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Abstract
Background  Cisplatin-induced ototoxicity (CIO), characterized by irreversible and progressive bilateral hearing loss, 
is a prevalent adverse effect of cisplatin chemotherapy. Alongside clinical risk factors, genetic variants contribute to 
CIO and genome-wide association studies (GWAS) have highlighted the polygenicity of this adverse drug reaction. 
Polygenic scores (PGS), which integrate information from multiple genetic variants across the genome, offer a 
promising tool for the identification of individuals who are at higher risk for CIO. Integrating large-scale hearing 
loss GWAS data with single cell omics data holds potential to overcome limitations related to small sample sizes 
associated with CIO studies, enabling the creation of PGSs to predict CIO risk.

Results  We utilized a large-scale hearing loss GWAS and murine inner ear single nuclei RNA-sequencing (snRNA-
seq) data to develop two polygenic scores: a hearing loss PGS (PGSHL) and a biologically informed PGS for CIO 
(PGSCIO). The PGSCIO included only variants which mapped to genes that were differentially expressed within cochlear 
cells that showed differential abundance in the murine snRNA-seq data post-cisplatin treatment. Evaluation of the 
association of these PGSs with CIO in our target CIO cohort revealed that PGSCIO demonstrated superior performance 
(P = 5.54 × 10− 5) relative to PGSHL (P = 2.93 × 10− 3). PGSCIO was also associated with CIO in our test cohort (P = 0.04), 
while the PGSHL did not show a significant association with CIO (P = 0.52).

Conclusion  This study developed the first PGS for CIO using a large-scale hearing loss dataset and a biologically 
informed filter generated from cisplatin-treated murine inner ear snRNA-seq data. This innovative approach offers 
new avenues for developing PGSs for pharmacogenomic traits, which could contribute to the implementation of 
tailored therapeutic interventions. Further, our approach facilitated the identification of specific cochlear cells that 
may play critical roles in CIO. These novel insights will guide future research aimed at developing targeted therapeutic 
strategies to prevent CIO.
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Background
Cisplatin is an effective platinum-based chemothera-
peutic that is used to treat a spectrum of malignancies, 
including leukemias, lymphomas, sarcomas, as well as 
breast, testicular, ovarian, head and neck, and cervical 
cancers [1]. The effectiveness of this treatment is high-
lighted by the fact that the introduction of cisplatin into 
testicular cancer treatment protocols in 1978 led to a 
9-fold increase in survival rates for these patients [2, 3]. 
Unfortunately, cisplatin treatments are also accompa-
nied by the occurrence of adverse drug reactions (ADRs), 
which can significantly diminish patients’ quality of life 
[4, 5]. One such example is cisplatin-induced ototoxic-
ity (CIO), a common ADR characterized by permanent, 
progressive, and bilateral hearing loss [6]. The exact 
mechanisms underlying the development of CIO are still 
not completely understood, but several pathways have 
been implicated [5]. This includes damage to cochlear 
cells through the cytotoxic effects of cisplatin, damage 
to nuclear and mitochondrial DNA [7, 8], and the activa-
tion of apoptosis [9] through direct and indirect means 
[10–12].

The incidence of ototoxicity after cisplatin treatment, 
which can be up to 80% for some cancers [13], adds to the 
challenges and burdens already faced by cancer patients 
and survivors. Further, the development of hearing loss 
is associated with adverse consequences throughout 
these individuals’ lives, including challenges in speech 
and language development for young children, as well as 
the potential for increased social isolation, or depression 
[14]. As sodium thiosulfate has recently been approved 
by the Food and Drug Administration (FDA) to reduce 
the risk of CIO in pediatric patients with non-malignant 
cancers [15], CIO risk prediction models could help to 
prioritize which individuals would benefit most from 
these otoprotectants. Several risk factors for CIO have 
been identified, including age, with pediatric and older 
adults at higher risk [5], high cisplatin administration 
schedules [16], and cranial irradiation, which is con-
sidered the most significant clinical risk factor for CIO 
[17]. As a result, current predictive models for CIO have 
focused on using clinical risk factors to predict risk of 
CIO [18, 19].

