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Abstract

A number of programs have been developed for simulating population genetic and genetic epidemiological data
conforming to one of three main algorithmic approaches: ‘forwards’, ‘backwards’ and ‘sideways’. This review aims
to make the reader aware of the range of options currently available to them. While no one program emerges as

the best choice in all circumstances, we nominate a set of those which currently appear most promising.
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Introduction

The two main reasons for wanting to simulate
genetic data are, first, to gain insight into the effects
that underlying demographic and mutational par-
ameters may have on the genetic data one sees, and,
secondly, to create test datasets for assessing the power
of alternative genetic analysis methods. Ways of tack-
ling the first goal range from informal approaches,
which aim at getting a ‘feel’ for how altering difterent
parameters affects the output data, to more formal
methods based on matching many simulated datasets
to an observed dataset (eg approximate Bayesian
computation'). To tackle the second goal (and par-
ticularly for genetic epidemiology methods), an
additional ‘ascertainment’ modelling element is often
required to allow the simulation of disease-aftecting
loci within the context of a given study design (such
as a case-control study).

The key challenges that all simulation algorithms
face are: (1) speed — typically one wants to do lots

of simulations, so they need to be fast; (2) scalabil-
ity — with the advent of genome-wide genotyping
and large-scale sequencing, there is a need for
simulation programs to match; and (3) flexibility —
can the program cope with difterent demographic
histories, population structure, recombination,
selection, mutation models and disease models?
There are three main approaches to dealing with
these challenges, here termed ‘backwards’, ‘for-
wards’ and ‘sideways’. ‘Backwards’ (or coalescent)
simulations start with the sample of individuals that
will form your simulated dataset, then work back-
wards in time to construct the ancestral tree or
graph of genealogical relationships that connects
them all. Neutral mutations can subsequently be
placed on this structure to create the simulated
dataset. The simulation algorithm does not actually
have to work backwards in time to achieve this, but
this is a technical detail. The important point is

that by restricting attention just to the genealogical
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structure relevant to the sample in question, a large
computational saving is generally achieved relative
to the ‘forwards-in-time’ approach. Still greater
efficiency 1s afforded by the classic coalescent
approach, which employs a
approximation to effectively skip over the inter-

continuous-time

mediate between tree-
generating events. ‘Forwards’ simulations start with

the entire population of individuals — typically,

generations important

many thousands — and then follow how all the
genetic data in question are passed on from one
generation to the next. One usually needs to simu-
late over many thousands of generations in order to
arrive at an equilibrium in which the genetic
characteristics of the population are independent of
the original starting conditions. Finally, ‘sideways’
simulations start with a collection of real present-
day genetic data, and use these as a template for
generating new simulated data with similar proper-
ties. ‘Sideways’ algorithms can also be coalescent-
based (and thus fit into both ‘backwards’ and ‘side-
ways’ categories) but some adopt simpler resam-
pling strategies that do not explicitly consider
changes over generational time in either direction.

Backwards simulators

Table 1 lists all programs that the authors were able to
source via PubMed and other internet-based searches.
A list maintained by Heng Li’> was also helpful.
Backwards (coalescent) approaches form the largest
part of Table 1, reflecting the inherent attractiveness
and computational efficiency of simulating just that
part of the genealogy needed to produce the data in
the simulated sample. Richard Hudson’s ms program®
remains one of the most popular for straightforward
problems. msHOT,” SNPsim'” and COSI extend the
algorithm to allow variable recombination rates along
the DNA sequence, and msHOT, COS]I, CoaSim* and
newgenecoal'” also allow (allelic) gene conversion in
addition to crossovers as recombination events.
SIMCOAL"  introduces complex demographic
models, SIMCOAL2"® extends this to variable recom-
bination, Serial SIMCOAL'* allows sampling at mul-
tiple time points and MODELER4SIMCOAL>*>’

provides a handy graphical user interface. SelSim'’

implements a single-locus selection model. Flexible,
but not necessarily easy to implement, coalescent
simulators are provided by CoaSim,%>  mlcoalsim,’
SARG' and GeneArtisan.

For neutral loci, the tree or graph-generating step
can be conveniently decoupled from the mutation-
generating step, and the latter can be run via a separ-
ate program such as Andy Rambaut’s SeqGen
program’®
of genetic data from a range of different mutational
models. It is also possible to decouple the sampling
ascertainment process (eg to get case-control data)

to produce a wide range of different types

by applying this as an additional step to unascer-
tained simulated data. Currently, however, there are
no easy ways of doing this, as additional user coding
would be needed to adapt the sampling algorithms
available in, for example, CoaSim,> SimuPOP>*~"
or FREGENE.” Furthermore, there are as yet no
completely flexible ascertainment options that would
allow, for example, simulation of cases from models
with more than one partially linked disease locus, or
from more general causal models that have incorpor-
ated additional covariates.

