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Abstract

Cross-species research in drug development is novel and challenging. A bivariate mixture model utilizing information
across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in
microarray experiments in order to potentially improve the understanding of translation between preclinical and
clinical studies for drug development. The proposed approach models the joint distribution of treatment effects
estimated from independent linear models. The mixture model posits up to nine components, four of which include
groups in which genes are differentially expressed in both species. A comprehensive simulation to evaluate the model
performance and one application on a real world data set, a mouse and human type Il diabetes experiment, suggest
that the proposed model, though highly structured, can handle various configurations of differential gene expression

and is practically useful on identifying differentially expressed genes, especially when the magnitude of differential
expression due to different treatment intervention is weak. In the mouse and human application, the proposed
mixture model was able to eliminate unimportant genes and identify a list of genes that were differentially expressed
in both species and could be potential gene targets for drug development.
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Introduction

Background

Pharmaceutical medicine is an industry with huge up-
front investment for rewards that may or may not come
years later. A complete drug development process, includ-
ing drug discovery, preclinical research (on animals) and
clinical trials (on humans), is lengthy, expensive, and risky.
Determined by the US Food and Drug Administration
(FDA) [1], the average total cost per drug development
is about $1.9 billion. The typical development time is 10
to 15 years. The overall attrition rate of a drug com-
pound from first-in-man to registration is approximately
80%-90% [2,3].

FDA [1] calls the preclinical and clinical research
together as the ‘critical path’ development phase, where
most investment required for a successful drug launch
occurs. Currently, this development phase is inherently
inefficient. The goal of preclinical research is to assess
how a drug is absorbed, distributed, metabolized, and
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excreted in animals, and to use the findings to deter-
mine potential human outcomes before starting clinical
trials. Yet the rate of success after a drug candidate
enters Phase I is undesirably low. As mentioned in FDA
[1] and Kola and Landis [3], animal models with poor
clinical relevance may be accountable for this perplex-
ity. Hence, improving translation between two species to
increase the predictive power of animal models to human
studies is of tremendous value to drug discovery and
development.

Homology and multiple species gene expression analysis
in drug development

Microarrays are tools for gene expression analysis and
can be potentially useful for investigating the mechanism
of drug activities that translates across species. The util-
ity of microarray information in the drug development
process is reviewed by Braxton and Bedilion [4] who
embraced the idea that gene expression analysis can be a
surrogate marker for the interaction between compounds
and cells and should yield information about efficacy.
Debouck and Goodfellow [5] believed that microar-
rays can be used to generate clues to patterns of gene
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function that can help improve the efficiency of drug
development.

As stated before, one key challenge of drug develop-
ment is to successfully translate the results of preclinical
findings in animal models to human beings in the clinic.
Pre-clinical experiments assume that the effect of the drug
tested on animals is comparable to that on humans, which
can only be true if a functional equivalent of the human
drug target exists in the experimental species. Orthol-
ogy [6-8] is a strong indication of functional conservation
and therefore provides the best functional annotation
of experimentally undetermined genes across species.
Holbrook and Sanseau [9] remarked that the use of
orthologs has the potential to improve the understand-
ing of biological differences between species (animals and
humans).

Many of the successful applications of cross-species
microarray gene expression analysis involve orthology
[10-13]. Additionally, over the past decade, researchers
have tried to use orthology and gene expression data to
do cross-species comparison in order to understand how
genes interact to perform particular biological processes
[14,15]. These studies support the idea that orthologs
could be a useful tool for researchers to link experiments
between species in drug development. Note that orthol-
ogous relationships can be one-to-one, one-to-many, or
many-to-many [8].

The rest of the paper is structured as follows:
Section ‘Joint modeling across species’ describes the
proposed bivariate mixture model across species.
Section ‘Simulation” describes a simulation study under-
taken to investigate the effects of different experimental
designs on the power to detect important genes and on
misclassification rates. Section ‘Application: the mouse
and human type II diabetes experiment’ illustrates the
methodology using an application to data collected in a
mouse/human experiment. Section ‘Concluding remarks’
concludes.