While clinical factors play an important role in risk of 
CIO, they do not account for all the variability observed 
for this ADR. In line with this, heritability studies sug-
gest that genetic variation also plays an important role in 
CIO, with up to 47% of the variability in the occurrence 
of CIO attributed to genetics [20]. Notably, genome-wide 
association studies (GWAS) have identified an increasing 
number of genetic variants that contribute to CIO risk 
[17, 21, 22]. Unfortunately, due to the polygenic nature 
of CIO, individually, these genetic variants offer only par-
tial insights into overall genetic risk for CIO [23]. This 

highlights the need for polygenic scores (PGS), which 
integrate risk information from multiple genetic variants 
across the genome to create a single risk score for each 
individual. However, accurately generating these scores 
for CIO remains challenging due to relatively small 
cohorts, resulting in inaccurate effect size estimates for 
risk variants [24]. Therefore, innovative approaches are 
required to overcome these challenges and enhance the 
accuracy of PGSs.

To overcome these limitations in this study, we inte-
grated data from a large-scale multi-trait analysis of 
GWAS (MTAG) of hearing loss [25] with cisplatin-
treated murine inner ear single nuclei RNA sequencing 
(snRNA-seq) data. Due to the genetic overlap between 
hearing loss phenotypes and CIO [26], we used MTAG 
data to increase our power to uncover variants that play 
a role in several diverse hearing traits. Further, given 
the potential tissue-specific effects of cisplatin on gene 
expression, the generation of inner ear snRNA-seq data 
obtained from cisplatin-treated mice allowed for the 
incorporation of a biologically informed refinement filter 
to enhance the relevance of our initial PGS (i.e., PGSHL) 
to CIO. By harnessing these unique data, we developed a 
refined PGS (i.e., PGSCIO) that was associated with CIO 
in two independent cohorts, providing further insights 
into the genetic factors that influence susceptibility to 
CIO.

Methods
Study cohorts
Base cohort
Given the observed overlap in the genetic architecture 
between hearing loss and CIO [26] we obtained sum-
mary statistics from a previously published MTAG of 
four genetically correlated, heritable and polygenic hear-
ing loss traits from the UK Biobank (UKB) [25]. These 
data were used as a base cohort to develop a hearing 
loss PGS that would be of relevance to diverse hearing 
loss traits. The four self-reported hearing traits included 
in this MTAG were hearing difficulty with background 
noise (cases: n = 134,141; controls: n = 219,842), hearing 
difficulty (cases: n = 90,710; controls: n = 255,925), hear-
ing aid user (cases: n = 10,942; controls: n = 208,416), and 
tinnitus (cases: n = 7,739; controls: n = 110,142). The use 
of this large-scale MTAG dataset allowed us to circum-
vent sample size limitations associated with current CIO 
GWAS, providing more accurate effect size estimates for 
variants that are associated across diverse hearing loss 
phenotypes [24].

Target cohort
To investigate the association between the PGSs and 
CIO, GWAS summary statistics from the PanCareLIFE 
(PCL) cohort were obtained. This cohort is described in 
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detail elsewhere [27], but consists of 390 pediatric cancer 
patients of European (92%), and non-European ancestry 
(8%) (African-American/African-Caribbean and Latin 
American) who underwent cisplatin treatment, but were 
not subjected to cranial radiation therapy. Cases and con-
trols were defined by the Muenster grading criteria, with 
168 individuals exhibiting CIO (Muenster grade > 2b), 
while 222 individuals showed no or minimal ototoxicity 
(Muenster grade 0-2a). Genotyping was performed using 
the Illumina Infinium Global Screening Array. Quality 
control (QC) and imputation, using the Michigan Impu-
tation Server and the Haplotype Reference Consortium 
reference (HRC r1.1), were performed as previously 
described [27].

Test cohort
To validate the association between the PGSs and CIO, 
individual-level genotype and clinical data from two St. 
Jude’s Children Research Hospital Medulloblastoma 
(SJMB) cohorts, the SJMB96 cohort consisting of 31 chil-
dren enrolled between 1996 and 2003 and the SJMB03 
cohort consisting of 207 children enrolled between 2003 
and 2012, were used. All individuals enrolled in both the 
SJMB96 and SJMB03 cohorts underwent craniospinal 
irradiation (CSI) and cisplatin treatment. Further, cases 
and controls were defined by the Chang grading criteria, 
with 61% of individuals exhibiting CIO (Chang grade>  
0), while 39% of individuals showed no ototoxicity (Chang 
grade 0). Genotyping of these samples was performed 
using the Illumina HumanOmni2.5+HumanExome Bead-
Chip, as previously described [17].