Conventional coalescent algorithms break down
tor very large DNA regions such as whole chromo-
somes. This is because recombination gives rise to
complex ancestral recombination graphs (ARGs)
rather than simple binary genealogical trees, and
more recombination leads to ever larger and more
complex ARGs. The FastCoal' and GENOME?®
simulators the
coalescent-with-recombination that lead to simpler
ARGs and thence to feasible genome-wide simu-
lations. MaCs, a recent update to FastCoal which
uses an improved approximation to the coalescent-
with-recombination, is available on request from Jeff
Wall (wallj@humgen.ucsf.edu). FastCoal is reported
to be able to generate 2,000 50-megabase (Mb)
diploid samples in two minutes on a standard work-
station, and GENOME to generate 600 150 Mb
diploid samples in 66 minutes.

employ approximations to real

Forwards simulators

Forwards-in-time simulators are more naturally
capable of coping with complex modelling
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scenarios, at the expense of decreased compu-
tational efficiency. Of these, the FREGENE> and
GenomePop>* programs make the biggest effort at
maintaining speed, and, of these, only FREGENE
allows for ascertained disease-gene sampling. A
useful scaling option in both programs allows one
to simulate a smaller population over a smaller
number of generations and then use these results to
approximate a larger population over more gener-
ations. Unfortunately, only diallelic SNP data can
be simulated fast enough to cover large genomic
regions. At smaller genomic scales, more complex
nucleotide and codon models can be simulated by
GenomePop, while copy number variation (CNV)
and microsatellite data can be simulated by
simuPOP?® " and Nemo.”” GenomeSIM™ claims to
be able to generate genome-wide SNP data by for-
wards simulation, but only achieves this by simulat-
ing over a very limited ten or so generations, far
fewer than that needed to achieve proper genetic
equilibrium. Indeed, FREGENE and GenomePop
could also generate genome-wide datasets in this
way, and presumably could do so with greater com-
putational efficiency.

Sideways simulators

Sideways simulators can, to some extent, side-step
the whole issue of model complexity by relying on
real data ‘as is’ to guide the simulation process.
Simple bootstrap resampling breaks
longer regions because the genetic diversity seen in
the reference sample (usually the 270 individuals in

down for

HapMap) is not adequate to capture the full diver-
sity among all humans. The situation will improve
with the ‘1,000 genomes’ project,”” and also with
the steady increase in publically available genome-
wide SNP data, but it still seems sensible to apply
an additional method to perturb the simulated data
away from the narrow range seen in the real data.
Dudbridge® proposed forming random diploid
chromosomes from phased HapMap data followed
by a single round of artificial meiosis, governed by
empirical recombination rates also estimated from
HapMap. This idea has been put to use in the

HAP-SAMPLE  software,”* with an additional

option to boost the baseline recombination rate
(x100 recommended) to reduce long-range linkage
disequilibrium. Durrant et al.*' proposed an
alternative idea based on sliding windows for intro-
ducing new variations into simulated data. This
GUA

and an improved extension to

method has been implemented in the
simulator software,>”
this idea, which allows a variable sliding window
size, has been implemented in the gs software.”'
Jonathan Marchini’s hapgen software,”® based on the
same underlying principles as his genotype imputa-
tion software impute, applies an approximation to
the coalescent-with-recombination to generate new
simulated data from existing phased HapMap data,
but is slower than the other two sideways simu-
lators. HAP-SAMPLE 1is reported to be able to
generate 2,000 samples of a 100,000 genome-wide
SNP chip in a few minutes on a standard worksta-
tion, and gs to generate 2,000 samples of chromo-
some 6 (36,000 SNPs) in 140 minutes.

Conclusions

In summary, no one program is capable of doing
everything, but there exist some useful applications
from all three main simulation approaches. For
genome-wide SNP data, the main contenders are
FastCoal, GENOME," HAP-SAMPLE>* and gs.'
For high model flexibility and sampling ascertain-
ment at the 10 Mb scale or less (not whole-
genome but still enough for many purposes),
FREGENE? is recommended. Simulation of copy
number variation and/or microsatellite data at
larger genomic scales, and of more complex disease
models allowing covariates and linked loci, remain
areas for future program development.
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