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Abstract
Searching for genes contributing to longevity is a typical task in association analysis. A number of methods can be

used for finding this association — from the simplest method based on the technique of contingency tables to

more complex algorithms involving demographic data, which allow us to estimate the genotype-specific hazard

functions. The independence of individuals is the common assumption in all these methods. At the same time,

data on related individuals such as twins are often used in genetic studies. This paper proposes an extension of

the relative risk model to encompass twin data. We estimate the power and also discuss what happens if we

treat the twin data using the univariate model.
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Introduction

Most common diseases and traits have a complex

structure, for which the phenotype is determined

by interactions between genetic and environmental

factors. As any individual genetic variant can have a

relatively modest effect on a disease or trait, linkage

analysis has less power than association analysis.

Classical association studies in their simplest form

compare the frequency of alleles or genotypes for

candidate genes between cases and controls. These

candidate genes are usually chosen on the basis of

biological hypotheses or from previous linkage

analyses.

To identify genes associated with longevity,

information on genotype frequencies for two or

more age groups is needed. A significant trend of

genotype frequencies being associated with age can

indicate a gene–longevity association. In the basic

‘gene frequency method’, only the genotype fre-

quencies in different age groups are compared.1–3

Some extensions of this method involve the use of

demographic information about the population

under study and allow the estimation of initial fre-

quencies, relative risks and the age trajectories of

mortality for candidate genes. These methods are

known in the literature as the ‘parametric method’,

the ‘semi-parametric method’, the ‘non-parametric

method’ and the ‘relative risk method’.4 The use of

these methods, however, has two limitations. First,

the initial gene frequencies in all cohorts rep-

resented in the study must be the same. Secondly,

the mortalities for genotypes do not depend on the

birth year of the cohort. In two recently published

papers,5,6 the authors exclude the first limitation,

assuming a time trend in the genetic frequencies of

subsequent birth cohorts. In principle, the time

and the cohort covariates influencing mortality can

be incorporated into the models too. The flexible

parameterisation in the extended relative risk

model6 also allows detection of the antagonistic

pleiotropic effect.

The methods mentioned above have been devel-

oped for datasets consisting of independent indi-

viduals. In this paper, we propose a method for
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detecting longevity genes for the dataset consisting

of twin pairs. This method retains all the advan-

tages of the relative risk model for univariate data

described previously.6

Materials and methods

To analyse the gene–longevity association, two

datasets are needed: the genotype data and the uni-

variate survival data for the individuals involved in

the study. To improve the accuracy and power of

the study, the longevity data for twins can addition-

ally be analysed. Denoting longevity and non-

longevity alleles at an autosomal locus by a and A,

respectively, assume that the frequencies Pg of geno-

types AA, aA or Aa, and aa at the moment of birth

are PAA; PAa and Paa, respectively. If the

Hardy–Weinberg equilibrium holds, then

PAA ¼ ð1� PaÞ2;PAa ¼ 2Pað1� PaÞ and Paa ¼ P2
a ,

where Pa is the frequency of the allele a at the

moment of birth. We parameterise Pa as follows:

Pa ¼ 1� 1=ð1þ enþdxþRwðx;x0ÞÞ; x ¼ T � t: ð1Þ

In accordance with (1), the logit of Pa is a linear

function of unknown parameters R, n and d with

domain of definition R3. This parameterisation

includes the sudden change in the allele frequency

by the value Rw(x,x0) in the cohort T2x0 and the

slow linear cohort effect nþdx of the allele fre-

quency. Here, T stands for the year of data collection,

x for the age, and t for the cohort. We assume that

the value of x0 is known. The step function w(x,x0)

is defined by the interval equations w(x,x0)¼1 for

0 � x � x0 and w(x,x0)¼0 for x. x0.

