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Abstract
Although highly penetrant alleles of BRCA1 and BRCA2 have been shown to predispose to breast cancer, the majority of breast cancer cases

are assumed to result from the presence of low–moderate penetrant alleles and environmental carcinogens. Non-synonymous single

nucleotide polymorphisms (nsSNPs) are hypothesised to contribute to disease susceptibility and approximately 30 per cent of them are

predicted to have a biological significance. In this study, we have applied a bioinformatics-based strategy to identify breast cancer-related

nsSNPs from 981 carcinogenesis-related genes expressed in breast tissue. Our results revealed a total of 367 validated nsSNPs, 109 (29.7

per cent) of which are predicted to affect the protein function (functional nsSNPs), suggesting that these nsSNPs are likely to influence the

development and homeostasis of breast tissue and hence contribute to breast cancer susceptibility. Sixty-seven of the functional nsSNPs

presented as commonly occurring nsSNPs (minor allele frequencies $5 per cent), representing excellent candidates for breast cancer

susceptibility. Additionally, a non-uniform distribution of the common functional nsSNPs among different human populations was observed:

15 nsSNPs were reported to be present in all populations analysed, whereas another set of 15 nsSNPs was specific to particular

population(s). We propose that the nsSNPs analysed in this study constitute a unique resource of potential genetic factors for breast

cancer susceptibility. Furthermore, the variations in functional nsSNP allele frequencies across major population backgrounds may point to

the potential variability of the molecular basis of breast cancer predisposition and treatment response among different human populations.
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Introduction

Mutations of BRCA11 and BRCA22 confer high breast cancer

risk to the carriers. Such highly penetrant mutations are

only responsible for a small fraction (,5–10 per cent) of all
breast cancer cases,3,4 however, suggesting the presence of

other, yet to be identified, mutations in other breast cancer

predisposition genes.5–7 Mutations in a number of genes, such

as p53,8 ATM6 and Chek2,9 have also been shown to con-

tribute to breast cancer risk in a very small fraction of breast

cancer cases. So far, no other high-penetrant breast cancer

susceptibility gene has been identified; however, genetic

variations including single nucleotide polymorphisms (SNPs)

have been hypothesised to act as low–moderate penetrant

alleles and contribute to breast cancer, as well as other complex

diseases.7,10–12

Variations in protein sequence and function are mainly due

to the non-synonymous form of SNPs (nsSNPs). The fraction

of nsSNPs in the genome is relatively low (,10 per cent of
all coding SNPs)13 compared with other types, but they are
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more likely to alter the structure, function and interaction

of the proteins, and thus constitute a set of candidate genetic

factors associated with disease predisposition.14,15 Approxi-

mately 30 per cent of the nsSNPs are predicted to have

biological consequences.16–18 Several nsSNPs from the

proteins acting in a variety of cellular pathways—such as

apoptosis,19 oxidative stress20 and signal transduction21—have

already been reported to be associated with an increased/

decreased risk of breast cancer.

Several studies have described cancer-relevant nsSNPs;22–25

however, to our knowledge they have not been studied in

the context of expression of genes in a particular tissue.

Clearly, in order for genes to be linked to a disease of a tissue,

their protein products should somehow influence that

particular tissue, either as exogenous proteins (such as

hormones) or endogenous proteins (such as the proteins

expressed in that tissue).26,27 In this study, we have applied a

bioinformatics-based strategy and identified potentially

functional nsSNPs from endogenous carcinogenesis-related

proteins expressed in breast tissue.

Methods

Genes
The Ensembl transcript identifiers (http://www.ensembl.org/)28

of the genes expressed in breast tissue were retrieved from

the TissueInfo database (db) (http://icb.med.cornell.edu/

services/tissueinfo/query).29 The list of carcinogenesis-related

genes from 18 different categories (‘DNA adduct’, ‘DNA

damage’, ‘DNA replication’, ‘angiogenesis’, ‘apoptosis’,

‘behavior’, ‘cell cycle’, ‘cell signaling’, ‘development’, ‘gene

regulation’, ‘transcription’, ‘immunology’, ‘metabolism’,

‘metastasis’, ‘pharmacology’, ‘signal transduction’, ‘tumor

suppressors/oncogenes’ and ‘miscellaneous’) was retrieved

from the National Cancer Institute’s Cancer Genome Anat-

omy Project Genetic Annotation Initiative ([CGAP-GAI]

website [http://lpgws.nci.nih.gov/html-cgap/cgl/]).30 The

genes retrieved from the TissueInfo and the CGAP-GAI

resources were then cross-referenced with each other to

identify the group of carcinogenesis-related genes that are

expressed in breast tissue.