Generation of mouse inner ear single-nuclei RNA-
sequencing data
Intraperitoneal injections of 3.0 mg/kg cisplatin or saline 
were administered to postnatal day-6 (P6) CBA/CaJ 
mice in the control (n = 6) and treatment groups (n = 6), 
respectively. This dosing schedule has been shown to 
produce a clinically relevant mouse model for CIO [28]. 
P6 mice were chosen for the absence of ossification in 
the cochlear cartilaginous membrane, facilitating opti-
mal dissection of intact cochlea samples and eliminat-
ing the need to include decalcification processes which 
may alter gene expression profiles, thereby enhancing 
compatibility with snRNA-seq.  snRNA-seq was used as 
these data form part of a larger multiome dataset, which 
requires nuclei for ATAC sequencing. Four hours post-
treatment, corresponding to the timepoint when cispl-
atin-induced gene expression changes were observed 
in other organs in mice [29], mice were euthanized via 
decapitation and their cochleae were micro-dissected as 
previously described [30]. After dissection, the cochleae 
were flash-frozen in liquid nitrogen for 45 s and stored in 
a liquid nitrogen tank. Single nuclei were isolated from 

pooled treatment and control cochlea samples using the 
10X Genomics Chromium Nuclei Isolation Kit, accord-
ing to the manufacturer’s protocol, modified to include 
only one round of washing to allow for maximum nuclei 
yield. Before single-cell library preparation, the concen-
tration and viability of the nuclei were assessed using 
AO/PI staining and the CellDrop automated cell coun-
ter. Libraries were prepared using the Single Cell GEX 
& Fixed RNA Profiling Kit and a local Chromium Con-
troller, according to the manufacturer’s protocol. These 
libraries were frozen and sent for sequencing with a tar-
get depth of 50 million reads/sample on the NovaSeq X 
Plus Sequencing System at Princess Margaret Genomics 
Sequencing Centre. Technical replicates were performed 
for each sample by preparing two separate libraries from 
the same nuclei suspension across two channels on the 
Chromium microfluidic device.

After sequencing, data processing was carried out, as 
detailed in Supplementary Fig.  1. Alignment of reads 
was performed using CellRanger, followed by QC checks 
using FastQC. Further QC was performed to correct for 
ambient RNA using SoupX, filtering low-quality cells 
using Seurat, and doublet removal using scDblFinder. 
Low-quality cells were identified based on their mito-
chondrial percentages deviating more than 3 median 
absolute deviations (MADs), as well as cells with log10-
transformed gene counts and UMI counts exceeding ±3 
MADs. The data was normalized and scaled using Seur-
at’s NormalizeData and ScaleData functions. Feature 
selection identified informative genes, followed by prin-
cipal component analyses (PCA) and cell clustering. Uni-
form Manifold and Approximation Projection (UMAP) 
was then used to visualize the data, and clusters were 
annotated using Seurat’s data transfer method based on 
previously published murine cochlear data [31].

Construction of a hearing loss PGS (PGSHL)
MTAG summary statistics were harmonized using the 
S-PrediXcan harmonization pipeline [32] to ensure con-
sistent formatting and compatibility across different 
datasets. These harmonized summary statistics, along 
with the GCTB sparse shrunk linkage disequilibrium 
(LD) reference panel consisting of 2.8  million common 
variants from the UKB, were used as inputs for SBayesR 
[33] to construct a PGS for hearing loss using Bayesian-
based approaches. We used SBayesR default parameters 
with the “—robust” option to address potential differ-
ences in SNP effects across traits in the MTAG dataset 
[33]. Ambiguous variants (i.e., C/G, G/C, A/T and T/A 
variants) were excluded from downstream analyses.
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Refinement of PGSHL to increase the relevance of the score 
to CIO (PGSCIO)
To enhance the relevance of PGSHL to CIO [24], a bio-
logically informed pharmacogenomics filtering strategy 
was applied. To do this, analyses with MILO-R [34] were 
performed to identify cochlear cell types that exhibited 
differential abundance post-cisplatin treatment, when 
compared to saline-treated samples (LogFC<=-3, Spa-
tialFDR < 0.1). Genes that were differentially expressed in 
these cells were identified using DESeq2 [35] (Padj<0.05). 
Next, Ensembl’s Variant Effect Predictor v.108.1 was 
used, with default settings, to map genetic variants 
included in the PGSHL to human Ensembl gene IDs. Cor-
responding mouse orthologues were identified using the 
R package, babelgene. These data were then used to filter 
the PGSHL to include only variants mapping to murine 
genes that were differentially expressed within cochlear 
cells that showed differential abundance in the snRNA-
seq data post-cisplatin treatment (Fig.  1). This filtering 
strategy resulted in the generation of a biologically rel-
evant PGS (PGSCIO) for downstream analyses, with effect 
size weights of variants included in this score derived 
from the base cohort.