To estimate the genotype frequencies for twin

pairs, we need to calculate the bivariate survival func-

tions. One possible approach to doing so is to use the

correlated gamma-frailty model, which provides

simple analytical expressions for the bivariate survival

functions.7 Assume that that individual’s instantaneous

risk of death m for genotype g[faa,Aa,AAg at age

x, as measured by the hazard of mortality, is

mðx;Z; gÞ ¼ Zm0;gðxÞ, where Z is the gamma dis-

tributed frailty (non-observed risk of mortality) with

mean 1 and variance s2, and m0;gðxÞ is the baseline

hazard. The univariate survival function

SgðxÞ ¼ Ee�ZHgðxÞ ¼ ð1þ s2HgðxÞÞ�1=s2

is the

Laplace transform for the gamma probability density

function at the pointHgðxÞ ¼
Ð x
0
m0;gðtÞdt (cumulative

hazard function). For related individuals, we assume

that life spans T1 and T2 are conditionally independent,

given frailties Z1, Z2 and genotypes g1, g2. In general,

frailties Z1 and Z2 have unequal variances. Below, we

shall assume, for simplicity, that Z1 and Z2 are identi-

cally distributed. If Corr(Z1,Z2)¼ r, E(Z1)¼ E(Z2)¼

1 and Var(Z1)¼ Var(Z2)¼ s2, then:

PfT1 . x1;T2 . x2g ¼ Sg1;g2ðx1; x2Þ

¼ Sg1ðx1Þ1�r
Sg2ðx2Þ1�r

ðSg1ðx1Þ�s2 þ Sg2ðx2Þ�s2 � 1Þr=s2 ð2Þ

Here, Sg1;g2ðx1; x2Þ is the bivariate survival function

at ages x1 and x2 for twins with genotypes g1 and

g2, respectively. We relate cumulative hazard func-

tions with some unknown function H0ðxÞ as

follows:

HgðxÞ ¼ cgxþ agH0ðxÞbg ð3Þ

with unknown ag � 0; bg � 0 and cg � 0. Such para-

meterisation, where cumulative hazards HgðxÞ rather

than survival functions SgðxÞ for different genotypes

are parametrically related (eg SgðxÞ ¼ S0ðxÞbg ), is

more flexible and allows us to detect the antagonistic

pleiotropic effect.6 Without loss of generality, we can

assume that aAA ¼ bAA ¼ 1.

For univariate and bivariate survival functions in

the whole population, it holds that:

SðxÞ ¼
X
g

PgSgðxÞ;

SMZðx1; x2Þ ¼
X
g;g

PMZ
g;g SMZ

g;g ðx1; x2Þ

SDZðx1; x2Þ ¼
X
g1;g2

PDZ
g1;g2 S

DZ
g1;g2ðx1; x2Þ

ð4Þ

Here, Pg, Pg,g
MZ and Pg1,g2

DZ are the univariate and the

bivariate genotype frequencies for monozygotic

(MZ) and dizygotic (DZ) twin pairs, respectively,

at the moment of birth. Since the frailty correlation
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r can be different for MZ and DZ twins, we use

the upper index MZ or DZ in the notation for

bivariate survival. Given univariate survival S(x)

and parameters, we calculate the baseline cumulat-

ive hazard H0(x) using the simple bisectional pro-

cedure.6 For univariate genotype frequencies, we

will use the values given above. To calculate the

bivariate genotype frequencies, note that for MZ

twin pairs, g1¼g2¼g and PMZ
g;g ¼ Pg. Assuming

independent transmission of the maternal and

paternal alleles to the offspring, we can use the

standard formulae for DZ twin pairs:

PDZ
aa;aa ¼ P2

aa þ ð1=2ÞPaaPAa þ ð1=16ÞP2
Aa

PDZ
aa;Aa ¼ PDZ

Aa;aa ¼ ð1=2ÞPaaPAa þ ð1=8ÞP2
Aa

PDZ
aa;AA ¼ PDZ

AA;aa ¼ ð1=16ÞP2
Aa

PDZ
Aa;AA ¼ PDZ

AA;Aa ¼ ð1=2ÞPAaPAA þ ð1=8ÞP2
Aa

PDZ
Aa;Aa ¼ ð1=2ÞPaaPAa þ 2PaaPAA

þ ð1=2ÞPAaPAA þ ð1=4ÞP2
Aa

PDZ
AA;AA ¼ P2

AA þ ð1=2ÞPAAPAa þ ð1=16ÞP2
Aa

ð5Þ

The frequencies pMZ
g;g ðxÞ and pDZ

g1;g2ðxÞ of the geno-

type (g,g) and (g1,g2) at any age x for MZ and DZ

twin pairs can be calculated from the formulae:

pMZ
g;g ðxÞ ¼

PgS
MZ
g;g ðx; xÞ

SMZðx; xÞ ð6Þ

pDZ
g1;g2ðxÞ ¼

PDZ
g1;g2 S

DZ
g1;g2ðx; xÞ

SDZðx; xÞ ð7Þ

Assuming that the variance s2 does not depend on

genotype and zygosity, we have the following

unknown vector parameter:

u ¼ ðR; d; n; aaa; aaAþAa; baa; baAþAa; caa; caAþAa;

cAA;s
2; rMZ ; rDZÞ:

Here, rMZ and rDZ are the frailty correlations for

MZ and DZ twins. We estimate unknown vector

parameter u maximising the likelihood function:

Likg ¼
YNMZ
g

i¼1

pMZ
gi;gi

ðxi; uÞ

0
@

1
A YNDZ

g

i¼1

pDZ
gi1;i2

ðxi; uÞ

0
@

1
A ð8Þ

(the maximum likelihood estimates [MLE]), where xi
is the age of twin pair i at the moment of data col-

lection, NMZ
g and NDZ

g are the observed numbers of

MZ and DZ twin pairs in the genetic dataset (twin

pairs with known genotypes and ages), respectively.

To choose the optimal model, we can use the likeli-

hood ratio test for nested models and either the

Akaike information criterion (AIC) or the Bayesian

information criterion (BIC) for non-nested models.

Under the null hypothesis, we assume that

aaa ¼ aAa ¼ baa ¼ bAa ¼ 1 and caa ¼ cAa ¼ cAA ¼ 0.

Significant deviation from this hypothesis can

indicate a gene–longevity association.

If, in addition to genetic data, the data on the

longevity of related individuals such as twins are

also available, we can use this information to

improve the accuracy of statistical estimates and to

increase the power. Denote the life spans of the

twin pair i in the demographic dataset by (xi1,xi2),

where I ¼ 1, . . . ,Nd
MZ for MZ twin pairs and I ¼

1, . . . ,Nd
DZ for DZ twin pairs. We assume that twin

pairs in the sample are chosen at random and that

all twins are deceased. Although the censored data

are less informative than non-censored data, they

can be also included in the analysis. The bivariate

probability density function for a twin pair with

longevities xi1 and xi2 can be calculated as follows:

@2Sjðxi1; xi2Þ
@xi1@xi2

¼
X
g1;g2

P
j
g1;g2

S
j
g1;g2ðxi1; xi1Þ

Sg1ðx1ÞSg2ðx2Þ
@Sg1ðx1Þ
@Sðx1Þ

� @Sg2ðx2Þ
@Sðx2Þ

@Sðx1Þ
@x1

@Sðx2Þ
@x2

� 1� r2j þ
rjð1� rjÞðSg1ðx1Þ

�s2

þ Sg2ðx2Þ�s2

Þ
ðSg1ðx1Þ�s2 þ Sg2ðx2Þ�s2 � 1Þ

 

þ
rjðrj þ s2ÞSg1ðx1Þ�s2

Sg2ðx2Þ�s2

ðSg1ðx1Þ�s2 þ Sg2ðx2Þ�s2 � 1Þ2

!
ð9Þ
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with j¼MZ,DZ. We can write the likelihood func-

tion for the demographic dataset in the form:

Likd ¼
YNMZ
d

i¼1

@2SMZðxi1;xi2Þ
@xi1@xi2

ðxi1; xi2; uÞ

0
@

1
A

�
YNDZ
d

i¼1

@2SDZðxi1;xi2Þ
@xi1@xi2

ðxi1; xi2; uÞ

0
@

1
A ð10Þ

Now, unknown parameters can be found through

maximising the joint likelihood function Likg �
Likd.

