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Abstract

Background: The aim of this study was to determine the genotype distribution and allelic frequencies of ACE (I/D),
AGTR1 (A +1166 C), BDKRB2 (+9/-9) and LEP (G-2548A) genomic variations in 175 Greek athletes who excelled at a
national and/or international level and 169 healthy Greek adults to identify whether some particular combinations

of these loci might serve as predictive markers for superior physical condition.

Results: The D/D genotype of the ACE gene (p = 0.034) combined with the simultaneous existence of BDKRB2
(+9/-9) (p = 0.001) or LEP (G/A) (p = 0.021) genotypes was the most prevalent among female athletes compared to
female controls. A statistical trend was also observed in BDKRB2 (+9/—9) and LEP (G-2548A) heterozygous
genotypes among male and female Greek athletes, and in ACE (I/D) only in male athletes. Finally, both male and
female athletes showed the highest rates in the AGTRT (A/A) genotype.

Conclusions: Our results suggest that the co-existence of ACE (D/D), BDKRB2 (+9/-9) or LEP (G/A) genotypes in
female athletes might be correlated with a superior level of physical performance.
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Introduction

Genetic polymorphisms that act as potential mediators
of the human health and physical performance are tar-
gets for many research groups attempting to unravel
their role to the genetic predisposition for a superior
performance and endurance. There are up to 170 gene
variant sequences, 17 mitochondrial DNA markers and
25 additional nuclear genetic markers in the human gen-
etic map which are related to physical performance phe-
notypes as well as to good physical fitness [1].

One of the most extensively studied genome varia-
tions, widely associated with the human performance
over the last decade, was the insertion (I) or deletion (D)
of 287-bp Alu repeats within intron 16 of the
angiotensin-converting enzyme (ACE) gene [rs1799752]
[2,3]. ACE plays a key role along the biochemical path-
way of the renin-angiotensin system (RAS), which con-
trols the homoeostasis of the human circulatory system.
Renin is a low molecular weight enzyme that is released
by juxtaglomerular cells of the kidney in response to

* Correspondence: apapacha@med.upatras.gr

’Laboratory of General Biology, Faculty of Medicine, University of Patras,
Patras 265 04, Greece

Full list of author information is available at the end of the article

( BioMed Central

blood pressure failure. Renin converts its substrate
angiotensinogen to angiotensin I, which is almost imme-
diately converted by ACE to angiotensin II (AT II). AT II
is a potent vasoconstrictor substance that acts mainly via
AT 1II type-1 receptors. Also, ACE hydrolyses bradykinin
which is a vasodilator, thus reduces peripheral resistance
and hence blood pressure [4]. Additionally, RAS acts
through other tissues as a paracrine/autocrine system
[5], and its local activity in the cardiac [6], adipose [7]
and skeletal muscular tissues [8] has been reported. It
has been currently verified that the local adipose RAS is
capable of functioning independently of the plasma RAS
and it is up-regulated in obesity [9,10], where the pres-
ence of AT II stimulates leptin gene expression and se-
cretion from adipocytes [11], revealing a considerable
cross-interaction between leptin expression and RAS
components. In particular, the leptin G-2548A promoter
polymorphism (LEP G-2548A) [rs7799039] has been
strongly associated with the serum leptin levels in over-
weight individuals and obesity and an increased risk for
obesity [12-14]. A study with obese Zucker rats treated
with ACE inhibitors have shown decreased leptin release
[11], which supports the cross-interaction between lep-
tin and ACE gene products. Recent results have shown
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that alterations in adipocyte production of the RAS
components may contribute to disorders of the meta-
bolic syndrome, including obesity and obesity-related
hypertension and diabetes [15,16].

The presence of other polymorphisms, like the AGTRI
(A +1166 C) allele in 3’ UTR of the AT II type-1 recep-
tor gene [rs12721276], results in increased expression of
the receptor gene [17], and the 9-bp deletion in exon 1
of the BDKRB2 (B2 receptor of bradykinin) gene
[rs72348790] results in a higher transcriptional activity
and, consequently, to a quicker receptor's response to
bradykinin molecules [18,19]. Additionally, the co-
existence of the latter polymorphism with the ACE D/D
genotype responsible for elevated ACE enzyme activity
might counterbalance this activity, preventing bradyki-
nin's hydrolysation, by withdrawing it in a higher rate.

