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Abstract
Recent studies have suggested that copy number variation (CNV) significantly contributes to genetic

predisposition to several common disorders. These findings, combined with the imperfect tagging of CNVs by

single nucleotide polymorphisms (SNPs), have motivated the development of association studies directly

targeting CNVs. Several assays, including comparative genomic hybridisation arrays, SNP genotyping arrays, or

DNA quantification through real-time polymerase chain reaction analysis, allow direct assessment of CNV status

in cohorts sufficiently large to provide adequate statistical power for association studies. When analysing data

provided by these assays, association tests for CNV data are not fundamentally different from SNP-based associ-

ation tests. The main difference arises when the quality of the CNV assay is not sufficient to convert unequivo-

cally the raw measurement into discrete calls — a common issue, given the technological limitations of current

CNV assays. When this is the case, association tests are more appropriately based on the raw continuous

measurement provided by the CNV assay, instead of potentially inaccurate discrete calls, thus motivating the

development of new statistical methods. Here, the programs available for CNV association testing for case

control or family data are reviewed, using either discrete calls or raw continuous data.
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Introduction

The use of genome-wide association studies

(GWAS) has successfully linked genetic variants

with susceptibility to a wide range of common

polygenic diseases.1 Such GWAS, however, have

almost exclusively focused on single nucleotide

polymorphisms (SNPs). Additional studies targeted

to specific copy number variant loci,2,3 as well as

the alternative approach consisting of using SNPs

to tag copy number variations (CNVs),4 have

suggested that CNVs may contribute significantly

to genetic predisposition to several common dis-

eases. The tagging of CNVs using SNPs is often

imperfect, and therefore motivates the devel-

opment of association studies directly targeting

CNVs.

Importantly, association tests directly targeting

CNVs rely on the development of maps of

common CNV polymorphism in the human

genome.5–7 The process of discovering common

CNVs is related but distinct from the association

testing procedure. Software reviewed here assume

that the user is considering known CNV regions,

with properly mapped boundaries. Programs

designed to identify previously unknown CNVs (eg

Wang et al.8) are not discussed here. Moreover,

association tests outlined in this review typically

consider the common variant/small effect situation.

Different approaches must be used when dealing

with rare but highly penetrant CNVs.

Various assays can estimate CNV status directly —

in particular, real-time polymerase chain reaction

(rtPCR) analysis,2,3 comparative genomic
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hybridisation (CGH) arrays5,9 and SNP genotyping

arrays.10 The throughput of these assays is sufficient

to analyse the large cohorts required to detect

subtle effects previously reported by SNP-based

association studies. These CNV assays typically gen-

erate a one-dimensional continuous measure per

DNA sample and per CNV probe. Provided that

the quality of the CNV assay is sufficiently clear to

convert these raw continuous measures into discrete

calls, CNV-based association testing is analogous to

the SNP situation, with a few minor differences,

which are outlined in this review. When uncer-

tainty in the calling makes this discretisation diffi-

cult, however, a different statistical approach is

necessary. CNV association testing must then be

based on the raw continuous data instead of poten-

tially inaccurate discrete calls. Here, these alterna-

tive approaches are outlined, both for case control

and family-based association studies.

Discrete or continuous genotypes

Even though the underlying CNV state is a discrete

integer, CNV assays typically only provide a con-

tinuous measure for each CNV and individual, and

this continuous trait is a surrogate for the actual,

discrete CNV state. Therefore, when testing for

association at a CNV locus, the first choice is to

decide whether to analyse the CNVas a continuous

or a discrete measurement.

In an ideal scenario, the distribution of this sur-

rogate measure can be properly separated in discrete

clusters, which can then be linked to discrete

numbers of DNA copies. In this case, it is appro-

priate to discretise the data and base the association

test on these discrete calls. Unfortunately, and

because of technical difficulties associated with the

assessment of CNV status, this continuous measure

cannot always unequivocally be converted into dis-

crete numbers of DNA copies. Erroneous calls can

inflate the rate of false-positive associations and

limit the statistical power to detect true associ-

ations.11 Therefore, when discretisation is difficult,

it is preferable to base the association test on the

raw continuous measurement.12,13

Association testing using CNV
status as a discrete trait

If the CNV status is summarised using a discrete

measure, the association test is analogous to the

SNP situation, and traditional statistical software

such as R (http://www.r-project.org), or more

specialised tools such as PLINK14, are appropriate;

however, additional factors complicate the analysis

of CNVs compared with SNPs.

First, association tests require assumptions on the

model linking CNV status to disease risk. For

example, a traditional Cochran-Armitage test15

assumes that, on the log-scale, the risk is pro-

portional to the number of copies. Such assump-

tions may not be appropriate for some CNVs; for

example, for some diseases only extreme numbers

of copies may have a causal role in disease aetiology.

Especially for multi-allelic CNVs, for which a wide

range of models can be investigated, the choice of

model must be driven by prior belief on disease

aetiology. In the absence of prior knowledge, it is

advisable to constrain the analysis to a small

number of simple models to avoid misleading

p-values generated by multiple testing.

Secondly, CNV assays do not always provide

information about the exact number of copies, but

often only on the ‘relative’ numbers. For example,

one cannot always distinguish CNVs with zero, one

or two copies from CNVs with two, three or four

copies.