Testing the association between PGSHL/PGSCIO and CIO in 
the target cohort
The association between PGSHL/PGSCIO and CIO was 
evaluated using the CIO GWAS summary statistics from 
the PCL cohort. To enable comparison between datasets, 
the summary statistics were harmonized using the S-Pre-
diXcan pipeline. These harmonized summary statistics 
were used to assess the associations between the PGSHL/
PGSCIO and CIO using ReACt [36]. The use of this tool 
circumvented the need to obtain individual-level data, 
thereby streamlining these analyses [37]. By reconstruct-
ing allelic frequencies [36] from the summary statistics 
obtained from the target (PCL) cohort, ReACt was used 
to calculate the mean PGS in cases and controls and test 
for significant differences between CIO cases and con-
trols using a two-sample t-test [36]. P < 0.05 was consid-
ered statistically significant.

Validating the association between PGSHL/PGSCIO and CIO 
in the test cohort
Genomic QC was performed using PLINK v1.09 (Sup-
plementary Fig.  2). Variants with missing data exceed-
ing 5% and deviating from Hardy Weinberg Equilibrium 
(P < 1.0 × 10− 4) were removed, along with individuals 
exhibiting missing data exceeding 5%, related individuals 

Fig. 1  Beeswarm plot illustrating cochlear cells showing differential abundance four hours post-cisplatin treatment vs. saline-treated sam-
ples. Each dot represents a neighborhood of cells. Red indicates decreased abundance and blue indicates increased abundance of cells treated with 
cisplatin relative to saline-treated controls
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(PI hat > 0.2), and those with mismatched sex. Impu-
tation was performed using the TOPMed Imputation 
Server and the TOPMed r3 reference panel. Following 
imputation, all variants with R2 > 0.95 were included in 
the data to ensure the inclusion of high-quality imputed 
genotypes. After pruning for LD, and removing variants 
with minor allele frequencies < 0.01, PCA was performed 
using EIGENSOFT v5. Principal component clustering 
revealed that 69% of patients were of European descent.

Using PLINK v1.09, PGSs were generated for each 
individual in the test cohort for both the PGSHL and the 
PGSCIO. After scoring individuals, the distribution of 
PGSs were evaluated for normality using the Shapiro test. 
Deviation from normality was indicated by P < 0.05. To 
assess the association between PGSHL/PGSCIO and CIO, 
logistic regression was performed using the geneticriskR 
package [38] in R, including age at diagnosis, protocol 
(SJMB96 or SJMB03) [17], and the first ten ancestral 
principal components as covariates. These covariates 
were selected based on their previously reported signifi-
cant associations with CIO [17]. Further, given the estab-
lished role of CSI in ototoxicity [39], we incorporated an 
interaction term between CSI dose (< 25 Gy or ≥25 Gy) 
and PGS in our model. The ability of significant PGSs 
to distinguish cases (individuals with CIO) and controls 
(individuals without CIO) was evaluated using receiver 
operating characteristic (ROC) curves and area under 
the curve (AUC) values. Lastly, the positive predictive 
value (PPV) and negative predictive value (NPV) were 
calculated to quantify the predictive accuracy of the PGS 
model. P < 0.05 was considered significant in all analyses.

Results
Generation of snRNA-seq data
To allow for biologically informed filtering of the PGSHL, 
we generated snRNA-seq from the inner ears of cispla-
tin-treated mice. After QC, we observed fewer cells in 
the cisplatin treatment group (replicate 1: n = 10,407 cells, 
replicate 2: n = 9,822) compared to the saline treatment 
control group (replicate 1: n = 13,212 cells, replicate 2: 
n = 12,724 cells). Closer investigation of the specific cells 
that are impacted by cisplatin treatment revealed that 
there was a decrease in type I neurons, osteoblasts, outer 
hair cells (OHC), spindle cells, macrophages, tympanic 
border cells, supporting cells, supporting structures 1 
and 2, and osteocytes post-cisplatin treatment (MILO-
R: LogFC<=-3, SpatialFDR < 0.1). Notably, macrophages 
were the only population of cells that demonstrated a 
significant increase in response to cisplatin treatment. 
Across the cochlear cell types that showed differential 
abundance, 159 differentially expressed genes (DEGs) 
were observed (DESeq2: Padj<0.05) (Supplementary 
Fig. 3).