In this study, we have investigated the presence of known
polymorphisms named ACE (I/D), AGTRI (A +1166 C)
and BDKRB2 (+9/-9) along the RAS biochemical pathway
as well as the one in the promoter of the LEP gene
(G-2548A). Leptin exhibits a cross-interaction with RAS
components. The presence of all the above polymorphisms
in specific combination showed to play a role not only
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in the blood pressure control, but also in other meta-
bolic pathways that might affect fitness and physical
performance in humans.

Results

Genotypic distribution

For all four polymorphisms studied, among male athletes
versus male controls, the highest percentages of male
athletes appeared as heterozygotes for ACE (I/D),
BDKRB2 (+9/-9) and LEP (G/A) genes and homozy-
gotes (A/A) for AGTRI gene polymorphism. In total,
there were no statistically significant differences in geno-
types between male athletes versus male controls
(Table 1). However, ACE (I/I) genotype was absent in
the international male athlete group of 39 out of 102
male athletes.

In both female athletes and female controls, their
genotypic distribution is shown in Table 1. In female
groups, significant differences were apparent, such as
the higher score in female athletes (47.95%) versus fe-
male controls (31.33%) (p = 0.034) of the ACE (D/D)
genotype, while the ACE (I/D) genotype exhibited a
higher score in female controls (51.81%) versus the

Table 1 Genotype distributions and allele frequencies of the four polymorphisms in athletes and control groups

Male controls Male athletes p value Female controls Female athletes p value
(n = 88) (n=102) (n = 83) (n=73)
Genotype distributions
ACE Il 2 (13.64%) 7 (6.86%) 0.121 14 (16.87%) 13 (17.81%) 0877
D 45 (51.14%) 0 (58.82%) 0.288 43 (51.81%) 25 (34.25%) 0.027
DD 31 (35.23%) 5 (34.31%) 0.859 26 (31.33%) 35 (47.95%) 0.034
AGTR1 (A +1166 C) AA 53 (60.23%) 7 (55.88%) 0.545 45 (54.22%) 41 (56.16%) 0.807
AC 2 (36.36%) 9 (38.24%) 0.79 35 (42.17%) 26 (35.62%) 0403
CC 3 (341%) 6 (5.88%) 0424 3 (3.61%) 6 (8.22%) 0218
BDKRB2 (+9/-9) (+9/+9) 30 (34.09%) 33 (32.35%) 0.757 24 (28.92%) 20 (27.40%) 0.833
(+9/-9) 46 (52.27%) 58 (56.86%) 0.53 45 (54.22%) 45 (61.64%) 0.349
(=9/-9) 2 (13.64%) 11 (10.78%) 0528 14 (16.87%) 8 (10.96%) 0.29
LEP (G-2548A) AA 6 (18.18%) 19 (18.63%) 0.937 12 (14.46%) 15 (20.55%) 0.297
GA 46 (57.27%) 58 (56.86%) 0.526 46 (55.42%) 41 (56.16%) 0.926
GG 26 (29.55%) 25 (24.51%) 0435 25 (30.12%) 17 (23.29%) 0363
Allele frequencies
I allele (ACE gene) 57 (64.8%) 67 (65.7%) 0.895 57 (68.7%) 38 (52.1%) 0.034
D allele (ACE gene) 76 (86.4%) 95 (93.1%) 0.121 69 (83.1%) 60 (82.2%) 0.877
A allele (AGRTT gene) 85 (96.6%) 96 (94.1%) 0424 80 (96.4%) 67 (91.8%) 0218
C allele (AGRT1 gene) 5 (39.8%) 45 (44.1%) 0.545 38 (45.8%) 32 (43.8%) 0.807
+9 allele (BDKRB2 gene) 6 (86.4%) 91 (89.2%) 0.548 9 (83.1%) 65 (89%) 0.29
-9 allele (BDKRB2 gene) 58 (65.9%) 69 (67.6%) 0.800 59 (71.1%) 53 (72.6%) 0.833
A allele (LEP gene) 2 (70.5%) 77 (75.5%) 0435 8 (69.9%) 56 (76.7%) 0337
G allele (LEP gene) 2 (81.8%) 83 (81.4%) 0937 71 (85.5%) 58 (79.5%) 0316