Thirdly, the phase is often unknown and only

the total number of copies can be measured; for

example, most CNV genotyping assays cannot dis-

tinguish two haplotypes with one copy on each

from one haplotype with two copies combined

with a complete deletion. Phasing CNVs is diffi-

cult, but if sufficient marker density is available

it can be achieved using software such as

fastPHASE.16

Lastly, it is common when using SNP geno-

typing arrays to assess CNV status to obtain

information jointly on SNP genotypes and DNA

copy number. Rather than a single number, each

individual is therefore summarised by a pair; the

first element indicates the number of DNA copies
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and the second element indicates the associated

SNP genotype. This added information can poten-

tially provide additional power when testing for

association, and a recent study17 has proposed a

new approach to integrating SNP and CNV infor-

mation in a unique association testing procedure.

This joint SNP/CNV association is implemented as

part of the analysis software PLINK.14

Combining information from
multiple probes within the
same CNV

In contrast to SNPs, CNVs can extend over large

genomic regions. CNV genotyping arrays, in par-

ticular high-density CGH arrays,9 typically use

multiple probes to interrogate a single CNV. This is

particularly useful when we expect variable probe

performance or, more generally, when measure-

ments are noisy and a combination of probes can

provide more accurate measurements. Some associ-

ation testing procedures require the combination of

information from all probes into a single measure-

ment for each individual,11 while others deal

directly with multi-marker data.18

Several procedures can be considered to combine

data across multiple probes. When the genomic

location of the CNV is well defined, and there is

strong evidence that all probes are located within

the copy number variable region, simply averaging

the probe intensity across all probes for each indi-

vidual is sensible. In many situations, however, the

boundaries of the CNV are not well defined, and

some probes may lie outside of the region of

interest. When this is the case, it is advantageous

to identify and down-weight, or even simply

remove, these non-informative probes to lower

the measurement noise. This down-weighting

procedure can be done using a principal com-

ponent analysis11 that should down-weight the

non-informative probes provided that the signal

generated by the probes in the CNV region is suffi-

ciently strong.

This down-weighting procedure is also relevant

when dealing with complex CNV regions, where

several distinct CNVs may be overlapping. A

principal component analysis can help separate a set

of probes in genetically relevant discrete groups.

Distinct association tests can then be carried out

separately for each group of probes.

Association testing using CNV
status as a continuous trait

When the uncertainty in the calling procedure is

too large to call the data confidently, it is advisable

to base the association test on the raw, continuous

data summary.12,13 In the context of family-based

association studies, PBAT implements a broad class

of association tests and has been extended to deal

with raw measurements from CNV assays.18 In its

simplest form, this test compares the CNV

measure for an affected offspring with the average

CNV measure of both parents in parent–offspring

trios. A consistently elevated number in affected

offspring indicates an association between high

copy number and elevated disease risk. A commer-

cial version of the PBAT statistical tools, including

a graphical user interface, is now part of the

Golden Helix genetic association software (http://

www.goldenhelix.com).

Case-control association studies, however,

require a different analytical approach. A previous

study19 has highlighted the potential for different

DNA sourcing, handling, extraction or storage to

affect the measures obtained from genotyping

assays, potentially creating biases between sample

collections that do not reflect actual genotype

differences. Therefore, even when cases and con-

trols are analysed using the same genotyping assay

and at the same time, differences in the distribution

of the raw CNV measures cannot always be inter-

preted directly as actual genotype differences.

To circumvent these issues, Barnes et al.11 pro-

posed a joint calling/association testing approach

implemented in the R package CNVtools. This

approach provides calls by clustering the data using

a Gaussian mixture, but the association test statistic

is designed to account for the uncertainty in these

calls. In addition, the calling procedure implements

a hierarchical clustering model that lets the para-

meters of the Gaussian mixture vary across cohorts
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in order to account for potential biases correlated

with the origin and handling of DNA samples.19

This method is, in fact, general and can be used to

combine data generated by different CNV geno-

typing assays at the same CNV locus.

A drawback of the clustering approach

implemented by CNVtools is the fact that the clus-

tering procedure relies on the data quality being

sufficient to fit a Gaussian mixture with a limited

number of components. For example, when analys-

ing highly polymorphic short tandem repeats,

it is unreasonable to expect that the CNV assay

can properly separate samples that differ by one or

very few repeats. It makes little sense, in this situ-

ation, to cluster the CNV measurement, and

CNVtools is not an appropriate tool for that type

of data. The PBAT testing procedure,18 however, is

still usable, provided that one is analysing family

data.

Conclusion

While a wide range of options is available for

analysing the CNV status as a discrete trait, software

tools to analyse directly raw continuous measure-

ments from CNV assays are currently limited to

PBAT18 for family and CNVtools for case control

association studies. Both PBAT and CNVtools

share a frequentist statistical approach; however, a

Bayesian approach to this problem appears well

suited to average over the uncertainty in the calling

procedure efficiently, which is the main hurdle for

CNV association tests. As GWAS targeting CNVs

become more common, we expect that several

Bayesian approaches will be developed to comp-

lement currently available software.
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