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Abstract
A variety of techniques exist to describe and depict patterns of pairwise linkage disequilibrium (LD). In the current paper, a new log-linear

framework is proposed for the summarisation of local interactions among single nucleotide polymorphisms (SNPs). Our approach

provides a straightforward means of capturing the diversity of higher-order LD relationships for small numbers of loci by investigating

inter-marker interactions. Our method was applied to a dataset of 76 SNP markers spanning a genomic interval of length 2.8 megabases.

The analysis of three short sub-regions is described in detail here. Model and graphical representations of contiguous markers in

medium to high LD are presented. In the regions studied, evidence for sub-structure was detected, supporting the view that the genomic

reality is complex. Interestingly, a critical evaluation of the method by bootstrapping showed that while some LD relationships were

captured in a highly repeatable fashion, the majority were not. Large numbers of small interactions, both direct and indirect, mean that

many models can adequately summarise the data at hand. Our results suggest that repeatability should be further investigated in the

application of LD-based approaches.

Keywords: haplotype blocks, linkage disequilibrium, SNPs, log-linear models, EM algorithm

Introduction

The abundance of single nucleotide polymorphisms (SNPs)

and the limited power, in some situations, of single-locus

analysis has led to increased use of haplotype-inference

methods such as Clark’s algorithm,1 the Expectation-

Maximisation (EM) algorithm2 and iterative-sampling

algorithms to resolve phase ambiguity by both coalescent

and non-coalescent models.3,4

Recent studies5–9 have shown that the human genome can

be viewed in terms of haplotype blocks, given by discrete

regions of high linkage disequilibrium (LD), and separated by

shorter regions of low LD. Haplotype block identification

has been conducted via evaluation of measures of LD, such as

Lewontin’s D’, as well as by methods of directly assessing

evidence of recombination.10 The corollary of the block

concept was that a small proportion of the SNPs, the ‘haplo-

type-tagging’ SNPs, should be sufficient to capture the

majority of the haplotype structure contained in blocks

genome-wide.11 More recently, Bayesian graphical modelling

has been applied to describe more complex patterns of

relationship, for example among loci that are proximal but

non-adjacent.12

We introduce a novel application of log-linear modelling, to

describe higher-order interactions among SNPs. The log-linear

step is embedded within the EM algorithm in order correctly

to model phase. Previously, log-linear models have been

used to form the basis of Bayesian priors in resolving phase

and to model different levels of LD with known phase.13,14

We show that the log-linear model may be used to describe

discrete islands of LD,15 as well as smaller conditionally

independent sub-fragments of high LD. We test the

repeatability of our findings by bootstrapping and find

instances of complex LD for which model repeatability is low.

Materials and methods

The methods described below were applied to a dataset con-

sisting of a random sample of 150 Caucasian controls from the

Prevention of REStenosis with Tranilast and its Outcomes

(PRESTO) study.16,17 Appropriate consent was obtained and

these samples were genotyped across 76 SNPs spanning

approximately 2.8 megabases (Mb), within and around the

UGT1A1 gene. These data and their analyses are described

in detail elsewhere.18

EM log-linear approach
Our method takes as its basis the EM algorithm.2 In summary,

log-linear modelling is used in the E-step to update haplotype
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frequencies, while the likelihood of the data, given the model,

is maximised in the M-step. The process proceeds iteratively.

More formally,3 given a sample of n diploid individuals

from a population, let G ¼ (G1, . . ., Gn) denote the known

genotypes, let H ¼ (H1, . . ., Hn) denote the unknown corre-

sponding haplotype pairs and let F ¼ (F1, . . ., Fm) be the

unknown population haplotype frequencies. The algorithm

starts under random assignment of genotypes. The M-step of

the EM algorithm then finds the set of haplotype frequencies,

F, which maximises the following likelihood:

LðFÞ ¼ PrðGjFÞ ¼
Yn
i¼1
PrðGijFÞ:

Under Hardy–Weinberg equilibrium, the genotype

probabilities can be partitioned into the product of

haplotype probabilities:

PrðGijFÞ ¼
ðh1;h2Þ[Vi

X
Fh1Fh2

where Vi is the set of all (ordered) haplotype pairs consistent

with the multilocus genotype Gi.