Values in italics have significant p values.
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female athlete group (34.25%) (p = 0.027). All other
genotypic distributions did not reach statistical signifi-
cance (Table 1). Furthermore, in the female athlete
group that were homozygous for the ACE (D/D) geno-
type, the BDKRB2 (+9/-9) or LEP (G/A) genotypes were
more prevalent (p = 0.001 and p = 0.021, respectively),
compared to the female control group (Table 2). Also, a
significant difference was revealed in female athletes in
the distribution of the BDKRB2 (+9/+9) genotype
(27.40%) versus that of the BDKRB2 (-9/-9) genotype
(10.96%) (p = 0.042). This trend was also observed in
male athletes but did not reach statistical significance.
Finally, the distribution of the LEP (A/A) and LEP (G/QG)
genotypes was similar among female athletes (20.55%
and 23.29%, respectively).

Allele frequencies

Allele frequencies concerning both cohorts of male ath-
letes versus male controls and female athletes versus fe-
male controls are shown in Table 1. The frequency of
each allele resulted from the sum of the homo- and the
heterozygotes carrying the counted allele in their geno-
types. A statistically significant higher percentage was
noticed for the ACE I allele in female controls (68.7%)
versus female athletes (52.1%) (p = 0.034).

Allelic combinations
The impact of the allele frequencies was further assessed
by analysing the 16 possible allelic combinations coming
from the four different studied polymorphisms (ACE (I/
D), LEP (G/A), BDKRB2 (+9/-9) and AGTRI (A/C);
Table 3). Polymorphisms are referred as I or D, G or A,
+9 or -9 and A or C. The percentages of each allelic
combination quartet resulted from the use of the SPSS
statistical program and the implementation of appropri-
ate functions. Once more, significant differences were
only observed in the female group (Figure 1). Specific-
ally, the allelic combinations compared between female
athletes and female controls revealed a significantly
decreased frequencies of the IG+9A (32.9% versus 51.8%)
and of the IG-9A (20.5% versus 42.2%) (p = 0.017 and
0.004, respectively) among female athletes.

The same tests were applied throughout the groups of
male athletes versus controls and showed no statistical
significance (data not shown).

Table 2 Cross-tabulation: female athletes/female controls
and ACE (D/D)/other genotypes

Female controls Female athletes p value

ACE (D/D) ACE (D/D)
BDKRB2 (+9/-9) (+9/-9) 11 (13.3%) 26 (35.62%) 0.001
LEP (G-2548A)  GA 15 (18.1%) 25 (34.2%) 0.021

Values in italics have significant p values.
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Discussion

Physical performance seems to be controlled by many
genetic factors that interact with the environment to
affect complex interactions in human physical perform-
ance characteristics. All these render such investigations
quite complex, and extended studies are needed to un-
ravel possible interactions. To date, genetic studies,
attempting to ascertain the role of genetic variants
involved in the human superior physical performance,
have focused on candidate genes mainly associated with
cardiovascular functions, including ACE and proteins
participating in skeletal muscle activity such as a-
actinins [20,21]. Much of the mechanisms underlying
the human athletic performance remain unexplored,
despite 12 years of research on the most widely studied
candidate polymorphic site of ACE I/D [3].

Both I and D alleles have been so far successfully asso-
ciated in sports and with superior athletic performance
in South African triathletes [22], British distance runners
[23], swimmers [24] and sprinters [25]. The relationships
between genotypes and performance, however, remain
ambiguous. A recent study on 230 elite Jamaican and
American sprinters found no association of either allele
with sprint athlete status [26]. It has been suggested that
at least part of the association of ACE with high athletic
performance phenotypes is mediated through changes in
kinin activity and is related to the existence of the
BDKRB2(-9) allele as it provides a higher expression
and abundance of the bradykinin receptor [27]. Besides
the contribution of bradykinin to an impaired blood
pressure, it also enhances insulin-stimulated tyrosine
kinase activity of the insulin receptor, with subsequent
GLUT-4 translocation in skeletal muscle tissue, thus giv-
ing a theoretical boosting effect during exercise [28]. Al-
ternatively, the effects of the ACE (I/D) genotype may be
mediated through changes in AT II activity, which acts
via the AGTRI receptor. AGTRI (A +1166 C) gene poly-
morphism appears functional, with the C allele acting as
an enhancer of the receptor activity; however, it does not
seem to be associated with differences in high-level
human performance [29].