Joint modeling across species

Let Xg; and X}, denote gene expression measurements
from the ith orthologous gene pair for the jth animal and
the /th human. The following independent linear mod-
els describe the association between gene expression and
treatment:

Xﬂ,‘/' = ﬁOa,' + ﬁlai Tﬂ/' + ea,'/'r (1)
Xy = Bon; + B Ty + ey (2)
where T, and Tj, are {0,1} treatment indicators, and

ea; and ey, are independent N(0, 03) and N (0, ahz) ran-
dom variables. o2 and ohz are variances for e,; and ey
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respectively. In drug development, the animal research
and human experiments are conducted independently -
one’s results do not affect the other’s. However, the
treatment effects are expected to have some kind of
association between the two species. This results in
our choice of using two independent models for the
two species to capture the effects of treatment on gene
expression.

A nine-component bivariate mixture model for two species
experiments

Bia; and By, quantify the differential expression of the
ith orthologous animal and human genes due to a treat-
ment intervention. A given gene can be classified as
non-differentially expressed (NDE) - showing no signs
of treatment effects, positively differentially expressed
(pDE) - showing positive treatment effects, or negatively
differentially expressed (nDE) - showing negative treat-
ment effects. Therefore, for a human and animal gene
pair, there are nine possibilities for categorizing this
pair of genes. Further, dependency is assumed between
differentially expressed orthologs, i.e., existence of asso-
ciation posited only for (ﬂlairﬂlhi)T in categories (1,
2, 3, 4) and zero correlation presumed for (ﬂlai,,Blhi)T
in categories (0, 5, 6, 7, 8). Table 1 illustrates the nine
possible categories of (ﬁlai,ﬂlhi)T. (Mﬂlai’u’ﬁlh,-)T is the
vector of population means of (ﬂlgi,,Blhl.)T under each
category.

In consequence of these possible patterns of
(,Blﬂl.,ﬂlhi)T, mixture models [16,17] are adopted to deal
with the correlation and distribution of each subgroup of
genes across species. An additional advantage of mixture
models is that, after prior weights for the components
are specified, estimates of the posterior probabilities of
population membership can be formed for each obser-
vation to give a probabilistic clustering. As a result,
the pooling of information for genes across species can
be exploited to better understand the underlying rela-

Table 1 Possible categories of (81,;, ﬁlhi)T

Category (B1a;> Bin,) (B> 1By, Corr (B1a;> Bin;)
0 (NDE,NDE) (0,0) 0
1 (pDE,pDE) +,4) o
2 (nDE,nDE) (=) P
3 (pDE,NDE) (+-) P3
4 (nDE,pDE) (=+) P4
5 (NDE,pDE) 0,4) 0
6 (NDE,nDE) ©0,-) 0
7 (oDE,NDE) (+,0) 0
8 (nDE,NDE) (—=,0) 0
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tionship between the treatment intervention for both
species.

Tailoring the mixture model to two-species experiments
with restrictions on the parameters made according to
Table 1 and assuming that the treatment effects for non-
differentially expressed genes are deterministically zero,
i.e, (Bia Pin; yI' = (0,0)7, the following bivariate normal
mixture model is adopted as the prior distribution of the
vector (Bia, Bin) L :

()~

Mao> ( mzzo Po%oﬂho)
mro )"\ ponaonno Mg

N ( n% Pl’?alnhl
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P2Na2Mh2
2
+ 73N N, ,037741377}:3
P3Na3Nh3
+ 75N p577q57]h5
P5Na5Mh5

5
2
N6 149 77616 Nhe
P6Na6Mhe

m,

P7Na7Mh7
2

N, 1Z] 77a8 Nhs

P8Na8Mh8

)
o "5"))
1) (oo ™))
) Coonon ™))
) G "5
) (s ™5
2): Coonans "))
) (o "))
) Counane "))

