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Abstract
Transcription factors are key mediators of human complex disease processes. Identifying the target genes of

transcription factors will increase our understanding of the biological network leading to disease risk. The

prediction of transcription factor binding sites (TFBSs) is one method to identify these target genes; however,

current prediction methods need improvement. We chose the transcription factor upstream stimulatory factor

1 (USF1) to evaluate the performance of our novel TFBS prediction method because of its known genetic

association with coronary artery disease (CAD) and the recent availability of USF1 chromatin immunoprecipita-

tion microarray (ChIP-chip) results. The specific goals of our study were to develop a novel and accurate

genome-scale method for predicting USF1 binding sites and associated target genes to aid in the study of CAD.

Previously published USF1 ChIP-chip data for 1 per cent of the genome were used to develop and evaluate

several kernel logistic regression prediction models. A combination of genomic features (phylogenetic

conservation, regulatory potential, presence of a CpG island and DNaseI hypersensitivity), as well as position

weight matrix (PWM) scores, were used as variables for these models. Our most accurate predictor achieved an

area under the receiver operator characteristic curve of 0.827 during cross-validation experiments, significantly

outperforming standard PWM-based prediction methods. When applied to the whole human genome, we

predicted 24,010 USF1 binding sites within 5 kilobases upstream of the transcription start site of 9,721 genes.

These predictions included 16 of 20 genes with strong evidence of USF1 regulation. Finally, in the spirit of

genomic convergence, we integrated independent experimental CAD data with these USF1 binding site

prediction results to develop a prioritised set of candidate genes for future CAD studies. We have shown that

our novel prediction method, which employs genomic features related to the presence of regulatory elements,

enables more accurate and efficient prediction of USF1 binding sites. This method can be extended to other

transcription factors identified in human disease studies to help further our understanding of the biology of

complex disease.
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Background

Several transcription factors (TFs) have been charac-

terised as mediators of complex disease processes.1–3

Numerous publications have identified single

nucleotide polymorphisms (SNPs) in TFs that are

significantly associated with coronary artery disease

(CAD).2,4,5 This combined evidence suggests that

the target genes of these TFs also may be associated

with human complex disease. Identification of

potential TF targets could further our understanding

of gene–gene interactions underlying complex

disease. Genome-wide experimental methods, such

as chromatin immunoprecipitation microarray

(ChIP-chip),6,7 a technique combining chromatin

immunoprecipitation and microarray analysis for

identifying TF-interacting genomic regions, are time

consuming and expensive. It would be more effi-

cient to develop an in silico computational method

for TF target prediction followed by less costly gen-

otyping and more focused molecular biology exper-

iments to identify the association between gene–

gene interactions and complex disease.

TFs play important roles in the transcriptional

regulation of genes by interacting with specific DNA

sequences, called transcription factor binding sites

(TFBSs), to control cell- and tissue-specific gene

expression. Accurately identifying TFBSs is critical

to our understanding of the biological regulation of

the cell. Although many partially complete genome

sequences are available, encoded functional elements

such as TFBSs have not been fully characterised.

This is due, in part, to the complexity of TF binding

activity and the degeneracy of the DNA sequence in

the core binding site.

Currently, the primary strategy for predicting

TFBSs is by DNA motif scanning, which uses DNA

sequence motifs to identify potential matching

sequences across the genome.8–10 The common

approaches of motif scanning are based on either

consensus sequences or binding site matrices. The

consensus sequence approach works best on sites that

have little degeneracy. The other approach is based

on binding site matrices, which include the position

weight matrix (PWM) and the position frequency

matrix (PFM).10 This approach takes degeneracy of

the binding site motif into account when predicting

TFBSs, and derives scoring matrices by using known

binding sites to calculate a score for each possible

nucleotide in each position within the TFBS. These

matrices are then used to predict potential TFBSs by

scoring DNA sequence in the target genome. The

accuracy of the prediction is limited by the quality of

the binding site matrix, which can vary based on the

experimental input. It also lacks the flexibility to

incorporate additional genomic information. In

general, these methods lead to an inflated number of

predicted TFBSs because of low specificity predic-

tion, which leads to many false-positive results.

Therefore, the reliability of prediction methods based

on DNA sequence alone is low. An ideal prediction

method needs to combine DNA sequence with

additional genomic features to improve specificity.

Phylogenetic sequence conservation is an

example of an additional genomic feature that can

be used to study TFBSs. The phylogenetic

approach presupposes that sequences are conserved

between multiple species under selective pressure

and may contain functional elements such as

TFBSs.11 This level of sequence conservation does

not account for species specificity in either TF

DNA-binding domains or TFBSs. Currently, many

other genomic features related to regulatory

elements are available at a genome scale. For

example, the regulatory potential of a DNA

sequence is measured by the frequency of known

regulatory elements in short aligned regions across

multiple species.11 CpG islands are CG

dinucleotide-rich regions of the genome com-

monly associated with transcription start sites and

promoters.12,13 These regions can also influence

epigenetic control over gene expression via methyl-

ating cytosine within the CpG islands. Another

genomic feature associated with gene regulation is a

DNaseI hypersensitive (HS) site; these are hyper-

sensitive to DNaseI cleavage. DNaseI HS sites

(DNaseI HS) are nucleosome-free regions of open

chromatin associated with regulatory elements, such

as promoters, enhancers and silencers.14 While

some of these genomic features have been used

individually to filter the predictions from sequence-

based scoring methods,8,9 TFBS prediction

RESEARCH Wang et al.