The E-step of the algorithm, used here, then estimates the

population haplotype frequencies F by using the log-linear

model and not the traditional counting method. Investigation

of the saturated log-linear model, however, in which all loci

and interactions are represented, is challenging due to the

necessarily high number of parameters. Therefore, a stepwise

approach of fitting intermediate models has been used. These

intermediate models contain more parameters than a model

of complete linkage equilibrium (LE) but fewer parameters

than the saturated model.19,20 In the current paper, we show

how such models provide the framework for quantifying

the patterns of LD.

Notation
Notation for the remainder of the paper will focus on the

composition of the log-linear model, as it is this that is of

interest in describing patterns of SNP interaction. The variable

corresponding to the ith SNP is given by li and models are

specified by using the Wilkinson and Rogers notation,

where the SNP variables are combined by ‘ þ ’ to denote

independence, and ‘*’ to denote interaction.21 For example,
l1 þ l2 denotes independence between the first and second

SNP and l3* l4 denotes interaction between the 3rd and 4th.

Forward stepwise algorithm
We propose a forward stepwise approach to determining a

parsimonious model of LD. Starting with a model of complete

LE, higher-order LD terms are added sequentially to the

model until a parsimonious model is found. This procedure

has been implemented as the command swblockwithin STATA22

and is available using the ssc command. A likelihood ratio test

(LRT) was used to measure the strength of LD or inter-SNP

interaction, although other test statistics are possible. The LRT

was performed using hapipf, a command20 implemented in

STATA.22

More formally, the algorithm examines a region of n SNPs.

In order to preserve efficiency of the EM algorithm, fewer

than ten SNPs is practical. The first step is to estimate the

log-likelihood under the base model of LE l1 þ l2 þ . . . þ ln.

Then, every pairwise SNP interaction term is added to this

model and the LRT, comparing the new model with the base

model is re-evaluated. The most significant interaction

term is then added to the base model, this becomes the new

base model and the process repeats. A nominal p-value of 0.05

was initially chosen to compare new models with the base

model; however, other thresholds of p ¼ 0.01 and p ¼ 0.001

were also investigated. Once no more pairwise interactions are

significant, the algorithm proceeds to the next order of inter-

action terms, and so on. This approach accommodates the fact

that pairwise interactions can occur over greater distances than

contiguous pairs and that LD does not decay monotonically

with distance. At each step, the number of degrees of freedom is

minimised in the sequence of LRTs, and the algorithm con-

tinues until the highest interaction term is evaluated.

Application to LD structure
Certain LD features have been helpfully described in a review

by Wall and Pritchard,23 who established three criteria,

derived using pairwise LD, for assessing haplotype blocks.

They introduced concepts of ‘holes’ and ‘overlapping blocks’

in regions of high LD, and these concepts are applicable to

more general evaluations of complex LD structure. As

described below, these concepts can be presented in terms

of log-linear models.

Holes arise when the outermost SNPs are not in strong LD

with an SNP or multiple SNPs that lie in between. To translate

this to a log-linear framework, consider a triplet of markers

parameterised as ll, l2 and l3. If l1 and l3 show high LD,

but intervening pairs (l1,l2 and l2,l3) do not show high LD,

as can happen with low frequency SNPs, then this situation

may be described by the model l1* l3 þ l2.

This representation can be extended to a fourth SNP, l4, in

a similar fashion. Continuing the example of a hole at SNP2

(variable l2), one model describing the interactions would

be l1* l3* l4 þ l2. Alternatively, if the three-way interaction

is not needed, then another suitable model might be

l1* l3 þ l3* l4 þ l1* l4 þ l2, where, again, SNP2 (l2) is

independent of the other three SNPs.

Also defined by Wall and Pritchard,23 another feature of

certain regions is the presence of SNPs that are assignable to

more than one region of high LD. In the simplest case of four

SNPs (l1–l4), two overlapping sets of relationships might be

specified as l1* l2* l3 þ l2* l3* l4. In this model, SNP1 and
SNP4 are conditionally independent, given SNP2 and SNP3.
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In reality, there may be a combination of holes and overlap-

ping regions. The method may be easily generalised.

Investigating the repeatability of derived
models
Regression approaches are better suited to hypothesis

generation than to inference, due to the large number of

models evaluated, but repeatability is of importance when

assessing the utility of these methods. Data from 150 controls

were available for study. To investigate the repeatability of our

models, this control set was subjected to bootstrapping. In

other words, the following process was carried out 12 times:

150 samples were selected with replacement from the entire

control set and model fitting applied. In this way, 12 models

were derived for each genomic interval.

