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Abstract

Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex
disease genes appear to be represented more frequently than Mendelian disease genes among genes of more
recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new
insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database
(http://www.hgmd.org) revealed a number of examples of disease-causing and disease-associated mutations in
putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with
complex disease. Since both human-specific genes and genes associated with complex disease have often experi-
enced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selec-
tion, it is proposed that a significant number of human-specific genes may play a role in complex disease.
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Human ‘disease genes’ have been known for some
time to differ significantly from ‘non-disease genes’
in terms of their higher degree of evolutionary con-
servation.' > Further, with respect to their evol-
utionary age, human disease genes appear not to be
simply a random subset of all genes in the genome
but are instead biased toward being of ancient (early
metazoan) origin.* Concomitantly, a pronounced
paucity of human lineage-specific genes is also
evident among disease genes.* These initial findings
were subsequently confirmed and elaborated upon
by Cai et al.,”> who determined the approximate age
of evolutionary emergence of all human genes and
then proceeded to compare disease genes with non-
disease genes with respect to whether they were
‘young’, ‘middle-aged’ or ‘old-aged’. For the pur-
poses of their study, the origin of a given gene was
determined by retracing its orthologues back to the
species most distantly related to human. Genes that
originated during the period since the adaptive
radiation of the Laurasiatheria were described as

‘young’, the term ‘middle-aged’ was employed to
describe those genes whose origin went back to the
bony fish, and genes that emerged at some stage
between yeast and Ciona (a tunicate) were ascribed
the term ‘old-aged’. Using these fairly crude
descriptors of gene age, Cai ef al.” confirmed that
there was a tendency for Mendelian disease genes
(ie those genes underlying single gene disorders) to
be of more ancient evolutionary origin than non-
disease genes. With Mendelian disease genes, the
‘old-aged’ genes were in the majority, closely fol-
lowed by the ‘middle-aged’ genes. By contrast, most
genes involved in the aetiology of complex disease
were found to reside in the ‘middle-aged’ category.
Although both Mendelian and complex disease
genes were found to be under-represented in the
‘young’ category, the frequency of complex disease
genes in this category was found to be more than
twice that exhibited by the Mendelian disease
genes.” Given this finding, we speculated that
closer examination of the most recently acquired
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(ie human-specific) genes might well provide new
insights into the genetics of complex disease.
Considerable efforts have been made to identity
those genes that have been inactivated in the human
lineage but which are still present in other higher
primate species, including chimpanzee.®”” However,
somewhat less attention has been paid so far either to
human genes of relatively recent origin that are

specific to the human lineage'”""

or to those genes
that have been retained in the human genome
despite having been lost in other primate species.'?

The first reported attempts to identify putative
human-specific gene duplications were those of
Fortna et al."” and Cheng et al.'* The dataset of
Cheng et al. comprised 88 complete gene dupli-
cations that were considered to have occurred since
the divergence of human and chimpanzee. Of
these, it was found that 13 have been reported in
association with human inherited disease (see
Human Gene Mutation Database (HGMD)15).
These are the genes encoding Fc fragment of IgG,
high aftinity Ia, receptor (FCGR1A), DEAD box 1
protein (DDX11), cholinergic nicotinic acetyl-
choline receptor, alpha 7 subunit, exons 5—10 and
family with sequence similarity 7A, exons A—E
fusion (CHRFAM?7A), aryl sulphotransferase
(SULT1A1), CC chemokine ligand 4-like 1
(CCLA4L1), killer cell immunoglobulin-like recep-
tor, three domains, long cytoplasmic tail, 1
(KIR3DL1), mammalian STE20-like kinase 1
(MSTT), dopamine receptor D5 (DRD)Y), succinate
dehydrogenase complex (SDHA), survivor motor
neurone 2 (SMNZ2), general transcription factor 2-1
repeat domain-containing protein 2 (GTF2IRD?2),
neutrophil cytosolic factor 1 (NCF1), and aqua-
porin 7 (AQP7). Despite Cheng et al.'* presenting
expression data to support their claim that their 88
gene duplications involved functional duplicated
gene copies,
remained over whether or not some of these genes
may actually represent pseudogenes.