222 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 3. NO. 3. 221–235 APRIL 2009



methods would benefit from selecting and integrat-

ing these genomic features carefully. Although the

number of genomic features available is fairly large,

current prediction methods do not take full advan-

tage of them.

Several linkage and association studies indicate

that the transcription factor upstream stimulatory

factor 1 (USF1) is genetically associated with

CAD.2 USF1 is ubiquitously expressed in human

tissues and is a key regulator of several biological

processes, such as the stress and immune response,

cell cycle and cell proliferation.15 USF1 belongs to

the basic helix-loop-helix (bHLH) zipper transcrip-

tion factor family. The binding sites of USF1 share

the same core DNA sequence, called the E-box

(50-CACGTG-30), with some degeneracy.16 The

complete binding site of USF1 is represented by

50-RYCACGTGRY-30.16 The DNA-binding activity

of USF1 can be modulated through phosphoryl-

ation, homo- or heterodimerisation and variation in

binding site sequence.15

We chose USF1 to evaluate the performance of

our novel TFBS prediction method because of its

biological importance, particularly in regard to its

known genetic association with CAD, and the

recent availability of USF1 ChIP-chip results for 1

per cent of the genome.17 Our goals were to (1)

develop a reliable and accurate method for USF1

transcription factor binding site (USF1–BS) pre-

diction; (2) make a genome-scale prediction of

potential USF1–BSs and (3) identify USF1 target

genes. We have developed a novel prediction

method incorporating additional genomic features

related to the presence of regulatory elements,

enabling a more accurate and efficient identification

of USF1–BSs on a genome scale. The results of

this study will help to prioritise CAD candidate

genes, as well as provide biological information in

evaluating gene–gene interactions with respect to

this common complex disease.

Methods

Genome sequence and features

All annotation and mapping locations of genomic

features used to predict TFBSs were based on

National Center for Biotechnology Information

(NCBI) human genome build 35. ENCODE

sequences18 and the 5 kilobase (kb) regions

upstream of the transcription start sites (TSSs) of

23,105 RefSeq mRNA sequences were obtained

from the University of California, Santa Cruz

(UCSC) Genome Browser.19–21 These RefSeq

mRNA sequences included the transcripts from

alternative TSSs but did not include non-coding

RNA. The ENCODE regions included promoter,

intronic, exonic and intergenic regions from 44

genomic intervals on 20 chromosomes.

The values for genomic features (Table 1) for each

potential 10 base pair (bp) USF1–BS are continuous

Table 1. Description of the five genomic features used for USF1–BS prediction method development

Name Description Score range

PhastCons8a,b Conservation score across eight species (Human/chimp/mouse/rat/dog/

chicken/fugu/zebrafish)

[235, 0]

MostCons8a Conserved region across eight species (Human/chimp/mouse/rat/dog/

chicken/fugu/zebrafish)

[0, 1000]

RP5a Regulatory potential across five species (Human/chimp/mouse/rat/dog) [20.1, 0.9]

CpGa,c CpG island, CG dinucleotide-rich regions [0.5, 1.6)

DNaseI HSd Hypersensitive to DNaseI cleavage within human CD4þ cell [0, 17)
aDownloaded from the UCSC Genome Browser.19–21
bBase-10 logarithm of the product of base-by-base conservation score within 10 base pair (bp) USF1–BS.
cUsed centre position of 10 bp USF1–BS to define overlapping CpG island score.
dPublished results.22
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variables. These were also obtained from the UCSC

website.19,20 The base-by-base conservation scores

and predicted conserved elements (MostCons8) were

generated by the program phastCons,23 using

genome-wide multiple alignments of eight species

(human, chimpanzee, mouse, rat, dog, chicken, fugu

and zebrafish). The total conservation score of each

10 bp USF1–BS (PhastCons8) was represented by

the base-10 logarithm of the product of the conser-

vation score of each bp within the USF1–BS. The

regulatory potential (RP5) scores were computed

from alignments of five species (human, chimpanzee,

mouse, rat and dog). The RP5 score of each putative

regulatory element indicates the frequency of known

regulatory elements within short alignment regions

using 100 bp windows.11 CpG islands (CpG) were

defined as CG dinucleotide-rich regions at least

200 bp long, with a ratio of observed to expected

CG dinucleotides greater than 0.6.13 The coordi-

nates of DNaseI HS are the regions in the genome

hypersensitive to DNaseI cleavage within human

CD4þ cells. The DNaseI HS score of each site was

generated by kernel density estimation, and reflected

the degree of chromatin accessibility at that site.22

USF1 ChIP-chip data

Known USF1-interacting genomic regions were

used to evaluate our prediction method. A recently

published USF1 ChIP-chip study identified

USF1-interacting genomic regions using chromatin

immunoprecipitation from liver cells (HepG2) fol-

lowed by microarray analysis.17 The microarray con-

tains approximately 18,000 loci, polymerase chain

reaction (PCR) amplicons of 1.0–1.5 kb in length

across the ENCODE regions. The authors classified

the loci on the array according to the log2-ratio, the

base-2 logarithm of the ratio of fluorescence intensi-

ties of immunoprecipitated chromatin to control

chromatin for each spot on the array. The log2-ratios

were in the range 21 to 4. Thirty-four loci with

log2-ratio greater than 1.25 were considered to be

bound, while 234 loci on the array with log2-ratio

equal to 21 were considered not bound by USF1.