3)

where 7y is the probability that an observation belongs to
the kth component, with Zi:o mr =1 and m; > 0. The
following restriction of the parameter space is imposed:
Hao = 0, upo = 0, g1 = 0, upy = 0, ug2 < 0,
M2 =0, a3 = 0, tip3 < 0, as < 0, s = 0, pgs = 0,
Whs = 0, MHa6 = 0, Hhe = 0, Ha7 = 0, Kh7 = 0,
Mag = 0, itpg = 0, Ma0 = 0, npo = 0, Na5s = 0, Na6 = 0,
N7 = 0,8 = 0,00 =0, 05 =0, 06 =0, p7 =0, and
ps =0.

According to the theory of least squares, the marginal
distribution of (lélaw /élh,-)T, the parameter estimates, has
means equal to the prior means of (f14;, ﬁlhi)T and vari-
ances involving contributions from the prior distribu-
tion of (Bia4;, ﬂlhl,)T and the conditional distribution of
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(ﬁlan lélh,')T given (Big4; ,31hi)T. The marginal distribution
of (Bray, i) T is as follows:

31{% ~ 0 0422 0
(i)~ ((0)- (5 22))

2
0,1 010a10h1
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An EM algorithm is developed to accomplish the nontriv-
ial likelihood maximization, along with methodology for
handling singular covariance matrices that arise during
the implementation of the algorithm. (See the Appendix
for details). Gene membership is determined according
to the maximum posterior probability that an observa-
tion (,éla,v,élhi)T comes from the kth component of the
mixture.

Simulation
The following Monte Carlo simulation studies investi-
gated the performance of the proposed mixture model
using information across two species in comparison to
the traditional microarray method using just one-species
information when identifying genes associated with treat-
ment stimulus under several different scenarios.

Several factors influence the sampling properties of the
estimated treatment effects (,BAMZ., ,31hl.)T using the mixture
model were considered in the simulation:

e Replicates (number of arrays) per treatment for each
species: n, and ny, for animals and humans,
respectively.

e Number of orthologous genes in each category: n,
k=0,...,8, the kth category.
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® Array noise: ez; and ep; in (1) and (2). Also recall
that, by assumption, e, and ey, are independent
N(O, 03) and N (0, a}%) random variables.

e Parameters in (3) by which the sampling distribution
of (,31%., ,31hl.)T is determined.

With so many variables, it is impractical to study the
sampling properties of the fitted model without fixing
some variables. That is, an experimental design for the
simulation in which these factors are completely consid-
ered is not feasible. The simulation study instead focused
on three aspects. First, although high-density microarrays
provide useful genome-wide data, they are often associ-
ated with a substantial amount of experimental noise that
could affect the performance of the analysis. Hence, it is
of interest to investigate how the array noise would affect
the model efficiency on gene identification across species.

Second, the sample size of cross-species experiment is
likely to be different, and may be one of the deciding fac-
tors of the power associated with the modeling approach.
In particular, the efficiency of gene identification, whether
the proposed model gains power over one-species experi-
ments through pooling information across species, should
be examined carefully, especially when the sample size of
the experiments is small.

Third, over-fitting may be of concern. The proposed
mixture model is, by its nature, highly structured and data
driven. If the data are not driven by all nine categories as
the model suggests, will the mixture model fail? Is the pro-
posed model flexible enough to handle different types of
data structure? To examine the model performance sys-
tematically and to test if the proposed model will fail when
too many components are used to fit the data where there
are actually fewer clusters, two types of data were gener-
ated: all nine categories non-empty (case I) and some of
the nine components empty (case II).

In simulation studies case I and case II, two methods
of gene identification were implemented: the proposed
mixture model, utilizing information across two different
species, and the traditional ¢ statistics adjusting for mul-
tiple comparisons based on single-species data. Five hun-
dred data sets were generated for each different scenario
under each simulation study.