In the first round of analysis, a threshold of p ¼ 0.05 was

used in the stepwise regression to select parameters for

inclusion in the model. Acknowledging that this threshold

may be considered generous in the context of the large

number of tests being applied, the whole analysis was repeated

using thresholds of p ¼ 0.01 and p ¼ 0.001. Again, model

repeatability was assessed.

Results

All pairwise R2 statistics for the 76 SNPs were produced

using STATA22 and the pwld command (available from

http:\\www-gene.cimr.cam.ac.uk/clayton). Figure 1 displays

estimates of all of the pairwise statistics. The diagonal cells

are shown as white, as the program does not calculate R2

values for these. Elsewhere, increasingly high R2 is denoted

by increasingly dark grey shading. A few areas had very high

R2 values, given by the black squares. Three regions were

selected for model fitting. They were chosen by eye, based

upon Figure 1, as having different characteristics, and while

they do not provide a comprehensive evaluation of the region,

they provide an interesting insight into the question of

repeatability. The three are boxed in Figure 1, and resultant

models are shown graphically in Figures 2–5. These

subsequent graphs were constructed using the command gipf

within STATA, installed using the command ssc. In these

graphs, each node represents a SNP and an edge represents

a significant pairwise relationship. Three-way relationships

are given by solid bold lines and four-way interactions are

given by broken bold lines.

Forward stepwise analysis of SNP1–SNP5
For the group SNP1–SNP5, the LD plot (Figure 1) suggested

a simple pattern of uniformly high LD. When model fitting

was applied, however, more complex models were derived.

Figure 2 shows 12 graphs that represent the series of models

derived from bootstrapping. Some features, such as the l2* l3
and l1* l4 pairwise relationships, were captured in every model;
however, relationships among SNPs 3–5 were captured in

three different ways. The variability of these 12 simple graphs

and of the models they denote is interesting, given the

apparently uniform ‘block’ of LD seen in Figure 1. This may,

however, be attributed to the fact that a small percentage of

overall variability can be explained in a number of ways.

Importantly, the overall conclusion from this regional

analysis — that all markers are strongly inter-related — is not

affected by the nuances in the models selected. When the

threshold for parameter inclusion in stepwise model fitting

was decreased from p ¼ 0.05 to p ¼ 0.01 and p ¼ 0.001
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Figure 1. (A) Graph depicting all pairwise R2 statistics for the 76 single nucleotide polymorphisms produced using STATA and the pwld

command (available from http:\\www-gene.cimr.cam.ac.uk/clayton). Three regions are boxed and have been examined in detail below.

(B) Detail of the linkage disequilibrium structure showing spatial arrangement across 2.8 megabases (Mb).
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Figure 2. Graphical images of the models derived by a log-linear modelling of data from single nucleotide polymorphism

(SNP)1–SNP5. A p-value threshold of 0.05 was used. The 12 graphs depict models derived from 12 bootstrap samples. A node

represents a SNP and an edge denotes a pairwise interaction.
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Figure 3. Graphical images of the models derived by a log-linear modelling of data from single nucleotide polymorphism

(SNP)36–SNP41. A p-value threshold of 0.05 was used. The 12 graphs depict models derived from 12 bootstrap samples. A node

represents a SNP and an edge denotes a pairwise interaction.
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(results not shown), the models derived were almost identical.

The only change was the loss of the l4* l5 parameter in two of
the bootstrap samples at p ¼ 0.01, and from three of the

samples at p ¼ 0.001.

Forward stepwise analysis of SNP36–SNP41
This group of markers was selected because they mark the join

between two apparent regions of high LD (Figure 1). The

models derived from this more complex region are shown in

Figure 3. In this more complex example, model repeatability

was lower. The strong block-like relationship among markers

SNP38–SNP41 was clearly visible as a tangle of graphical

relationships in each bootstrap sample, but the exact

positioning of edges tended to vary. Lowering the threshold

for parameter inclusion from p ¼ 0.05 to p ¼ 0.01 led to the

loss of edges in every bootstrap sample (Figure 4). At this

lower threshold, the two regions of high LD (SNP36–SNP37

and SNP38–SNP41) became more visibly distinct. Few model

changes were observed as the threshold was lowered from

p ¼ 0.01 to p ¼ 0.001 (results not shown).