Results

To carry out the numerical experiments, we used

simulated data. To generate datasets with a sample

size of Ng
MZ¼1000, Ng

DZ¼2000 for genotype data

and of Nd
MZ¼150, Nd

DZ¼300 for longevity data we

assumed that:

– The action of the dominant allele a on

longevity can be characterised by parameters

aAA ¼ bAA ¼ 1; caa ¼ cAA ¼ 0, aaa ¼ aAa ¼

0.8, baa ¼ bAa ¼ 1.2;

– The survival function for genotype AA has a

form

~SðxÞ ¼ ð1þ s2 ~HðxÞÞ�1=s2 ;

~HðxÞ ¼ ~cxþ ~aðe~bx � 1Þ=~b ð11Þ

with ~a ¼ 2:5 � 10�5; ~b ¼ 0:1; ~c ¼ 0 and

ln s2 ¼ �4:5;
– Individual frailty for twins are gamma-

distributed, with mean 1 and variance s2 ¼ 1.

Frailty correlations rMZ and rDZ are equal to

0.5 and 0.25, respectively;

– The Hardy–Weinberg equilibrium at the

moment of conception holds. There is no gen-

otype selection before birth;

– The slow continuous component of the cohort

effect has parameters n ¼ –2 and d ¼ 0.005.

This corresponds to the frequency Pa � 0.182

for individuals born in year T (the year of data

collection) and decreases in the frequency by

0.4 per cent per year. The sudden jump of Pa
with parameter R ¼ 0.5 occurred in the

cohort T-50;

– The birth dates of all twin pairs from the long-

evity dataset are uniformly distributed over the

cohort interval [T-110,T-100]. The ages of the

twins from the genetic dataset at the moment

of data collection are uniformly distributed

over the age interval [0,105] years.

Nearly one in every 100 deliveries is a twin birth,

and the DZ/MZ ratio is approximately equal to

2. From this, it follows that in the stationary

population consisting of 300,000 individuals with

crude birth and death rates q0 equal to 15 per

1,000, the life expectancy at birth e0 is equal to

1,000/15 � 66.7 years and we will find approxi-

mately (1/300)�(300,000�q0e0)¼1,000 MZ and

(2/300)�(300,000�q0e0)¼2,000 DZ twin pairs. We

will also find 150 MZ and 300 DZ newborn twin

pairs over the ten-year cohort interval. Since the

influence of a decrease in child mortality before the

age of 11–13 years on the univariate survival and,

therefore, selection is relatively small, we have not

included this effect in the simulated data. In

general, chosen simulation parameters produce a

bivariate lifespan distribution which is similar to

the true one.

The estimates of unknown parameters and of

the power for 1,000 simulations are given in

Table 1. The power was calculated at the 5 per

cent significance level. We have used the bivariate

and the univariate models applied to the joint

bivariate genetic and longevity data or to the

bivariate genetic data only. The age dynamics of

the hazard functions for genotypes with/without

allele a and the age dynamics of the frequencies

for the longevity allele/genotypes with the long-

evity allele are shown in Figures 1 and 2. To

establish how often the true bivariate model

applied to the bivariate genetic data turns out to

be optimal compared with the false univariate

model, we used the likelihood ratio test.

Significant differences between two these models
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at a significance level of p , 0.05 were observed

in 100 per cent of cases.

Discussion

The maximum likelihood method yields correct

estimates if the model is correctly specified. In this

case, the MLE of unknown parameters under

certain regularity conditions are asymptotically

unbiased, normal and efficient. If we treat the

bivariate data in the same way as the univariate

data, and the marginal model is correctly specified,

then the robust Hubert–White ‘sandwich’ estima-

tor of the covariance matrix of parameter estimates

yields an asymptotically consistent covariance

matrix.8–10 As we see in Table 1, there is an

increase in statistical power when using the more

robust univariate model compared with the bivari-

ate model. Nevertheless, the estimates of parameters

aaa and baa for the relative risk of the longevity

genotype and the estimate of s for the standard

deviation of frailty are closer to their true values if

we use the bivariate model. Including the infor-

mation on longevity in the dataset, however, can

Table 1. Parameter estimates (sample means) and their standard deviations (in brackets) for 1,000 simulations, calculated using the

bivariate (univariate) model applied to the joint bivariate genetic and longevity data* (***) or to the bivariate genetic data **(****).