For our experiment, these loci were used as positive

and negative controls, respectively. The potential

USF1–BSs from these control regions were used as

the training dataset for the following method

development.

Preliminary prediction based on PWM
scoring method

The PWM scoring method was used to identify

potential USF1–BSs from the target regions. The

USF1 binding matrix of 81 USF1–BSs generated in

vitro by random sequence selection was obtained

from the TRANSFAC database.16,24 The Patser web

application was used to convert the USF1 binding

matrix to PWM, and generated a numerically calcu-

lated cut-off score of 3.753 for predicting TFBSs

based on the information content adjusted by

sample size.25 The average GC content of 47.1 per

cent for the Patser analysis was calculated from 5 kb

upstream sequences from 23,105 RefSeq mRNAs.

The USF1 PWM was used to score each 10 bp

sliding window within target regions. A potential

USF1–BS was defined as any 10 bp sequence with

a score higher than the threshold of 3.753.

Prediction method based on genomic features

We initially applied the PWM scoring method to

the ENCODE regions. This sequence-based predic-

tion approach defined a set of potential USF1–BSs,

each of which was mapped to a specific locus in the

ENCODE genomic microarray used by USF1

ChIP-chip experiments according to its genomic

location, therefore allowing us to map the potential

USF1–BSs to the USF1 ChIP-chip results.

We carried out more specific USF1–BS predic-

tions using five genomic features (PhastCons8,

MostCons8, RP5, CpG and DNaseI HS). We

implemented a kernel logistic regression algor-

ithm26 in MATLAB Version 7.0, using the radial

basis function (RBF) as the kernel function.

Various genomic features are used by the kernel

function to map the input data to a high-

dimensional space (see Additional file 1). This

supervised statistical learning model was trained by

the training dataset to select hyperparameters.

These hyperparameters were then applied to the

testing dataset. The model generated a score for
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each potential USF1–BS within the testing dataset

in the range from 0 to 1. The threshold of being a

predicted USF1–BS was 0.5. Initially, we used each

single feature and combinations of all features as

variables in different binding site prediction models.

We also performed backward stepwise linear

regression in SAS Version 9.1, using the training

dataset, to identify a subset of features significantly

contributing to the model, using p ¼ 0.05 as the

threshold. Once the most significant features were

identified, we implemented the prediction method

using that model. The performance of each predic-

tion model was evaluated based on sensitivity, speci-

ficity and area under the receiver operator

characteristic curve (AUC) by performing a

leave-one-locus-out (LOLO) cross-validation with

the same training dataset. In many cases, multiple

potential USF1–BSs were associated with a locus

defined by the ChIP-chip study. Initially, these

potential USF1–BSs were grouped by their loci. In

each iteration, all potential USF1–BSs in one locus

were held out for testing, while the remaining loci

formed the training dataset for developing the pre-

diction model that would be applied to potential

USF1–BSs within the test locus. The test locus was

classified as positive if it included at least one pre-

dicted USF1–BS; otherwise it was classified as a

negative locus. Sensitivity was defined as the

number of correctly predicted positive loci divided

by the total positive loci, whereas specificity was

defined as the number of correctly predicted nega-

tive loci divided by the total negative loci. AUC

was calculated using the SPSS package.27

Genome-scale prediction and validation

Potential USF1–BSs within 5 kb upstream of the

TSSs of 23,105 RefSeq mRNAs were first ident-

ified by the PWM scoring method. More specific

USF1–BS predictions were then generated by the

optimised model using the genomic features of

each potential binding site. Lastly, the prediction

results were evaluated by comparison with 20

robust USF1 target genes — the overlap between

the target genes obtained from the TRED data-

base28 and reported in the literature.29

Results

Prediction method development

We assessed the merits of predicting USF1–BSs

using (1) DNA sequence alone; (2) sequence with

single genomic features and (3) sequence with

multiple genomic features to identify putative

USF1–BSs within the ENCODE regions. Figure 1

summarises our general approach to method devel-

opment and assessment.

We started by using the PWM scoring method

to identify potential USF1–BSs (see Methods). A

total of 99,013 potential USF1-BSs were identified

within the ENCODE regions (30 megabases).

Among these potential USF1–BSs, 135 were

associated with the 34 positive loci and 800 with

the 177 negative loci identified by the USF1

ChIP-chip study. These 935 USF1–BSs were then

used to construct the training dataset for further

prediction method development. Of 234 negative

loci, 54 did not include any potential USF1–BSs

and were excluded from the training dataset.