Probably, the most reliable dataset of human-

however, a question mark has

specific gene duplications so far produced is that of
1.'® These workers identified 138 human-

specific complete gene duplications that appear to

[tan ef a

have occurred since the divergence of human and

chimpanzee. It was found that four of these
human-specific genes are listed in the HGMD as
having been reported in association with human
inherited disease (Table 1). Indeed, these genes
have been shown to harbour a number of difterent
disease-causing mutations (DMs; including missense
copy variations) or
disease-associated polymorphisms that may confer
increased risk of a given disease state. In two of the

mutations and number

four cases, the reported disease association was
between a disease-associated polymorphism and a
complex disease phenotype (ie susceptibility to
infectious disease).

Intuitively, it might be supposed that those
human genes that are present in more than one
copy, as a consequence of a human lineage-specific
increase in copy number, are better protected
against the consequences of mutation in their func-
tional parent genes by virtue of their newly
acquired genetic redundancy.””*® Using fairly strin-
gent selection criteria, at least 27 human genes
have so far been identified as having experienced
lineage-specific in  copy
number.'>* 7> Contrary to expectation, nine
of these genes (AQP7), cadherin 12, type 2
(CDH12), CHRFAM7A, DRD5, FCGRIA,
GTF2IRD2, neuronal apoptosis inhibitory protein
(NAIP), NCF1, and occludin (OCLN) are listed in
the HGMD, although only five of them
(FCGR1A, GTF2IRD2, NAIR NCF1, OCLN)
have been reported to harbour mutations that actu-
ally cause inherited disease (ie DMs; Table 2). It
would be of considerable interest to ascertain (ret-
rospectively) whether the particular patients in
whom these mutations were described do indeed
harbour extra functional copies of the relevant
genes or whether perhaps these mutations have
come to clinical attention precisely because the
disease genes are effectively single copy in these

a human increase m

particular individuals.””*®* An alternative expla-
nation could, however, involve the loss of genetic
redundancy through the post-duplication functional
divergence of the gene copies leading to diversifica-
tion through sub- or neo-functionalisation.”™* It
is premature to speculate as to which of these pos-
tulates might provide an explanation for the
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Table |I. Human-specific genes that have been associated with inherited disease. The four genes listed were taken from a total of 138

human-specific genes identified by Itan et al.'®

Gene Gene name Chrom. Disease-associated HGMD HGMD dbSNP  Associated disease Reference
symbol loc. mutation (DM) accession entry No. state No.
No. tag
CCL3LI Chemokine  17ql2 CNV (duplication of CNO052767 DP — HIV/AIDS susceptibility, 17
(C-C motif) entire gene) association with
ligand 3-like | Kawasaki disease 18
Rheumatoid arthritis, 19
association with
Chronic hepatitis C 20
infection, susceptibility to
FOXD4 Forkhead box 9p24.3 Missense (Trp148Arg) CM073074 DM — Dilated cardiomyopathy, 21
D4 obsessive-compulsive
disorder and suicidality
MRCI  Mannose 10p12.33 Missense (Gly396Ser) CM099897 DP rs|1926736 Leprosy, protection 22
receptor, C against/association with
type |
SMN2  Survival of  5ql3.2  CNV (duplication of CNO082433 DM — Spinal muscular atrophy 3 23
motor entire gene) — Spinal muscular atrophy, 24
neurone 2, Missense (Gly287Arg)  CM095436 DM modifier of 25

centromeric

Deletion (exons 7 and 8) CGO0I5657

DM — Spinal muscular atrophy 26

Abbreviations: Chrom. loc., chromosomal localisation; CNV, copy number variant; dbSNP, the Single Nucleotide Polymorphism database; DP, disease-associated polymorphism in
statistically significant association with a particular disease state but lacking experimental evidence of functionality.

observation that five of the nine genes listed in
Table 2 can harbour clinically important mutations.

Another approach to this whole issue is to ident-
ity a set of human genes whose orthologues have
been lost from the chimpanzee genome and then
to ascertain how many of these genes are known to
be involved in human inherited disease. The initial
analysis of the chimpanzee genome (Chimpanzee
Sequencing and Analysis Consortium, 2005) ident-
ified a total of 55 genes that are present in human
but have been lost (or irrevocably disrupted) in
chimpanzee. It should be noted that these genes
may not necessarily be bona fide human-specific
genes, since although they are absent from the
chimpanzee genome, they may still be present in
the genomes of other higher primates. This not-
withstanding, cross-checking with the HGMD
revealed that eight of these genes are known to be
associated with either human inherited disease or
disease susceptibility (Table 3). In seven of these
eight cases, the reported disease association was
between a disease-associated polymorphism and a

complex disease phenotype (susceptibility to infec-
tious disease or autoimmune disease). Although the
numbers involved are clearly small, it would appear
that there is at least a tendency for human-specific
genes to harbour a greater-than-expected number
of examples of polymorphisms associated with
complex disease by comparison with the number
of mutations causing Mendelian disease (bearing in
mind that disease-associated polymorphisms consti-
tute only a small minority of the lesions logged in
the HGMD; see legend to Table 3).