nsSNPs
The nsSNPs from the group of carcinogenesis-related genes

expressed in breast tissue were retrieved from dbSNP build

120 (http://www.ncbi.nlm.nih.gov/SNP/).31 Only the

nsSNPs detected in $2 chromosomes in a sample panel of
$40 chromosomes were included in this study (validated
nsSNPs). Seventeen nsSNPs were found in both less and more

than 5 per cent of the chromosomes analysed in different

sample sets; for simplicity, we have classified such nsSNPs

within the nsSNP set with $5 per cent minor allele
frequencies throughout this paper.

PolyPhen analysis
The PolyPhen predictions18 were retrieved from a pre-com-

puted dbSNP–PolyPhen resource. All PolyPhen predictions

were based on either alignment of at least five similar proteins

(for a more reliable prediction) or structural parameters.

Results

The results obtained in this study are summarised in Table 1

and constitute only the validated nsSNPs with a reliable pre-

diction made by the PolyPhen prediction tool (see Methods).

A total of 367 nsSNPs from 189 carcinogenesis-related

genes expressed in breast tissue are presented. A total of 109

nsSNPs (28.4 per cent) from 75 genes were predicted

potentially to affect the protein function (functional nsSNPs).

Additionally, 61.5 per cent (n ¼ 67) of the potentially

functional nsSNPs represented commonly occurring nsSNPs

in the population ($5 per cent minor allele frequency;
Table 2). In this paper, we mainly discuss the commonly

occurring functional nsSNPs; however, the list of rarely

occurring functional nsSNPs can also be found under

the supplementary table (www.ozceliklab.com/Breast_

rare_nsSNPs/).

A fraction of protein products of genes bearing commonly

occurring functional nsSNPs were found to be involved

in one or more carcinogenesis-related biological pathways

compiled by the CGAP-GAI30 (Table 2). Such nsSNPs

were mostly found in the proteins from DNA repair (three

genes, four nsSNPs); metastasis (four genes, four nsSNPs);

Table 1. Summary of the results.

n

Genes

Carcinogenesis-related genes 2,832

Expressed in breast tissue 981

With validated nsSNPs 189

With functional nsSNPs 75

nsSNPs

Validated nsSNPs 367

Benign by PolyPhen 258

Functional by PolyPhen 109

With $5% minor allele frequency 67

With ,5% minor allele frequency 42

Abbreviation: n ¼ number; nsSNP ¼ non-synonymous form of single nucleotide
polymorphisms. Please note that only the genes and the nsSNPs for which a reliable
PolyPhen prediction (based on $5 proteins in the alignment) was available are shown
in this table.
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angiogenesis (seven genes, eight nsSNPs); pharmacology

(seven genes, ten nsSNPs); and immunology (38 genes,

51 nsSNPs).

We have also analysed the distribution of the commonly

occurring functional nsSNPs across human populations. For

simplicity, we have categorised the frequency information

obtained from different dbSNP entries into three major

groups: African (African and African-American), Caucasian

(Caucasian and European) and Asian (Chinese and East Asian)

populations. Minor allele frequencies for nsSNPs were

available for at least three different human populations for 30

out of 67 commonly occurring functional nsSNPs (Table 3).

Fifteen nsSNPs were found in all populations analysed

(n $ 3). In the case of the remaining 15 nsSNPs, five were

found exclusively in one population (ADM-S50R and

MMP9-N127K in African; ALDH2-E504K and MNDA-

H357Y in Asian; MC1R-R151C in Caucasian). Additionally,

three nsSNPs were found in Caucasian, Asian or Hispanic

samples, but not in the African samples (CHGA-G382S,

CYP1B1-N453S and CYP2C9-R144C). Moreover, in the

case of five nsSNPs, the major and the minor alleles were

different among the populations analysed (ADBR2-G16R,

CDH12-V68M, ERBB2-P1170A, PGM3-D466N and

SLC1A5-P17A).

Table 3. Functional and common non-synonymous form of single nucleotide polymorphisms (nsSNPs) with frequency information

available from different human populations.