Evaluation of the association between PGSHL/PGSCIO and 
CIO in the target cohort
A total of n = 2,370,365 non-ambiguous variants were 
included in PGSHL. Subsequent application of our refine-
ment filter to PGSHL yielded PGSCIO, which contained 
n = 138,670 variants mapping to DEGs within cochlear 
cells that showed differential abundance. ReACt was 
then used to determine whether there was a significant 
association between the PGSs and CIO in the target 
PCL cohort. While the PGSHL was significantly associ-
ated with CIO in this cohort (P = 2.93 × 10− 3, R2 = 0.023), 
the PGSCIO was more significantly associated with CIO 
(P = 5.54 × 10− 5, R2 = 0.041).

Evaluation of the association between PGSHL/PGSCIO and 
CIO in the test cohort
Investigation of the distribution of PGSHL and PGSCIO 
confirmed that these scores were normally distributed 
in the SJMB cohort (PGSHL: P = 0.72; PGSCIO: P = 0.96) 
(Supplementary Fig.  4). Examination of the associa-
tion between PGSHL/PGSCIO and CIO revealed that 
PGSHL was not significantly associated with CIO in 
the test cohort (P = 0.52, Nagelkerke R2 = 0.006), while 
PGSCIO demonstrated a significant association (P = 0.043, 
Nagelkerke R2 = 0.024). To establish baseline compari-
sons, we evaluated the independent predictive perfor-
mance of a model including (i) only the PGSCIO, (ii) only 
clinical covariates (i.e., age at diagnosis, treatment pro-
tocol, CSI, and ancestral principal components), and 
(iii) the combined model, which incorporated both the 
PGSCIO and the relevant clinical covariates, including the 
interaction between CSI and PGSCIO. The model which 
included only PGSCIO yielded an AUC of 0.576 (95% 
CI: 0.503–0.650). Addition of PGSCIO to the model that 
included the relevant clinical covariates did not substan-
tially increase the predictive performance of the clini-
cal model (AUC of 0.732, 95% CI: 0.668–0.797 vs. AUC 
of 0.714, 95% CI: 0.648–0.78) (Supplementary Fig.  5). 
Examination of the PPV (81%) and NPV (48%) revealed 
that the predictive model, which includes both clini-
cal and genetic variables, correctly identifies 81% of true 
positive CIO cases and 48% of true negative CIO cases.

Discussion
PGSs have shown considerable promise in various clini-
cal contexts. For example, coronary artery disease (CAD) 
PGSs have identified a significantly larger number of at-
risk individuals compared to methods relying on rare 
mutations [24, 40]. In addition, CAD PGSs have guided 
treatment decisions, such as the use of statins for patients 
classified as high-risk [24, 41]. Building on these suc-
cesses, this is the first study to develop a hearing loss PGS 
that is specifically aimed at predicting CIO. By employing 
innovative approaches that integrate large-scale hearing 
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loss GWAS data with cutting-edge snRNA-seq data, this 
study created a PGS that was significantly associated with 
CIO in two independent cohorts. This work has shown 
that the incorporation of omics datasets into PGS devel-
opment pipelines can open new avenues for consider-
ing biological pathways underlying pharmacogenomic 
traits. Collectively, these novel methodologies offer a 
new approach for the development of pharmacogenomic 
PGSs.

