these findings with the tools of the GATK 
and GATK-Spark workflows. Consistent with prior analy-
ses, the LUSH, GATK, and GATK-Spark workflows were 
executed on a 56-core machine, with the parameters 
of each tool configured to the maximum of 56 threads, 
where applicable. Our findings reveal that the CPU uti-
lization of the LUSH workflow components is notably 
elevated, akin to that of GATK-Spark, while GATK, with 
the exception of the preceding alignment, sorting, and 
marking-duplicates stages, predominantly employs 1–2 
threads (Supplemental Table. S4). Regarding memory 
usage, the peak memory consumption of the LUSH work-
flow reaches 42G during the LUSH_Aligner step, slightly 
lower for other stages, akin to GATK-Spark, and surpass-
ing that of GATK, which hovers around 10G.

Discussion
Genome sequencing has been commonly used for molec-
ular diagnosis, staging, and prognosis, and the massive 
sequencing data presents a challenge in terms of analysis 
time. We have developed a LUSH pipeline consisting of 
LUSH toolkit enabling rapid and precise results. It takes 
only 1.6 h to process 30X WGS data from FASTQ to VCF 
and ~ 12 min from BAM to VCF, with accuracy compa-
rable to GATK, which is extremely critical for acutely ill 
patients, such as infants in the Pediatric Intensive Care 
Unit (PICU) and Neonatal Intensive Care Unit (NICU).

We tested the performance of the LUSH pipeline at dif-
ferent thread scales and showed that the LUSH pipeline 
has remarkable thread scalability. The LUSH component 
is based on a parallel computing architecture of producer 
and consumer, which allows it to achieve optimal perfor-
mance on any machine with a reasonable configuration 
of parameters. The LUSH pipeline also scales well linearly 
at different sequencing depths.

LUSH is based on the original WGS "best practices" 
with a C/C++ implementation that follows the underly-
ing algorithms of the original pipeline. In terms of speed, 
the optimization of the underlying language, multi-
threaded architecture, and algorithmic framework gives 
the LUSH pipeline an absolute advantage over GATK. 
Each step in the LUSH pipeline is at least 5 times faster 
for the same work, and the step LUSH_HC even reaches 
a speed increase of 76 times. In terms of accuracy, the 
results of the LUSH pipeline and GATK are equally accu-
rate and highly consistent. The annotation results for spe-
cific variants show no meaningful differences in reliability 
between them. We also demonstrated both high accuracy 
and hyper speed for the LUSH pipeline on multiple data-
sets of standards. Moreover, it is crucial to highlight that 
LUSH can effectively accelerate the analysis of all types 
of DNAseq data (such as WGS, WES, PANEL, etc.), even 

though the present study’s focus on comparing LUSH’s 
performance solely in the context of WGS data, as WGS 
has the extensive volume and prolonged analysis dura-
tion. The BAM files generated by LUSH can also be used 
for subsequent detection of structural variants (SV) and 
copy number variations (CNV), serving as input for com-
mon SV callers such as Manta [3], Delly [21], and Lumpy 
[11] etc., because it follows the original BWA algorithm.

Conclusions
In summary, the LUSH pipeline displays considerable 
potential as a viable alternative to the GATK pipeline for 
DNASeq Variant Calling, with the added advantage of 
being easily deployable. Consequently, its implementa-
tion is expected to enhance the bedside analysis of criti-
cally ill patients, facilitate analysis of large-scale cohort 
data, and expedite high-throughput variant calling in 
crop breeding programs.
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