Parameter determination and data generation

Theoretically, the number of genes in category 0 (non-
differentially expressed in both species) should dominate
others, and every other category may comprise some
genes. Orthology information from HomoloGene of the
National Center for Biotechnology Information (NCBI)
(http://www.ncbinlm.nih.gov/homologene) and Mouse
Genome Informatics (MGI) of Jackson Laboratory [18]
and the practical experience gained from analysis of two-
species gene expression experiments at GlasoSmithKline
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(GSK) was used as reference to determine a reasonable
number of genes in each category.

The vectors of the number of genes in each cate-
gory (mo,ni,... ,ng)T determined for simulation stu-
dies case I and case II are categories (6,000,30,
30, 30, 30, 100, 100, 100, 100) 7 and categories (6,000, 30,
30,0,0,100,0, 100, O)T, respectively. For experiments
across species, sample sizes may differ. Considering
that this proposed bivariate method could benefit from
pooling information across species, especially when the
sample size is small, and the practical situation, two sce-
narios were implemented: the number of replicates per
treatment for each species is equal and small, and the
number of replicates per treatment for animals is greater
than humans. In addition, to evaluate how robust the
proposed method is against array noise, two situations
were considered: the two experiments are equally noisy
and the human data are noisier than the animal’s. Fur-
thermore, values of parameters in (3) for the sampling
distribution of (ﬁlai,ﬁlhi)T were predetermined. Vari-
ances of (Big4;, ﬂlht,)T in each component were assumed
to be the same: 17, = 1z, = ngy = ngy = ng; = ngg =
nﬁl = nﬁz = nig =My = Mys = r]i6 = 0.25. The corre-
lation between (,Blﬂi,ﬁlhi)T in categories (1,2,3,4) was
assumed to be 0.9, i.e., p1 = py = p3 = pg = 0.9. Nonzero
component means (ui, k), k = 0,...,8, were deter-
mined so that |u/n| = 0.50r 1.5. The combination of
these parameters resulted in eight different scenarios for
each case as presented in Table 2. Note that |ug,, | and
Wﬂmi | represent the absolute value of the mean vector of
(Biair Bun) "

After generating (B14, B1,) " accordingly, the next step
is to simulate the two species gene expression data X,
and Xj, based on linear models (1) and (2). Note that S,
and By, are independent N(8,1) random variables for
differentially expressed genes and deterministically O for
non-differentially expressed genes.

Simulation results

It is of interest to compare how effective the mixture
model is on gene identification using information across
two species with the conventional one-species approach.
The conventional two-sample ¢ test for gene selection
was performed using just single species data (animals
or humans) and a multiplicity adjustment was made
according to the procedure proposed by Benjamini and
Hochberg [19].

The results are presented in Table 3. The first section
of Table 3, categories (1, 2, 3, 4, 5, 6), manifests the num-
ber of genes classified into categories (1, 2, 3, 4, 5, 6)
using the the mixture model (Mixture) and the number of
genes selected using human data only (Human only), with
the corresponding nominal FDR controlled at FDR;. For


http://www.ncbi.nlm.nih.gov/homologene

Su et al. Human Genomics 2014, 8:12
http://www.humgenomics.com/content/8/1/12

Page 5of 12

Table 2 Combination of parameters for simulation studies case | and case Il

Casel sim1 sim2 sim3 sim4 sim5 simé sim7 sim8
Ng 10 10 10 10 100 100 100 100
N 10 10 10 10 10 10 10 10
\pc,gm’ | 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
\[,ngm/ | 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
O‘az 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
of 0.1 0.1 03 03 0.1 0.1 03 03
Case ll sim9 sim10 sim11 sim12 sim13 sim14 sim15 sim16