The use of large-scale databases and summary statistics to 
overcome sample size and resource limitations associated 
with the development of PGS for CIO
As reviewed in detail by Johnson et al., previous studies 
have demonstrated the value of using large-scale GWAS 
of related phenotypes (e.g. schizophrenia GWAS) to 
create PGSs that can be used to predict pharmacoge-
nomic traits (antipsychotic response) [42]. Given the 
observed overlap in the genetic architecture of hear-
ing loss and CIO [26], we decided to build upon these 
approaches by using MTAG summary statistics from 
the UKB cohort. These summary statistics offer unique 
benefits as they provide information relating to associa-
tions across four genetically correlated hearing loss traits 
[43], thereby allowing for the identification of genetic 
variants of relevance across diverse hearing pheno-
types. In addition, MTAG leverages the shared genetic 
architecture among these traits to refine effect size esti-
mates, thereby enhancing our ability to detect associa-
tions, with these approaches being reported to increase 
the variance explained by the PGSs by as much as 25% 
[43]. Leveraging this approach, our study identified a sig-
nificant association between the PGSHL and CIO in the 
PCL cohort. Further the use of summary statistics for 
both the base and target cohorts represents a cost- and 
resource-effective method for the preliminary evaluation 
of the performance of PGSs. Given the challenges related 
to data-sharing practices in pharmacogenomics research 
[37], this method provides researchers with a unique 
opportunity to assess the feasibility and robustness of 
PGSs for future investigation, even when individual-level 
data is not readily available.

The use of snRNA-seq data to increase the relevance of a 
hearing loss PGS to CIO
The use of large-scale GWAS data from related pheno-
types has been shown to be a useful approach for the 
development of pharmacogenomic PGS [42]. However, 
not all variants uncovered from these GWASs are likely 
to be relevant to their drug-induced counterpart pheno-
types. Therefore, to enhance the relevance of the PGSHL 
to CIO, we generated murine inner ear snRNA-seq data 
obtained from cisplatin-treated mice. By using snRNA-
seq data to apply a pharmacologically relevant filter to 

our PGSHL, we were able to selectively include variants 
from the PGSHL that map to DEGs within cochlear cells 
that showed differential abundance. By enhancing the 
biological relevance of PGSHL to CIO, we developed a 
PGS (PGSCIO) with improved predictive capacity. Nota-
bly, evaluation of the performance of PGSHL and PGSCIO 
using summary statistics from the PCL cohort revealed 
that PGSCIO (P = 5.54 × 10− 5) outperforms PGSHL 
(P = 2.93 × 10− 3) in predicting CIO risk. This observation 
was replicated in the SJMB cohort, where PGSCIO was 
significantly associated with CIO (P = 0.043), while PGSHL 
was not (P = 0.52).

Uncovering cells and pathways of relevance to CIO
While initial evaluations of the PGSs using summary sta-
tistics from the PCL cohort provided valuable insights, 
further validation of PGSCIO using individual-level geno-
type and clinical data was essential to confirm the reliabil-
ity of these findings. Subsequent analyses revealed that 
while the PGSCIO was significantly associated with CIO 
in the SJMB cohort (P = 0.043), the inclusion of this score 
in a logistic regression model resulted in only a marginal 
improvement in predictive performance (AUC = 0.732) 
when compared to a model built with existing clinical/
demographic predictors (age at diagnosis, CSI, proto-
col, and ancestral principal components) (AUC = 0.714). 
Similarly, while PGSCIO accounted for more of the vari-
ance observed for CIO (Nagelkerke R2 = 0.024), compared 
to PGSHL (Nagelkerke R2 = 0.006), highlighting the value 
of our filtering approach, the variance explained was still 
relatively low. Consequently, the current clinical utility of 
this score remains limited. Nonetheless, by integrating 
human CIO GWAS data with murine snRNA-seq data, 
we have gained valuable insights into potential biological 
mechanisms underlying CIO.