To refine predictions more accurately, we evalu-

ated several models trained to identify USF1–BSs

using kernel logistic regression with genomic

features (PhastCons8, MostCons8, RP5, CpG and

DNaseI HS [Table 1]) as variables, in addition to

PWM scores. Using LOLO cross-validation with

the same training dataset, we examined the sensi-

tivity, specificity and AUC of the models using

different sets of variables, including the PWM

score alone, a single feature, all features and selected

features. Among the prediction models based on a

single feature, the RP5 model had the highest

AUC (0.672); however, its sensitivity (0.088) is

much lower than the DNaseI HS model (0.235)

(Table 2). We performed backward stepwise feature

selection for model building, starting with all five

genomic features. This procedure calculated the

contribution of each feature to classification. We

removed MostCons8 and CpG features from the

model based on a p ¼ 0.05 threshold. In the final

model, DNaseI HS had the lowest p-value

(,0.0001), followed by PhastCons8 (0.0022), RP5

(0.0067) and PWM score (0.0081). The prediction

model based on these selected features (PWM,
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PhastCons8, RP5 and DNaseI HS) achieved 55.9

per cent sensitivity and 87.6 per cent specificity

when using a 0.5 scoring threshold for predicting

each USF1–BS. With the highest AUC (0.827),

this model outperforms all other models based on

any single feature or combination of features

(Table 2; Figure 2; Additional file 2). This model

was considered as the optimal predictor among the

models tested, and was used to predict the genome-

wide binding sites.

We applied the optimal prediction model,

based on selected features, to the same regions used

by USF1 ChIP-chip experiments. There were

16,405 loci from the ENCODE ChIP-chip anno-

tation with potential USF1–BSs identified by the

PWM scoring method. Among them, 34 positive

and 177 negative loci were used to construct the

training dataset for developing the prediction

method (see Methods). The remaining 16,194

loci were used as an independent testing dataset.

Figure 1. Schematic representation of USF1 binding site prediction.
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Our prediction method was able to divide these

unclassified loci into two groups: positive loci

(1,615) with a predicted USF1–BS and negative

loci (14,579) without a predicted USF1–BS. The

average log2-ratio of these predicted positive

loci (0.1034) in the ChIP-chip experiment is

significantly higher (p , 10223) than that of pre-

dicted negative loci (0.0085). This result indicates

Table 2. Comparison of USF1–BS prediction models. The threshold score that defined a predicted USF1–BS was 0.5. Sensitivity was the

proportion of correctly predicted true positive loci, whereas specificity was the proportion of true negative loci predicted as negative loci.

The AUC was calculated from LOLO cross-validation (see Methods)

Variables in the model AUC Standard

error

Asymptotic 95%

confidence interval

Sensitivity Specificity

Lower

bound

Upper

bound

PWM 0.648 0.053 0.544 0.752 0.176 0.989

PhastCons8 0.599 0.053 0.496 0.702 0.000 0.955

RP5 0.672 0.058 0.559 0.786 0.088 0.994

DNaseI 0.553 0.083 0.390 0.716 0.235 0.960

All features 0.639 0.060 0.522 0.756 0.382 0.898

Selected features 0.827 0.044 0.740 0.913 0.559 0.876

Figure 2. Receiver operator characteristic curve (ROC) of USF1 prediction models. The curves generated by the SPSS package27 with

different colours indicate the sensitivity and specificity of three different prediction models. The sensitivity and specificity were

calculated from LOLO cross-validation (see Methods). Sensitivity was the proportion of correctly predicted positive loci whereas

specificity was the proportion of correctly predicted negative loci. The all features model used all five genomic features (PhastCons8,

MostCons8, RP5, CpG and DNaseI HS) and PWM score, and the selected features model only included three genomic features

(PhastCons8, RP5 and DNaseI HS) and PWM score.
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that the predicted positive loci are enriched

among the loci with a log2-ratio higher than 0,

which are more likely to include USF1–BSs

(Figure 3).

Genome-scale prediction and validation

We obtained DNA sequences from 5 kb upstream

regions of the TSSs of 23,105 RefSeq mRNAs.

The PWM scoring method identified 290,614

potential USF1–BSs in these sequences. We

applied our most robust model of USF1–BS pre-

diction, kernel logistic regression using three

genomic features (PhastCons8, RP5 and DNaseI

HS) and the PWM score, to improve the

specificity of these predictions. 24,010 USF1–BSs

from 9,721 genes were predicted as USF1

targets, representing 8.3 per cent of the initial

potential USF1–BSs (see Additional file 3). We

created a set of 20 robust USF1 target genes

obtained from the TRED database and from the

literature to validate the genome-scale prediction

results. Our prediction method was able to identify

16 of these 20 genes (80 per cent) as USF1 targets

(Table 3).

Distributions of predicted USF1–BSs

Our prediction method generates a score for each

potential USF1–BS identified by the PWM scoring

method. Prediction scores range from 0 to 1 and

correspond to the confidence of the model’s predic-

tion. The score distribution of our genome-scale

prediction showed that a large portion of predicted

sites had scores higher than 0.99 (Figure 4). Selecting

USF1–BSs with the highest scores dramatically

reduces the number of predicted target genes. Based

on the score distribution, we chose a stringent

threshold (0.99) to reduce the number of predicted

USF1 target genes further, from 9,721 to 5,801, to

be used as candidate genes for further analysis.