In our study, we observed a strong statistical trend to-
wards ACE (D/D) polymorphism among female athletes,
which is in line with previous publications [24,25]. The
highest rates of the corresponding group of male athletes
appeared as heterozygotes (I/D) for the same poly-
morphism. Our results might not be in contrast with an-
other study, which included 101 elite Greek track and
field athletes [30]; this study suggested weak evidence
that the presence of the ACE (D/D) genotype could in-
fluence sprint performance in Greek athletes. This might
be due to both, i.e. the limited number of the participat-
ing athletes and the different kinds of sports they are
considered elite.
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Table 3 Allele combination frequencies of the four polymorphisms in athletes and control groups

ACE (I, D), LEP (G, A), Male controls Male athletes p value Female controls Female athletes p value
BDKRB2 (+9, —9), (n = 88) (n=102) (n =83) (n=73)

AGTR1 (A, Q)

IA+9A 1 (35.22%) 42 (41.2%) 0435 32 (38.6%) 24 (32.9%) 0461
IG+9A 36 (40.9%) 45 (44.1%) 0.705 43 (51.8%) 24 (32.9%) 0.017
IA—9A 26 (29.54%) 30 (29.4%) 0.943 27 (32.5%) 17 (23.3%) 0.201
IG-9A 28 (31.8%) 38 (37.3%) 0.466 35 (42.2%) 15 (20.5%) 0.004
IA+9C 1(12.5%) 15 (14.7%) 0.682 14 (16.9%) 7 (9.6%) 0.184
IG+9C 15 (17%) 20 (19.6%) 0676 20 (24.1%) 1(15.1%) 0.159
IA=9C 13 (14.77%) 5 (14.7%) 0.964 3 (15.7%) 6 (8.2%) 0.156
IG-9C 15 (17%) 20 (19.6%) 0676 15 (18.1%) 6 (8.2%) 0.072
DA+9A 46 (52.27%) 61 (59.8%) 0338 38 (45.8%) 38 (52.1%) 0434
DG+9A 50 (56.8%) 65 (63.7%) 0.380 49 (59%) 39 (53.4%) 0481
DA—-9A 38 (43.2%) 42 (41.2%) 0.729 1(37.3%) 32 (43.8%) 0410
DG-9A 8 (43.2%) 53 (52%) 0.256 44 (53%) 31 (42.5%) 0.188
DA+9C 6 (18.18%) 24 (23.5%) 0.389 16 (19.3%) 17 (23.3%) 0.541
DG+9C 8 (20.45%) 31 (30.4%) 0.129 24 (28.9%) 5 (34.2%) 0474
DA-9C 5(17%) 22 (21.6%) 0455 14 (16.9%) 4 (19.2%) 0.707
DG-9C 6 (18.18%) 28 (27.5%) 0.142 20 (24.1%) 8 (24.7%) 0.935

Values in italics have significant p values.

Similar studies have shown that the BDKRB2 (-9/-9)
genotype was associated with the actual performance of
701 South African males who completed an Ironman
Triathlon [19], but there were controversial results
among Israeli athletes [31]. Likewise, a current study on
the contribution of leptin gene promoter polymorphism
LEP (G-2548A) in the human capacity for athletic per-
formance indicated that the G allele provides an advan-
tage to the reduction of body mass index as a response
to physical training [32]. On the contrary, our data

showed that female athletes of the BDKRB2 (+9/+9)
genotype were statistically higher than those of the
BDKRB2 (-9/-9) homozygotes, while a statistically sig-
nificant increase was obtained for the co-existence of
the ACE (D/D) genotype together with the heterozygos-
ity of the LEP (G/A) or BDKRB2 (+9/-9) genotypes
(Table 2). Among female athletes, significant reduction
of the I allele frequencies (Table 1) and of both IG+9A
and IG-9A allelic frequency combinations (Table 3,
Figure 1) were demonstrated, which are consistent

IA+9A  IG+9A IG-9A IA+9C 1G+9C 1A-9C 1G-9C DA+9A

’\ '\"I 'I"."| Wl ’| | '| nn

1A-9A

DG+9A DA-9A DG-9A DA+9C DG+9C DA-9C DG-9C

= Male controls
= Female controls
= Male athletes

m Female athletes

Figure 1 Diagrammatic representation of the 16 allelic combinations among male/female controls and athletes. The 16 allelic
combinations resulted from all possible combinations of the eight different polymorphic alleles studied (ACE (I, D), LEP (G, A), BDKRB2 (+9, —=9) and
AGTRIT (A, Q).
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with results coming from genotype distributions within
the same group of athletes.