each simulated data set, FDR; was calculated as (number
of genes that are erroneously classified into categories
(1, 2, 3, 4, 5, 6))/(total number of genes classified into
categories (1, 2, 3, 4, 5, 6)). This was to ensure a fair com-
parison between the mixture model and the conventional
one-species method. FDRy; was calculated in the same
fashion. Avg FDR; and Avg FDRy; are simply the aver-
aged values of FDR; and FDRy; across the 500 simulated
data sets. When the estimated nominal FDR = 0, i.e,,
the mixture model did not falsely categorize any genes,
the nominal FDR for the single-species method was con-
trolled at 0.0001. The second section of Table 3, categories
(1,2,3,4,7,8), represents the number of genes classified
into categories (1,2,3,4,7,8) using the mixture model
(Mixture) and number of genes selected using animal data

alone (Animal only). Beneath each set of eight simulation
cases is Tukey’s Honestly Significant Difference (HSD) for
a familywise error rate of 0.05 for the results obtained
using the proposed mixture model. Tukey’s HSD was
calculated as ¢ 05(8, 3,992) x (MS(Error)/SOO)l/Z, since
there were eight simulation cases (500 simulated data
sets in each situation) in each simulation study (case
I and case II) and the error degree of freedom was
3,992. MS(Error) denotes the error mean square (= Error
sum of squares/Error degree of freedom, see Table 4).
q0.05(8,3,992) = 4.29.

The effect of array noise on the mixture model can
be easily seen from the column of Avg FDR; and by
comparing the results of siml vs. sim3, sim5 vs. sim7,
sim9 vs. sim11, and sim13 vs. sim15. These are the cases

Table 3 The number of genes selected based on (a) bivariate mixture model, (b) conventional one-species approach

Categories (1,2,3,4,5,6)

Categories (1,2,3,4,7,8)

Mixture Avg FDR; Human only Mixture Avg FDR; Animal only

sim1 132 0.034 100(0.070) 129 0.029 96(0.063)
sim2 224 0.003 145(0.021) 223 0.012 188(0.016)
sim3 113 0.246 85(0.318) 135 0.048 109(0.073)
sim4 166 0.050 15(0.043) 222 0.012 188(0.016)
sim5 132 0.028 98(0.041) 234 0.004 238(0.012)
sim6 227 0.011 194(0.021) 289 0.003 289(0.007)
sim7 112 0.235 78(0.282) 241 0.011 246(0.020)
sim8 167 0.048 124(0.065) 288 0.002 288(0.007)
Tukey’s HSD 30.908 0.021 52.958 0.016

sim9 92 0.126 81(0.296) 88 0.129 75(0.307)
sim10 118 0.033 104(0.048) 118 0.036 99(0.061)
sim11 141 0470 109(0.670) 80 0.128 70(0.214)
sim12 103 0.116 68(0.118) 118 0.049 102(0.088)
sim13 84 0.140 67(0.169) 180 0.349 167(0.407)
sim14 120 0.023 88(0.023) 152 0.022 151(0.101)
sim15 119 0.480 99(0.636) 168 0.358 157(0.369)
sim16 96 0.093 57(0.105) 147 0.020 148(0.061)
Tukey's HSD 3.947 0.011 2.337 0.004

Under simulation studies case | and case Il. Numbers in parentheses are the observed FDRs. Averaged over the 500 simulated datasets. Tukey’s HSD for an « level of

0.05 is included beneath each set of eight simulation cases.
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Table 4 ANOVA table to quantify variability

Page 6 of 12

Categories (1, 2, 3,4, 5, 6)

Categories (1,2, 3,4,7,8)