Analysis of the snRNAseq data generated by this study 
revealed that cisplatin treatment led to a decrease in the 
abundance of several cell types within the inner ear, as 
well as an increase in the abundance of certain clusters 
of macrophages. The identification of cochlear cells that 
exhibit differential abundance in the snRNA-seq data, 
including specialized auditory cells (spindle cells, OHCs 
and type I neurons), supporting cells (supporting cells, 
supporting structures 1, supporting structures 2 and 
tympanic border cells), immune cells (macrophages), and 
bone cells (osteoblasts and osteocytes), allowed us to pin-
point specific cell types that are impacted by cisplatin and 
may therefore be important in CIO. The stria vascularis, 
organ of Corti, and spiral ganglion have previously been 
implicated in CIO [28], with spindle cells, OHCs, and 
type I neurons residing in these respective structures. 
Although the role of supporting cells in CIO remains 
poorly understood, the observed decrease in abundance 
of these cells post-cisplatin treatment highlights the need 
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to further investigate how these cells contribute to the 
development of CIO. In addition, it has been previously 
reported that cisplatin triggers inflammatory pathways, 
leading to the release of pro-inflammatory cytokines and 
the recruitment of immune cells such as macrophages 
[12], which is reflected by the observed increased abun-
dance of macrophages post-cisplatin treatment. This 
inflammation can cause tissue damage and hearing loss 
[12] by compromising the structures responsible for 
auditory function. Macrophages, which are widely dis-
tributed throughout the cochlea, play a significant role in 
mediating this inflammatory response [14]. Lastly, cispla-
tin binds extensively to type I collagen in bone, creating 
a reservoir that gradually releases platinum, potentially 
leading to ototoxic effects [28]. By elucidating the con-
tributions of these specific cochlear cells, our study sig-
nificantly advances the understanding of CIO and offers 
novel insights into its underlying mechanisms, opening 
future avenues of research.

Study limitations
While our study has yielded valuable insights relating to 
the genetics underlying CIO, it is important to acknowl-
edge several limitations which may contribute to the lim-
ited clinical utility of this score. First, given the potential 
incomplete overlap in the underlying genetic architecture 
between hearing loss and CIO, hearing loss GWAS may 
not capture all genetic factors that contribute to CIO 
risk. Although the PGSHL exhibited a significant asso-
ciation with CIO in the PCL cohort, the use of a future 
large-scale CIO GWAS as the base cohort for PGS devel-
opment could provide deeper insights into the genetic 
determinants of CIO and enhance the accuracy and clini-
cal applicability of this score. Further, many of the vari-
ants included in the initial PGSHL mapped to non-coding 
regions. Therefore, future studies should explore the inte-
gration of single nuclei multi-omics data, which includes 
single-nuclei assay for transposase-accessible chromatin 
sequencing (snATAC-seq) data, to allow for the annota-
tion and inclusion of intergenic variants in the biologi-
cally informed PGS. Our study also recognizes that while 
the genomes of humans and mice are genetically simi-
lar, with approximately 90% conserved regions [44] and 
an 85% overlap in protein-coding regions [45], they are 
not identical, and the importance of age-related differ-
ences between mouse and human samples should also 
be acknowledged. Future studies should, therefore, inves-
tigate gene expression changes in older murine models, 
which align more closely with the age demographics of 
our human samples.

Importantly, the data used in this study included indi-
viduals who were predominantly of European descent. 
Consequently, it is unknown whether the results from 
this study are transferable across global populations. 

Therefore, it is crucial to include individuals with non-
European ancestries in future studies. Recognizing this 
limitation, current initiatives such as the All of Us Pro-
gram and Our Future Health are focusing on assem-
bling larger and more diverse biobanks [46]. Using these 
diverse datasets in future research will enhance our abil-
ity to ensure that PGSs are applicable to a broader range 
of individuals. Finally, inherent differences in patient 
demographics and variations in the definition and mea-
surement of CIO between the PCL and SJMB cohorts can 
have unknown consequences for PGSCIO [47]. The PCL 
cohort consists of childhood cancer survivors treated 
with or without carboplatin, alongside cisplatin, while 
the SJMB cohort focuses on medulloblastoma patients 
treated with cisplatin and CSI. Additionally, the PCL and 
SJMB cohorts employed different classification systems 
for CIO: the Muenster and Chang grading scales, respec-
tively. This may lead to inconsistent classification of CIO 
cases, potentially impacting comparisons of PGSCIO per-
formance across these cohorts.

Conclusion
Our study holds significant implications for understand-
ing the genetics underlying CIO. By demonstrating the 
feasibility of integrating large-scale datasets, such as the 
hearing loss MTAG summary statistics data from the 
UKB cohort, with omics information, such as murine 
inner ear snRNA-seq data, we provide a novel approach 
for developing pharmacogenomic PGSs. Further, our 
identification of specific cochlear cell types involved in 
CIO sheds light on the intricate cellular pathways and 
processes underlying this ADR. This novel information 
will lay the groundwork for future research aimed at 
developing targeted therapeutic interventions to mitigate 
CIO risk. Overall, our study underscores the importance 
of interdisciplinary approaches to unravel the complexi-
ties of CIO and contributes to the growing body of litera-
ture that is improving our understanding of the etiology 
of this ADR.
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