An interesting trend towards the heterozygous state of
ACE (I/D), LEP (G/A) and BDKRB2 (+9/-9) genotypes
was also highlighted among male Greek athletes, which
may require a larger sample size of athletes in order to
be demonstrated. Finally, for the AT II type-1 receptor
gene, both male and female athletes showed the highest
rates in the AGTRI (A/A) genotype, but with no statis-
tical significant results compared to the corresponding
control groups.

New approaches should be identified to evaluate the
impact of DNA polymorphisms in human fitness and
high-level performance. One possible approach is con-
ducting genome-wide association studies as the one per-
formed by De Moor et al. [33], yet it is unclear whether
their findings can be extrapolated to actual elite athletic
status. Williams and Folland [34] in 2008 computed the
‘total genotype score’ (TGS), ranging from 0 to 100,
resulting from the accumulated combination of 23 poly-
morphisms that are candidates to explain individual var-
iations in endurance performance. Using a similar
model, limited to seven well-studied polymorphisms
associated with endurance capacity in Caucasians, Ruiz
et al. [35] determined the actual TGS of the best Spanish
male distance runners and road cyclists and suggested
an overall more ‘favourable’ polygenic endurance profile
in the athlete group than in Spanish normal individuals.

The limitation of our study is the small number of
elite athletes, both as a whole and also in each sport. As
such, this study can be considered a pilot investigation
that can be expanded with the inclusion of further ath-
letes. For the same reason, the abovementioned genomic
markers have to be considered with caution and under
no circumstances can be exploited to predict ones ath-
letic performance. A meta-analysis study is currently
under way to confirm or to overrule the predictive value
of these biomarkers to assess athletic performance.

Conclusions

The tendency for the heterozygous state in three: ACE
(I/D), BDKRB2 (+9/-9) and LEP (G/A), out of the four
gene polymorphic sites studied was shown, but not
proved by the statistical analysis in male athletes. Among
female athletes, the co-existence of ACE (D/D) with
BDKRB2 (+9/-9) or LEP (G/A) genotypes and the
reduction of I allele frequency and of both IG+9A and
IG-9A allelic combinations were proved to be signifi-
cant, compared to the female control group. Probably, a
broader and more homogeneous sampling of athletes
would demonstrate how strong the results highlighted in
this study are and examine the effects of multiple gen-
etic variants and allele combinations in superior physical
performance.
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Methods

Subjects and genotyping

One hundred and seventy-five Greek athletes and 169
Greek normal individuals who served as the control
group were recruited. The athlete group consisted of
102 males and 73 females, whereas the control group
consisted of 88 males and 83 females. Inclusion criteria
for athletes were their participation and excellence at
least once at international and/or national competitions,
respectively. In particular, 39 out 102 men and 35 out 73
women had represented Greece at an international level
in various sports: swimming (44 males:25 females), vol-
leyball (16 males), handball (29 females) and athletics
(long distance runners; 42 males:19 females).

DNA was collected with consent from 10 ml of per-
ipheral blood or 10 ml of saline mouth rinse samples,
and the DNA was isolated by QIAamp DNA Blood
Kit (QIAGEN GmbH, Hilden, Germany). DNA amplifi-
cation was performed with polymerase chain reaction,
and subsequent restriction fragment length polymorphism
analysis was carried out, according to the protocols
described by Rigat et al. [36], Di Mauro et al. [37], Fischer
et al. [38] and Mammes et al. [12] for ACE (I/D), AGTRI
(A +1166 C), BDKRB2 (+9/-9) and LEP (G-2548A) poly-
morphisms, respectively.

Statistical analysis

Statistical analysis was performed with SPSS statistical soft-
ware package (IBM SPSS Statistics version 19.0, Chicago,
IL, USA). The statistical differences between groups in
genotype distribution, allele frequencies and allelic com-
bination frequencies are presented in Tables 1 and 3. The
p values less than 0.05 were considered significant, and
they were further assessed by Fisher's exact test.

We have statistically cross-tested genotypic distribution,
allele frequencies and furthermore the frequencies of the
16 allelic combinations derived from the four genes exam-
ined (two different alleles per gene) between all groups.
The tests were initially applied to the whole athlete group
in comparison to the non-athlete group, and then each of
the above groups were subdivided into cohorts of males
and females where the same tests were applied again.
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