Source of variation df Sum of squares Sum of squares
Casel Replicates 1 1,141(0.006) 7,319,401(0.408)*
Mean magnitude 1 5415,341(11.560)* 4982,736(0.252)*
Array noise 1 1,561,198(15.950)* 6,353(0.042)
Replicates x Mean magnitude 1 1,197(0.032) 392,099(0.122)*
Replicates x Array noise 1 697(0.012) 351(0.011)
Mean magnitude x Array noise 1 400,720(7.021)* 16,601(0.043)*
Replicates x Mean magnitude x Array noise 1 145(0.002) 214(0.010)
Error 3,992 1,689,667(12.887) 592,184(1.817)
Total 3,999 9,070,107(47.471) 13,309,941(2.706)
Case ll Replicates 1 73,917(0.006) 3,676,664(2.888)
Mean magnitude 1 6(56.346) 22,274(2.830)
Array noise 1 130,794(43.770)* 865,448(0.001)*
Replicates x Mean magnitude 1 37,277(0.190) 36,778(1.038)
Replicates x Array noise 1 34,404(0.015) 5,065(0.049)
Mean magnitude x Array noise 1 929,915(17.537) 19,128(0.043)
Replicates x Mean magnitude x Array noise 1 1,467(0.004) 58(0.000)
Error 3,992 103,604,971(47.182) 304,161,196(27.427)
Total 3,999 104,812,751(165.052) 308,786,610(34.276)

ANOVA was performed independently for simulation studies case | and case Il to quantify the variability among the results (gene counts and observed FDRs). Numbers
in parentheses are the sum of squares for the observed FDRs. For gene counts, *indicates which sources of variability could be declared significant at level « = 0.05.

with smaller means and variances for humans which
change from 0.1 to 0.3 for each pair of comparisons.
The differences between the observed FDRs for these
four groups were at least 0.2 and 0.3 for case I and
case I, respectively. In contrast, when means were larger,
changes of variances did not seem to affect the results
in the sense that the corresponding observed FDRs had
barely changed while the variances of human increased.
The observed FDRs for animals were not as sensitive to
the array noise on humans as the observed FDRs for
humans.

Under both simulation studies case I and case II,
increasing the number of replicates in the animal exper-
iment helped the gene identification for animals: more
animal genes were identified for sim5 to sim8 than for
siml to sim4, and for sim13 to sim16 than for sim9 to
sim12. The corresponding FDRs were also lower for sim5
to sim8 and sim13 to sim16. In contrast, increasing the
number of replicates in the animal experiment did not
significantly improve the results of gene identification for
humans.

Table 4 is the summary of a three-way analy-
sis of variance (ANOVA). Three factors, each with
two levels, were used in the analysis: replicates
(g, m)T = (10,1007 or (100,10)7), mean magni-
tude ((|uﬁlui|,|pﬁlhi|)T = (0.25,0.25)T or (0.75,0.75)T),

and array noise ((0’3, aﬁ)T = (0.1,0.D)7T or (0.1,0.3)T).
This analysis, performed independently, quanti-
fies the variability among the results (gene counts
and observed FDRs) obtained using the proposed
mixture model in Table 3 for the 16 different simu-
lated situations under simulation studies case I and
case II.

Throughout the 16 simulation cases, with nominal FDR
controlled at FDR;, the bivariate mixture model outper-
formed the single-species method for human gene iden-
tification by always recognizing more genes with lower
observed FDRs. For the animal part, the mixture model
performed at least as well as the single-species method
on gene selection by identifying at least as many genes.
Notice that selecting genes related to humans (categories
(1,2, 3,4,5, 6)) seemed to be associated with higher false
discovery rate than selecting genes related to animals (cat-
egories (1, 2, 3, 4, 7, 8)). Furthermore, the observed FDRs
were lower for case I than for case II, regardless of the type
of genes interested (differentially expressed for humans or
animals).