Potential USF1–BSs identified solely by the

PWM scoring method are evenly distributed across

5 kb upstream regions of the TSSs of 23,105 RefSeq

mRNAs (Figure 5). Our predicted USF1–BSs

using a 0.5 scoring threshold are concentrated

within 1 kb upstream of TSS, the region most likely

to contain TFBSs.30 Predicted USF1–BSs using the

higher threshold (0.99) are even more enriched

within 1 kb upstream of TSS. The most significant

feature in the prediction model, DNaseI HS, is over-

represented in the first 1 kb sequence upstream of

Figure 3. Prediction evaluation with USF1 ChIP-chip results from the ENCODE regions. There are 16,405 loci on the ENCODE

microarray with potential USF1–BSs identified by the PWM scoring method. Among them, 34 positive and 177 negative loci were used

to construct the training dataset for developing the prediction method (see Methods). The remaining 16,194 loci were used as an

independent testing dataset. Our prediction method divided these unclassified loci into two groups: predicted positive loci (1,615) with

predicted USF1–BSs, and predicted negative loci (14,579) without predicted USF1–BSs. The data are represented as histograms of

frequency at intervals of 0.1 log2-ratio of intensities.
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the transcription start site (data not shown). This

could explain the concentration of predictions in

this region; however, it alone did not account for

the concentration of predicted USF1–BSs.

To understand better which factor contributed

most to USF1–BSs predictions at the highest

thresholds, we divided the predicted USF1–BSs

into two groups: one with prediction scores

ranging between 0.99 and 1, and the second with

scores ranging between 0.5 and 0.99. We then

compared the value of each genomic feature

between these two groups. This analysis indicated

that DNaseI HS is the most distinguishing feature.

On average, USF1–BSs with higher scores have

higher DNaseI HS values than USF1–BSs with

lower scores. The DNaseI HS value was also

closely correlated with the location of the USF1–

BS in the region upstream of TSS (r2 ¼ 0.41).

Discussion

USF1 binding site prediction method

We focused on USF1 to develop a novel TFBS pre-

diction method because of its genetic association

with CAD and the availability of USF1 ChIP-chip

results from the ENCODE regions. Common TFBS

prediction methods based on DNA sequence alone

generate large numbers of false-positive results. One

strategy for improving specificity of TFBS prediction

is to use phylogenetic footprinting, which is based

on the assumption that regions of multi-species

sequence conservation are more likely to include

regulatory elements. We hypothesised that combin-

ing multiple genomic features with regions of

sequence conservation could increase the accuracy of

TFBS predictions. To test our hypothesis, we began

by using PWM, the most common binding motif

search method, to identify potential USF1–BSs. We

then incorporated several genomic features related to

TFBSs, including sequence conservation, regulatory

potential, and the presence of CpG islands and

DNaseI HS sites. Using a training dataset con-

structed from published USF1 ChIP-chip results,17

we were able to compare the sensitivity, specificity

and AUC of prediction models trained with different

sets of features, such as PWM score alone, single fea-

tures, all features and the features generated by

feature selection. Prediction models based on single

genomic features performed poorly, with low sensi-

tivity and AUC. A prediction model using four

selected features (PhastCons8, RP5, DNaseI HS

and PWM score) produced the highest sensitivity

(55.9 per cent) and AUC (0.827) among the

models tested, while still achieving high specificity

Table 3. Validation of 20 robust USF1 target genes. We used 20

robust USF1 target genes obtained from the TRED database28 and

reported the literature29 to evaluate the prediction method. Our

optimal prediction model was able to identify 16 out of these 20

genes as USF1 targets

No. Gene Correctly

predicted

1 Apolipoprotein A-II (APOA2) Yes

2 ATP-binding cassette, sub-family A (ABC1) Yes

3 Acetye-coenzyme A carboxylase alpha (ACACA) No

4 Apolipoprotein (APOE) Yes

5 Breast cancer 2 (BRCA2) early onset Yes

6 CCNB1 Yes

7 Cytochrome p450, family19 (CYP19) Yes

8 Cytochrome p450, family1, subfamily A,

polypeptide1 (CYP1A1)

Yes

9 EFP Yes

10 Fragile x mental retardation 1 (FMR1) Yes

11 Follicle stimulating hormone receptor (FSHR) Yes

12 Glucokinase (hexokinase 4) (GCK) Yes

13 Ghrelin/obestatin prepropeptide (GHRL) No

14 Homeobox B4 (HOXB4) Yes

15 Homeobox B7 (HOXB7) Yes

16 h-telomerase reverse transcriptase (hTERT) Yes

17 Platelet factor 4 (PF4) No

18 Polymeric immunoglobulin receptor (PIGR) No

19 Protein tyrosine phosphatase, non-receptor

type 6 (PTPN6)

Yes

20 Serpin peptidase inhibitor, clade 5, member1

(SERPINE1)

Yes
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(87.6 per cent) (Figure 2). These results show that

the prediction model using selected features outper-

forms models based on a single feature and all fea-

tures. That the performance of the model using all

features is not better than others might be due to

the noise introduced by the irrelevant and redundant

features.