Genea SNP IDb Amino

acid

changec

African Asian Caucasian Hispanic

ADD1 rs4961 G460W 46 chr. G ¼ 0.891

T ¼ 0.109

48 chr. G ¼ 0.521

T ¼ 0.479

48 chr. G ¼ 0.833

T ¼ 0.167

n/a

ADM rs5005 S50R 46 chr. C ¼ 0.957

G ¼ 0.043

48 chr. C ¼ 1.000 48 chr. C ¼ 1.000 n/a

ADRB2 rs1042713 G16R 46 chr. G ¼ 0.609

A ¼ 0.391

48 chr. A ¼ 0.583

G ¼ 0.417

46 chr. G ¼ 0.674

A ¼ 0.326

n/a

ALDH2 rs671 E504K 48 chr. G ¼ 1.000 48 0 G ¼ 0.771

A ¼ 0.229

58 chr. G ¼ 1.000 44 chr. G ¼ 1.000

CDH12 rs4371716 V68M 46 chr. T ¼ 0.674

C ¼ 0.326

48 chr. C ¼ 0.812

T ¼ 0.188

48 chr. C ¼ 0.729

T ¼ 0.271

n/a

CHGA rs729940 R399W 114 chr. C ¼ 0.954

T ¼ 0.046

88 chr. C ¼ 0.715

T ¼ 0.285

104 chr. C ¼ 0.893

T ¼ 0.107

56 chr. C ¼ 0.769

T ¼ 0.231

CHGA rs9658667 G382S 114 chr. G ¼ 1.000 88 chr. G ¼ 0.982

A ¼ 0.018

104 chr. G ¼ 0.951

A ¼ 0.049

56 chr. G ¼ 0.941

A ¼ 0.059

CSF3R rs3917973 M231T 48 chr. T ¼ 0.938

C ¼ 0.062

48 chr. T ¼ 1.000 58 chr. T ¼ 0.983

C ¼ 0.017

46 chr. T ¼ 1.000

CSF3R rs3917991 D510H 48 chr. G ¼ 0.750

C ¼ 0.250

48 chr. G ¼ 1.000 58 chr. G ¼ 1.000 46 chr. G ¼ 0.935

C ¼ 0.065

CYBA rs4673 Y72H 48 chr. C ¼ 0.542

T ¼ 0.458

1480 chr. G ¼ 0.907

A ¼ 0.093

60 chr. C ¼ 0.683

T ¼ 0.317

46 chr. C ¼ 0.783

T ¼ 0.217

CYP1B1 rs1800440 N453S 48 chr. A ¼ 1.000 48 chr. A ¼ 0.958

G ¼ 0.042

62 chr. A ¼ 0.806

G ¼ 0.194

46 chr. A ¼ 0.761

G ¼ 0.239

CYP2A6 rs1801272 L160H 46 chr. T ¼ 1.000 46 chr. T ¼ 1.000 60 chr. T ¼ 0.900

A ¼ 0.100

46 chr. T ¼ 0.978

A ¼ 0.022

CYP2C9 rs1799853 R144C 48 chr. C ¼ 1.000 48 chr. C ¼ 0.979

T ¼ 0.021

62 chr. C ¼ 0.871

T ¼ 0.129

46 chr. C ¼ 0.935

T ¼ 0.065

(continued )
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Table 3. Continued.

Genea SNP IDb Amino

acid

changec

African Asian Caucasian Hispanic

ENG rs1800956 D366H 46 chr. C ¼ 0.978

G ¼ 0.022

1480 chr. C ¼ 0.942

G ¼ 0.058

46 chr. C ¼ 1.000 n/a

EPHX1 rs1051740 Y113H 48 chr. T ¼ 0.917

C ¼ 0.083

84 chr. T ¼ 0.620

C ¼ 0.380

62 chr. T ¼ 0.613

C ¼ 0.387

46 chr. T ¼ 0.587

C ¼ 0.413

ERBB2 rs1058808 P1170A 40 chr. C ¼ 0.775

G ¼ 0.225

1502 chr. G ¼ 0.514

C ¼ 0.486

48 chr. G ¼ 0.646

C ¼ 0.354

n/a

FPR1 rs867228 E346A 44 chr. G ¼ 0.818

T ¼ 0.182

46 chr. G ¼ 0.761

T ¼ 0.239

48 chr. G ¼ 0.771

T ¼ 0.229

n/a

FUCA2 rs3762001 H371Y 44 chr. G ¼ 0.818

A ¼ 0.182

1282 chr. G ¼ 0.789

A ¼ 0.211

44 chr. G ¼ 0.795

A ¼ 0.205

n/a

LIG4 rs1805388 T9I 48 chr. C ¼ 0.979

T ¼ 0.021

48 chr. G ¼ 0.792

A ¼ 0.208

62 chr. C ¼ 0.871

T ¼ 0.129

46 chr.