Another intriguing finding emerges if Tables 1-3
are considered together: NAIR OCLN and SMN2
are all located at 5q13.2; GTF2IRD2 and NCF1 are
both located at 7q11.23, whereas butyrophilin-like 2
(BTNL2), HLA complex P5 (HCP5) and MHC
class I polypeptide-related sequence A (MICA) are all
located at 6p21.3. The most likely explanation for
the clustering of the human-specific genes at 5q13.2
and 7q11.23 is that both of these chromosomal
regions became duplicated specifically during the
human lineage. On the other hand, the clustering of
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the BTNL2, HCP5 and MICA genes at 6p21.3 is
likely to be due to the loss of this chromosomal
region in chimpanzee. The clustering of human-
specific genes at 5q13.2 has been noted pre-
viously."? The present data, however, suggest that at
least two additional genomic regions (7q11.23 and
6p21.3) contain clusters of human-lineage specific
genes.

Despite the above cited examples, there still
appear to be relatively few ‘young’
specific) genes among human disease genes. It may
therefore be inferred that only a few young genes

(human-

perform functions of sufficient importance to
ensure that they have immediately come to clinical
attention when mutated. This view is certainly sup-
ported by the observation that younger human,
primate and mammalian genes tend to evolve more
rapidly and are subject to weaker purifying selec-
tion than their more ancient counterparts.*>*’~
If it is assumed that the underlying mutation rate
does not differ markedly between these categories
of gene, there are essentially two potential expla-
nations for very young genes experiencing a par-
ticularly rapid rate of evolutionary change: weaker
purifying selection or an increase in positive selec-
tion. The available evidence suggests that both
likely 0279 The
majority of newly duplicated genes experience a
period of relaxed purifying selection, while only a
relatively small proportion exhibits a signature of

explanations  are to pertain.

positive selection consequent to the acquisition of
new biological functions.®® Presumably, in between
the initial post-duplicational redundancy and event-
ual neofunctionalisation through genetic diver-
gence, there is a ‘half~way house’ state in which a
gene is relatively free to explore the acquisition of
new functions while still being constrained to some
extent by selection against the loss of those func-
tions it has already acquired.®’

Whereas mutant alleles responsible for single
gene disorders are usually under negative selection,
alleles associated with complex disease appear to
have been either under much less stringent purify-
ing selection or may even have been subject to

3,68,69

positive selection. Genes that have experi-

enced positive selection during the human lineage

are likely to be characterised by human-specific
functional adaptations. Since genes that have been
subject to positive selection during human evol-
ution have frequently also been implicated in
disease,”’ we may surmise that the underlying
pathological mutations may sometimes have inter-
fered with these
Consistent with this interpretation, Lappalainen
et al.”" have reported a statistically significant corre-

newly acquired functions.

lation between those regions of the human genome
that have experienced recent positive selection in
northern European populations and those regions
that have been implicated in complex disease. This
observation is also compatible with the tendency
observed by the present authors for human-specific
genes to harbour a disproportionate number of
polymorphic variants associated with complex
disease.

In terms of their expression profiles, there
appears to be a tendency for rapidly evolving
younger genes to be tissue-specific, whereas the
more slowly evolving older genes are more broadly
expressed.”””’® It remains to be seen whether
complex disease genes differ from Mendelian
disease genes in terms of their expression
characteristics.

More generally, it has been proposed that ‘taxo-
nomically restricted genes’ may play a role in the
generation of morphological diversity, thereby
enabling organisms to adapt to changing environ-
mental conditions.”” If this is also true for the
human lineage-specific genes discussed here, it
follows that the acquisition of mutations in these
genes may well reduce an individuals capacity to
deal with a rapidly changing environment.”® This
chimes well with the (essentially unrelated) idea
that some forms of common disease susceptibility
may be a consequence of ancient human adap-
tations to a long-term stable environment (‘thrifty
alleles’). These ancestral alleles may now increase
the risk of common disease in a changed environ-
ment consequent to the recent shift to a modern
lifestyle.”” The present authors therefore suggest
that it would be a worthwhile exercise to construct
a complete lexicon of human-specific genes, since
these loci may well provide a happy hunting
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ground for those seeking to identify genes that play
a key role in complex disease.
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