Kernel-based classifiers allow for the develop-

ment of non-linear classifiers in cases where simple

linear combinations of features are not sufficient

accurately to distinguish between sample classes (see

Additional file 4). Kernel logistic regression model-

ling maps the training data to high-dimensional

space by considering all features jointly, and

Figure 4. Prediction scores distribution of potential USF1–BSs. By scanning 5 kb upstream of TSSs of 23,105 RefSeq mRNAs in the

human genome, 290,614 potential USF1–BSs were identified by the PWM scoring method. The prediction method generates a score

for each potential USF1–BS identified by the PWM scoring method. These prediction scores range from 0 to 1 and correspond to the

confidence of the model’s prediction. A total of 24,010 predicted USF1–BSs were generated using the optimal prediction model with

default prediction threshold (0.5). The data are represented as histograms of frequency at each 0.01 score interval.

Figure 5. Location distribution of USF1–BSs. By scanning the 5 kb upstream of the TSSs of 23,105 RefSeq mRNAs in the human

genome, 290,614 potential USF1-BSs were identified by the PWM scoring method. A total of 24,010 predicted USF1–BSs were

generated using the optimal prediction model with default prediction threshold (0.5) and 10,296 predicted USF1-BSs were generated

using a stringent prediction threshold (0.99). The data are represented as histograms of frequency at each 100 bp interval.
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generates a non-linear decision boundary to separ-

ate two classes. The data within each class depend

on a specific combination of the features learned

from the training dataset. For example, a site with a

relatively low PWM score may still be predicted as a

USF1–BS if it has high DNaseI HS, conservation

or regulatory potential scores. Conversely, if each

feature contributes to the prediction method as an

independent filter, the predicted USF1–BS will be

based on a limited range of values of each feature.

For example, if the prediction method only relies

on a stringent PWM threshold to improve the

specificity, it will be biased toward the binding site

with high affinity, and only the target genes of

USF1 with strong binding sites will be identified by

this method. Comparisons of PWM scores with the

scores of each genomic feature are included in

Additional files 5—8.

To test whether our prediction method may be

biased toward sites with higher binding affinity, as

indicated by higher PWM scores, we examined the

PWM scores from the 20 robust USF1 target genes

at each step during the prediction process. As

shown in Additional file 9, we find that: 1) the

common PWM scoring method was sufficient to

identify potential USF1–BSs for most of these

genes; 2) the potential sites identified spanned a

wide range of PWM scores. Further, the distri-

butions of PWM scores among the initial 290,614

potential sites and the final 24,010 predicted

USF1–BSs were not significantly different (see

Additional file 9). These results suggest that our

prediction method is not biased toward binding

sites within any specific range of PWM scores, and

if these scores do correlate with binding affinities,

predictions are also not biased towards sites with

high affinities.

For this study, we focused on five genomic fea-

tures related to regulatory elements currently avail-

able on a genome scale. Backward stepwise feature

selection during model building indicated that

DNaseI HS was the most important predictor of

USF1–BS among the features considered. We will

consider other relevant genomic annotations, such as

histone modifications, in future prediction method

development. One important caveat is that the

reliability and accuracy of these individual features

will influence the performance of the prediction

method. Feature selection during model building

will become even more important when we inte-

grate more genomic features in the future.

Each TF is unique in its binding site preference.

Universal prediction methods may not perform well

for all TFs, given inherent variation in binding

domains, binding sequence preferences,

homology level across species and family members.

We believe, however, that our general model-

building framework has the potential to be extended

to other TFs for which there are available data

detailing locations of a sufficient number of binding

sites for use as a training dataset. As more results

from genome-wide ChIP-chip studies become pub-

licly available, it will become feasible to apply this

prediction method to many other TFs.

Several aspects of this method can be improved

in the future, such as using additional TFBS-related

genomic features, evaluating other motif scanning

methods, incorporating protein–DNA interactions,

including binding site cluster information, using

different gene annotations and exploring additional

computational prediction models, such as support

vector machines. We focused on a region 5 kb

upstream of the TSSs of RefSeq mRNAs because

the published USF1 ChIP-chip study indicated that

most of the USF1 binding regions were found in

proximal promoters.17 USF1-BSs could occur

beyond 5 kb upstream of TSSs, however, implying

that a wider range of genomic regions could be

considered in the future.

Training dataset from published USF1
ChIP-chip results

A reliable training dataset is crucial for the develop-

ment of an accurate and reliable prediction

method. We chose published USF1 ChIP-chip

results17 as our training dataset because they re-

presented the largest publicly available USF1

binding dataset; however, the exact location of

USF1–BSs from these data is confounded by the

common noise of ChIP-chip experiments and by a

large average locus size on the ENCODE microarray

— approximately 1 kb. To circumvent these
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problems, we used the potential USF1–BSs ident-

ified by the PWM scoring method from the posi-

tive and negative loci to construct the training

dataset. Each positive locus might include multiple

potential USF1–BSs; however, it is unlikely that

every potential USF1–BS from each positive locus

interacts with USF1. Accordingly, we expect that

our training dataset includes some false positives.