C ¼ 0.848

T ¼ 0.152

MC1R rs1805007 R151C 42 chr. C ¼ 1.000 40 chr. C ¼ 1.000 46 chr. C ¼ 0.891

T ¼ 0.109

n/a

MMP9 rs2250889 R574P 46 chr. C ¼ 0.870

G ¼ 0.130

1488 chr. C ¼ 0.688

G ¼ 0.312

48 chr. C ¼ 0.896

G ¼ 0.104

n/a

MMP9 rs3918252 N127K 48 chr. C ¼ 0.938

G ¼ 0.062

48 chr. C ¼ 1.000 48 chr. C ¼ 1.000 n/a

MNDA rs2276403 H357Y 46 chr. C ¼ 1.000 1484 chr. C ¼ 0.944

T ¼ 0.056

48 chr. C ¼ 1.000 n/a

PGM3 rs473267 D466N 46 chr. T ¼ 0.565

C ¼ 0.435

84 chr. C ¼ 0.750

T ¼ 0.250

48 chr. C ¼ 0.688

T ¼ 0.312

n/a

PLAU rs2227564 L141P 48 chr. C ¼ 0.979

T ¼ 0.021

1492 chr. G ¼ 0.783

A ¼ 0.217

44 chr. C ¼ 0.659

T ¼ 0.341

n/a

PTPN3 rs3793524 A90P 46 chr. G ¼ 0.522

C ¼ 0.478

1498 chr. G ¼ 0.628

C ¼ 0.372

46 chr. C ¼ 0.717

G ¼ 0.283

n/a

SLC1A5 rs3027956 P17A 46 chr. G ¼ 0.957

C ¼ 0.043

42 chr. G ¼ 0.524

C ¼ 0.476

146 chr. C ¼ 0.710

G ¼ 0.290

n/a

TYR rs1042602 S192Y 46 chr. C ¼ 0.957

A ¼ 0.043

48 chr. C ¼ 1.000 48 chr. C ¼ 0.750

A ¼ 0.250

n/a

VCAM1 rs3783613 G413A 48 chr. G ¼ 0.938

C ¼ 0.062

44 chr. G ¼ 0.977

C ¼ 0.023

48 chr. G ¼ 1.000 n/a

XRCC1 rs25489 R280H 48 chr. G ¼ 0.937

A ¼ 0.063

84 chr. C ¼ 1.000 62 chr. G ¼ 0.968

A ¼ 0.032

46 chr.

G ¼ 0.957

A ¼ 0.043

Abbreviations: chr: chromosomes; n/a: not available.
aThe gene symbols are as approved by the HUGO Gene Nomenclature Committee.67
b SNP identifiers (IDs) correspond to the dbSNP IDs (http://www.ncbi.nlm.nih.gov/SNP/).31
cThe position of the amino acid substitution and the amino acids specified by the major and minor SNP alleles are indicated. The frequency information is as in dbSNP build
123 and is based on $40 chromosomes. Please note that the samples annotated as African and African-American; Caucasian and European; Chinese and East Asian are
combined together here and are referred to as African, Caucasian and Asian, respectively. Whenever more than one entry was available for a group, only the information
from the entries with the highest number of chromosomes is included here.
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Discussion

A portion of SNPs is considered to contribute to complex

disease development.7,10–12 SNPs in or around the candidate

genes might be directly linked to a disease; however, not all

SNPs are supposed to affect gene expression and function, so

selection of those with potential effects is keenly debated.32

Several studies have developed tools and/or systematically

analysed nsSNPs to identify those that affect gene function

based on evolutionary conservation or structural par-

ameters.16–18,33 PolyPhen18 is one such web-based tool

utilised to select the nsSNPs that are likely to affect protein

function. In short, the PolyPhen predictions are based on

protein alignments, structural parameters or sequence

annotations. The sensitivity of PolyPhen has been reported

to be approximately 82 per cent.18

In this study, we hypothesised that the systematic analysis of

candidate genes that are expressed in the affected tissue is likely

to improve and enrich the identification of disease-suscepti-

bility alleles. Accordingly, using a bioinformatics-based strat-

egy, we identified the functional nsSNPs from a large number

of genes related to the carcinogenesis-related pathways (DNA

repair, cell cycle, signal transduction, etc), which are expressed

in breast tissue. We propose that these potentially functional

nsSNPs can result in abnormalities at the protein level,

which are likely to affect the development, metabolism and

homeostasis of the breast tissue, and thus can contribute to

breast cancer susceptibility.

The genes with functional nsSNPs identified in this study

were from a variety of carcinogenesis-related cellular pathways.