Forward stepwise analysis of SNP44–SNP49
Lastly, for SNP44–SNP49, the LD plot (Figure 1) suggests a

complex set of interrelationships. The parsimonious models

for the 12 bootstrap samples are given in Figure 5. The large

number of edges suggests that this is an area of high haplotype

diversity and this interval provides the most striking example

of lack of repeatability in model fitting. Only two features

were captured in all models. These were a three-way

interaction (SNP46, SNP47, SNP48) and a two-way

interaction (SNP44, SNP45). Other features were variously

described. This is a clear example where overall variability of

relationship can be explained in a model in a number of ways.

Discussion

This study investigated the performance of stepwise log-linear

modelling in the evaluation of LD in three genomic loci.

Bootstrapping of the data demonstrated that although certain

LD features were consistently captured by this approach,

derived models were generally not repeatable. Furthermore,

altering the significance threshold for inclusion of parameters

in the stepwise analysis did not materially change our models.

It is noteworthy that sample size may be a consideration.

Repeating the bootstrap analyses with a smaller sample size

(n ¼ 75) led to models with a greater number of higher-order

interactions (results not shown). With a sample size of

n ¼ 150, these same relationships tended to manifest as
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Figure 4. Graphical images of the models derived by a log-linear modelling of data from single nucleotide polymorphism

(SNP)36–SNP41. A p-value threshold of 0.01 was used. The 12 graphs depict models derived from 12 bootstrap samples. A node

represents a SNP and an edge denotes a pairwise interaction.
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two-way interactions in the model. Clearly, the allele

frequency distribution of the markers available must be a major

component of the patterns derived, and while it is not

appropriate to extrapolate our findings to all genomic regions

and/or all methodologies, these findings do raise interesting

questions of repeatability. LD-based inference is widely used,

both for exploratory analysis and for the efficient selection

of markers for genotyping.

Model complexity and/or lack of repeatability should

come as no real surprise. LD mapping exploits historical

recombination events to narrow candidate regions for disease

genes; however, the pattern of LD is also influenced by

mutation and other stochastic factors which create associations

between markers that do not have a simple relationship with

distance. Our models shed no light on the ‘source’ of any

complexity; they merely support its existence. Greater

repeatability of inferred LD has been observed at compara-

tively low resolution, when a close relationship is maintained

between recombination and LD patterns.6 Our models reflect

the more stochastic picture seen at comparatively high

resolution.

Other investigators have presented methods of

modelling non-adjacent SNP interactions. Thomas and

Camp12 derived Bayesian graphical models using a tailored

Metropolis–Hastings approach. Earlier evaluations of partial

LD models have also been made. One group commented on

the exceeding complication arising from the inclusion of

higher-order interactions.24 Model complexity is indeed an

outcome of applying this method to a large genomic region.

In terms of applicability, our approach is limited to a relatively

small number of SNPs — fewer than ten — and thus it is

restricted to small genomic regions. For most current-day

situations, it would be impractical to apply stepwise log-linear

modelling for the purposes of tag selection. The great wealth

of marker data available now from the HapMap and other

sources, combined with the ever-decreasing cost of genotyp-

ing, make it an unlikely avenue to pursue. For small candidate

gene studies, however, it would be possible to use a log-linear

approach to identify ‘sensible’ models to test in the analysis

of a subsequent replication study, thereby reducing the burden

of multiple testing. Such models would include an

additional parameter pertaining to the disease locus but

would be derived in exactly the same way. It is hoped that the

visual immediacy of this approach will aid hypothesis gener-

ation and serve as a useful addition to a fine-mapping tool kit

that already includes coalescent modelling,25 for example.

It is now generally agreed that the genome is not simply

composed of discrete haplotype blocks of uniformly high LD;
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Figure 5. Graphical images of the models derived by a log-linear modelling of data from single nucleotide polymorphism

(SNP)44–SNP49. A p-value threshold of 0.05 was used. The 12 graphs depict models derived from 12 bootstrap samples. A node

represents a SNP and an edge denotes an interaction. Plain solid edges represent pairwise interactions; bold solid edges represent

three-way interactions; broken edges in bold represent four-way interactions.
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indeed, our models support a more complex reality.

Nevertheless, LD has an important role to play in designing

efficient marker sets for genetic study. Resources such as the

HapMap lessen the need for marker validation and provide

a means of allowing the selection of informative markers for

genotyping. Our bootstrap results show that LD-based

inference can be sample dependent, even within an ethnic

group. Therefore, in utilising such data, it may be beneficial

to investigate the repeatability of one’s chosen methodology

and, if appropriate, to allow greater redundancy in marker

selection.
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