To address this problem, we grouped all the poten-

tial USF1–BSs in the training dataset by their locus

on the microarray and performed a LOLO cross-

validation to evaluate the prediction models. The pre-

diction scores of these potential USF1–BSs within

each locus were used to predict that locus. If the

locus has at least one predicted USF1–BS, it would

be scored as a positive locus, otherwise it would be

scored as a negative locus. This allows us to compare

our prediction with USF1 ChIP-chip results directly.

We believe that LOLO cross-validation retains the

underlying biological correlations while avoiding

over-fitting the prediction models.

The training dataset was derived from the

ENCODE regions, which included promoter,

intronic, exonic and intergenic regions. USF1–BSs

in all these regions may have different properties to

the genomic features within the 5 kb upstream

region of TSSs from the RefSeq mRNAs. These

differences may cause the model based on this

training dataset to behave differently on the full

ENCODE regions.

Predicted USF1 binding sites and
target genes

Scanning 5 kb upstream of the TSSs of 23,105

RefSeq mRNAs, we identified a list of potential

USF1–BSs and target genes that can be used as

candidates for studying susceptibility to CAD and

other complex human diseases. Our genome-scale

prediction includes 24,010 USF1–BSs and 5,801

candidate genes. The numbers of USF1 binding

sites and target genes in the genome were expected

to be large, since USF1 is widely expressed in

many tissues and developmental stages.15 Other

large-scale in vivo experiments have found that

many other TFs are associated with an unexpect-

edly large numbers of target genes. For example, an

investigation of c-Myc, which belongs to the same

bHLH family as USF1 and shares a similar core

binding site, identified 756 c-Myc binding sites on

chromosomes 21 and 22.31 Extrapolating this to

the whole genome provides an estimate of 25,000

c-Myc binding sites. A genome-wide study of the

transcription factor signal transducer and activator

of transcription 1 (STAT1) binding sites using

ChIP-sequencing technology also identified 41,582

and 11,004 putative binding regions in stimulated

and unstimulated cells, respectively.32 These data

are similar in magnitude to our genome-scale esti-

mate of USF1–BSs. ChIP-based studies can only

identify genes that are targets under specific cellular

or environmental conditions. It is important to

note, however, that our in silico prediction method

will identify potential USF1–BSs independent of

cell type, stage or environment. Thus, the numbers

of predicted USF1 binding sites and target genes

might be higher using our method than using

in vivo experiments. As more data become available,

especially DNaseI HS identified from multiple cell

lines, we will be able to evaluate the tissue speci-

ficity of the genomic features and our predictions.

We acknowledge that DNA binding domains of

the two members of the USF family (USF1 and

USF2) are highly conserved across multiple species,

and often USF1 and USF2 form heterodimers to

bind DNA, suggesting that the two proteins may

share target genes. Although we used experimen-

tally defined USF1–BSs to construct the PWM,

other bHLH family members also have the same

core binding sequence, 50-CACGTG-30; therefore,

our prediction results might include the binding

sites of other bHLH family members.

Application to human disease study

The main goals for this study were to predict

genome-scale binding sites of USF1 and to identify

a novel group of CAD candidate genes regulated by

USF1 that give us the opportunity to evaluate

gene–gene interactions. In Additional file 3, we

have provided the predicted USF1–BSs and their

prediction scores. By identifying a large number of

predicted USF1–BSs, our results allow for adjust-

ing the stringency of the prediction score threshold

RESEARCH Wang et al.

232 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 3. NO. 3. 221–235 APRIL 2009



to refine gene targets and also for choosing specific

filters to emphasise a particular subset of interest.

‘Genomic convergence’, a strategy that integrates

several independent and separate lines of exper-

imental evidence to prioritise disease-associated

candidate genes,33 is being used by our CAD study

to combine the USF1–BS prediction results with

other information related to CAD to identify can-

didate genes. For example, a previously published

study of gene expression signatures from human

aortas identified 229 genes to be differentially

expressed in aortas with and without atherosclerosis

and found these genes to be highly predictive of

the condition.34 By combining our in silico USF1–

BS prediction method with this expression result,

we identified 87 USF1 target genes that were

differentially expressed between cases and controls

in aorta (see Additional files 10 and 11). This

approach highlights the potential for combining

information from two distinct and methodologi-

cally diverse genome-scale investigations to define a

list of important candidate genes from an unma-

nageably large list of initial targets.

SNPs are the most abundant molecular markers

in the human genome. SNPs are commonly used

for large-scale genetic association studies to identify

genetic factors responsible for complex genetic dis-

eases. Current high-throughput genotyping tech-

nologies enable researchers to genotype large

numbers of SNPs efficiently. It remains a challenge

to select SNPs with potential functional impact,

however, especially from the large number of ident-

ified non-coding SNPs. One variant of particular

interest are the SNPs within cis-regulatory elements,

such as TFBS, because changing the TFBS

sequence could alter the TF binding affinity within

this region and further may influence the transcrip-

tional regulation of the corresponding gene. These

cis-regulatory variations are not necessarily deleter-

ious. They might have subtle effects on gene

expression and may contribute to the disease

through interacting with other alleles and/or

environmental factors, thereby playing important

roles in the pathogenesis of many complex diseases

in humans.35 The bp resolution of our USF1–BS

predictions enables us to isolate potential functional

variations that may be used to select candidate var-

iants for further testing for a functional impact and

relation to disease. We have identified 751 SNPs

within our predicted USF1–BSs in the human

genome based on the genomic locations of the SNPs

released by the NCBI in dbSNP build 126 (see

Additional file 3). The experimental approaches that

distinguish functional from neutral variations among

these SNPs include, but are not limited to, well-

designed case-control or family-based genetic associ-

ation studies, allele-specific gene expression analysis

and focused molecular biology studies. In summary,

these SNPs within predicted USF1–BSs have the

potential to influence the regulation of USF1 target

genes; they enable identification of a specific USF1

regulatory network and, ultimately, study of the associ-

ation of USF1 with complex disease in humans.