According to this information, possible biological roles for

these nsSNPs may be suggested. For example, nsSNPs from

angiogenesis- and metastasis-related proteins may have roles in

tumour growth and the development of metastatic

tumours.34,35 Additionally, DNA repair nsSNPs may lead

to the accumulation of somatic mutations and thus can

participate in cancer initiation and promotion.34–36 Further-

more, together with the DNA repair nsSNPs, the nsSNPs

from the pharmacology genes may also be good candidates for

the studies targeting the efficacy, differential response and

adverse effect of chemo-/radiotherapy in breast cancer.37–39

The majority of the nsSNPs were from the genes related to

immunological responses (74.6 per cent), which can both

suppress and promote tumorigenesis.34 It is likely that the

larger number of the functional nsSNPs in immune

system-related genes is a reflection of the large number of

immunology genes in the breast tissue-expressed gene set

(60 per cent).

A considerable number of genes with functional nsSNPs

have been previously linked to breast cancer aetiology:

ADM,40 ADRB2,41 APOE,42 CHGA,43 CSF1,44 CYP1B1,45

DAG1,46 ENG,47 EPHX1,48 ERBB2,49 F2R,50 MMP9,51

MUC4,52 NFATC1,53 NOTCH4,54 PLAU,55 PLAUR,55

PTGS256 and VCAM1.57 Therefore, we propose that the

nsSNPs in Table 2 are excellent candidates as genetic factors

involved in breast cancer initiation, promotion or progression.

Additionally, some of these nsSNPs may be critical for breast

cancer treatment outcome.

When the distribution of the commonly occurring func-

tional nsSNPs was analysed, differences in the major alleles and

the allele frequencies across human populations were observed.

For example, 15 commonly occurring nsSNPs were found

in all populations, whereas another set of 15 nsSNPs was

specific to particular population(s). These differences might

be reflections of either the age of the allele, founder effects

or the dissimilar selective pressures acting on different

populations.58,59Most importantly, the data also indicate that a

common nsSNP with a potential biological consequence in

our set was equally likely to be either prevalent across different

human populations or limited to some populations. Clearly,

the latter prompted us to conclude that the population-specific

functional nsSNPs may contribute to the genetic predisposi-

tion in individuals with a specific background. In this regard,

this conclusion is consistent with previous studies in which

genetic variations with significantly different allelic frequencies

among populations were found to be associated with specific

disease or differential drug responses.60–65 This information

may be particularly helpful to researchers in determining

which nsSNPs may be relevant to utilise in specific popu-

lation-based studies. In addition, although further analyses

are required, it is tempting to speculate that these nsSNPs may

be a part of the potential variability of the molecular basis of

breast cancer predisposition and drug response among different

human populations.

Data integration from several databases forms the basis

of our strategy to determine functional SNPs of breast

tissue-expressed genes. The quality and the quantity of the

genomic data within individual databases influence the com-

prehensiveness of the combined data. The functional SNP list

presented in this study is a result of data integration from three

databases — namely, TissueInfo,29 Ensembl,28 and dbSNP.31

The non-matching data fields (eg transcript identifiers)

between TissueInfo, Ensembl and dbSNP have been the main

source of missing data. For example, although BRCA1

was known to have a potentially functional SNP (predicted

previously), this information has not been captured because

of non-matching transcript identifier information for BRCA1

in the databases. Thus, incompatibility of data in different

databases has been a rate-limiting factor for the bioinfor-

matics-based strategies presented here. The improvement of

the quality and the quantity of genomic data in the databases

will prove beneficial for researching complex questions. Also,

the genes presented in this paper are based on the expressed

sequence tag information, which may lead to an under-

representation of rarely expressed genes.29,66 Data integration

using other tissue expression databases is likely to enrich the

quality of the data produced. Nevertheless, although it is

possible that the SNPs presented here may not represent
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the most comprehensive list, the SNPs identified using the

proposed strategy represent a valuable resource for studying

the genetic predisposition to breast cancer.

Conclusion

In conclusion, we have designed a novel strategy to identify

potentially functional variants of cancer-related genes

expressed in breast tissue. Our results demonstrated the pre-

sence of 109 nsSNPs with a potential biological consequence,

67 of which were frequent in human populations. We propose

that, together with other genetic and environmental factors,

these nsSNPs may be involved in breast cancer initiation

and progression; thus, these nsSNPs represent the premium

candidates as genetic variations of breast cancer predisposition.

We also suggest that a considerable fraction of the nsSNPs may,

in fact, be population-specific genetic variations.
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