True Est.* Est.** Est.*** Est.****

aaa 0.800 0.775 (0.219) 0.693 (0.431) 0.605 (0.736) 0.614 (0.517)

baa 1.200 1.198 (0.039) 1.196 (0.062) 1.261 (0.070) 1.252 (0.065)

n 22.000 22.009 (0.178) 22.016 (0.180) 21.996 (0.183) 21.996 (0.182)

103.d 5.000 5.066 (2.642) 5.121 (2.660) 4.762 (2.876) 4.934 (2.736)

R 0.500 0.509 (0.126) 0.514 (0.129) 0.505 (0.131) 0.501 (0.130)

s 1.000 1.096 (0.520) 1.368 (0.998) 1.654 (1.008) 1.538 (1.060)

rMZ 0.500 0.558 (0.245) 0.539 (0.392) – –

rDZ 0.250 0.293 (0.212) 0.358 (0.393) – –

Power – 0.833 0.628 0.874 0.719

Figure 1. Hazard function for genotypes with/without allele a

(solid line/dashed line).

Figure 2. Frequency of allele a/genotypes containing allele a

(solid line/dashed line).
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substantially improve statistical estimates, increase

the power and decrease the variance. It seems that

implementation of the approach based on the more

robust univariate model, compared with the bivari-

ate model, is preferable for the sample sizes used in

this study. Based on the correlation estimates in the

MZ and DZ twins, we are able to estimate the

contribution of the candidate gene to the heritabil-

ity.11 Under the null hypothesis (no heritability),

we put rMZ ¼ rDZ. The effect of antagonistic

pleiotropy is clearly seen in Figure 1. The presence

of allele a in an individual’s genotype guarantees

the lower hazard of mortality only up to the age of

approximately 76 years. The hazard of individuals

with genotype AA is then lower than that of indi-

viduals with allele a in the genotype. Similar to the

univariate model, the bivariate model effectively

identifies not only the slow cohort trend of Pg,

including the antagonistic pleiotropic effect, but

also the sudden change in this parameter. As

expected, the frequencies of allele a and of the

genotypes containing allele a increase continuously

in the age intervals [0,50] and [50,80], fall abruptly

at the age of 50 and decrease continuously after the

age of 80 (see Figure 2). Univariate and bivariate

(for twins) genotype frequencies at the longevity

locus at the moment of conception depend on the

genotype frequencies in the parental population

and the transmission probabilities. In the model

we have used, two assumptions were made relating

to the longevity locus. First, that the Hardy–

Weinberg equilibrium holds for the parental popu-

lation. Secondly, that the segregation ratio does not

deviate from 0.5.12 In principle, we can dispense

with both of these assumptions and include them

as null hypotheses in the study. Significant deviation

from the null hypotheses can be tested using the

likelihood ratio test. Rejection of the hypothesis

about the Hardy–Weinberg equilibrium can

indicate possible genotype selection during the ges-

tation period. Significant deviation from Mendelian

transmission can mean, for example, that longevity

is not governed by the alleles at a single locus.

Population admixture and stratification can lead to

linkage disequilibrium between longevity and

marker loci. In such situations, the study may reveal

evidence for (‘spurious’) association with the

marker, even if it is unlinked to the longevity

locus. If the sub-population factors influencing the

allele frequencies in the marker and longevity loci

are identified (eg ethnicity, geographical origin,

etc), they can be included in the study. Another

solution for this problem is to partition the associ-

ation effects into between- and within-family com-

ponents.13,14 It was shown that admixture impacts

the between-family component estimate, and that

the within-family component estimate is indepen-

dent of any ‘spurious’ effects when samples from a

number of population strata are combined.
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