Conclusion

This novel prediction method makes use of

additional genomic features besides the PWM score

and enables a more accurate and efficient

genome-scale identification of specific USF1–BSs

and associated target genes. The results of this study

will help to identify USF1-regulated genes which

might, in turn, be associated with CAD. We

suggest that this method be generally applied to

other transcription factors identified in human

disease studies to further the understanding of

encoded functional elements in the genome and

their role in complex disease pathways.
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Additional files

Additional file 1: Kernel logistic regression

We provide a brief introduction to the kernel logis-

tic regression. For more details, please refer to the

study by Minka.26

Additional file 2: Comparison of USF1
binding sites prediction methods

The threshold of being a predicted USF1–BS was

0.5. Sensitivity was the proportion of correctly pre-

dicted true positive loci, whereas specificity was the

proportion of true negative loci predicted as nega-

tive loci. The AUCs were calculated from LOLO

cross-validation (see Methods).

Additional file 3: Predicted USF1–BSs and
associated target genes in the human genome

The optimal prediction model was applied to the 5

kb regions upstream of the TSSs of 23,105 RefSeq

mRNAs. 9.721 genes with 24,010 USF1–BSs are

predicted to be the targets of USF1.
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Additional file 4: Distribution of PWM and
DNaseI HS scores in the training dataset
(correlation coefficient50.121)

Our training dataset included 935 potential USF1–

BSs; 135 were associated with the 34 positive loci

and 800 with the 177 negative loci identified by

the USF1 ChIP-chip study.

Additional file 5: Distribution of PWM and
RP5 scores in the training dataset (correlation
coefficient50.117)

Our training dataset included 935 potential USF1–

BSs; 135 were associated with the 34 positive loci

and 800 with the 177 negative loci identified by

the USF1 ChIP-chip study.

Additional file 6: Distribution of PWM and
PhastCons8 scores in the training dataset
(correlation coefficient5–0.007)

Our training dataset included 935 potential USF1–

BSs; 135 were associated with the 34 positive loci

and 800 with the 177 negative loci identified by

the USF1 ChIP-chip study.

Additional file 7: Distribution of PWM and
MostCons8 scores in the training dataset
scores (correlation coefficient50.060)

Our training dataset included 935 potential USF1–

BSs; 135 were associated with the 34 positive loci

and 800 with the 177 negative loci identified by

the USF1 ChIP-chip study.

Additional file 8: Distribution of PWM and
CpG scores in the training dataset scores
(correlation coefficient50.064)

Our training dataset included 935 potential USF1–

BSs; 135 were associated with the 34 positive loci

and 800 with the 177 negative loci identified by

the USF1 ChIP-chip study.

Additional file 9: PWM scores distribution of
USF1–BSs

By scanning the 5 kb upstream of the TSSs of

23,105 RefSeq mRNAs in the human genome,

290,614 potential USF1–BSs were identified by

the PWM scoring method. A total of 24,010 pre-

dicted USF1–BSs were generated using the

optimal prediction model with the default

prediction threshold (0.5). In addition, 20 exper-

imentally identified USF1 target genes had been

used to validate our prediction. The numbers on

the top of the bar indicate the number of these

genes having PWM scores within that range.

For example, ‘3/4’ means that there are four

USF1 target genes with PWM scores in the range

4.5 to 5, and three of these genes are correctly

identified by the optimal kernel-based prediction

method.

Additional file 10: CAD candidate genes
identified by the ‘genomic convergence’
approach

A previously published study of gene expression

signatures from human aortas identified 229 genes

that are differentially expressed in aortas with and

without atherosclerosis.34 Based on the score distri-

bution of our prediction, we chose a stringent

threshold (0.99) to reduce the number of predicted

USF1 target genes to be used as candidate genes

for further analysis to 5,801. By combining our

predicted USF1 candidate genes with the published

expression result, we identified 87 USF1 target

genes that were differentially expressed between

cases and controls in the aorta. The prediction

score of each USF1–BS within these genes can be

found in Additional file 3.

Additional file 11: PWM score distribution of
USF1–BSs within CAD candidate genes

A previously published study of gene expression

signatures from human aortas identified 229 genes

that are differentially expressed in aortas with and

without atherosclerosis.34 By combining our in

silico USF1–BS prediction method with this

expression result, we identified 87 USF1 target

genes that were differentially expressed between

cases and controls in the aorta. 142 genes were

excluded because they did not have predicted

USF1–BSs.
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