The comprehensive simulation study suggested that the
proposed model, though highly structured, offered advan-
tages over single-species analyses, especially when the
magnitude of differential expression due to different treat-
ment intervention was weak.
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Application: the mouse and human type Il diabetes
experiment

Background introduction

A systems biology study was completed by GlaxoSmithKline
(GSK) to study the efficacy of type II diabetes drugs
in both preclinical (mice) and clinical (humans) experi-
ments. The mouse and human data were collected and
preprocessed using Affymetrix MAS 5.0 at the probe set
level on Affymetrix MOE430A array and Human Genome
U133 Plus 2.0 array, respectively. For mice, the total num-
ber of probe sets was 22,690. Mice were fed a diet enriched
in fat (58% kcal from fat) for 8 weeks prior to treatment.
Most of the mice of this susceptible strain developed
obesity and mild hyperglycemia and hyperinsulinemia.
Control mice on an 11% low fat diet remained normal.
The mouse treatment arm consisted of a diabetes drug at
multiple dose levels with vehicle controls over a 2-week
period. The study was a full factorial design, where 40 ani-
mals in high fat diet and 40 animals in low fat diet were
randomized to receive either placebo, or different dosages
of the type II diabetes drug (low, medium or high). Note
that the results for mice were measured at one time point,
the end of the study. For simplicity, only integration results
on animals treated with placebo (10 mice) or high dose of
the drug (9 mice) were demonstrated.

On the other hand, there were 54,676 probe sets in the
human data set and all 59 subjects were type II diabetes
patients. The gene expression measurements for human
subjects were collected twice during the experiment, one
at baseline before the treatment started (week 0) and the
other one at the completion of the study (week 8). Among
the 59 subjects, 14 only had data for only one time point
and hence were not included in further data analysis. Sub-
jects in the clinical trial were treated by either placebo, or
three other type II diabetes drugs, including the one given
to the mice. Titrated dosing was implemented to ensure
that each person received his/her dose based on his/her
body profile. Human subjects treated with placebo (num-
ber of subjects = 11) and the same type II diabetes drug
given to mice (number of subjects = 13) were used in this
analysis. Besides being measured at two time points, other
information contained in the human data and used in the
data analysis included: prior therapy (four categorical lev-
els) and concomitant medication status (two categorical
levels).

Data for both species were logarithmic transformed
(base equal to 2). Methods for combining information
from multiple probe sets that were not identical have been
discussed in many publications [20,21]. A gene-level tran-
script value in order to pair the mouse and human genes
through orthology was obtained by averaging probe sets
across a gene. This resulted in 13,483 and 20,252 genes
for mouse and human, respectively. Missing values were
replaced with array means in both data sets.
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The mouse and human orthology information, MGI
release 4.32, was used to map the mouse and human
orthologous genes. Human and mouse orthologs (17,834)
were included in release 4.32. Combining the information
among MGI release 4.32 and mouse and human genes
from the GSK data gave a total of 11,922 orthologs.

In addition to the measurements of gene expression for
both mice and humans, different efficacy endpoints, such
as blood glucose, insulin, hemoglobin Alc (HbAlc), and
others were also measured during the preclinical and clin-
ical experiments by GSK in order to evaluate the effect of
treatment intervention on both species.

The purpose of this data analysis was to evaluate the
capability of the proposed mixture model, an approach
utilizing the information across two species, to identify
genes that may help scientists reveal the biological simi-
larity between two species (ex: mouse and human), essen-
tially genes in categories (1,2, 3,4), and so to improve the
efficiency of drug development by decreasing the com-
pound attrition rate from preclinical trials to clinical trials.

Data analysis

The estimated treatment effects for mice and humans
are obtained by the following independent simple linear
models:

Xaij = ﬁOa,' + ﬂla,' Ta]. + €a;r (5)

XZfekS = Bon, + X}ZleEkO + Bin; Thy + Bay, PriorTherapy
+ B3y, ConMed + ey, (6)

where i = 1,...,11,922 (number of orthologs); j =
1,...,19 (number of mice); [ = 1,...,24 (number of
humans). Xgl.]., X}‘Zeeko and X;l‘;eeks are gene expressions
from the ith orthologous gene for the jth mouse, gene
expression from the ith orthologous gene for the Ith
human before treatment intervention, and gene expres-
sion from the ith orthologous gene for the /th human at
the completion of the clinical experiment, respectively.
T, and Ty, are {0, 1} treatment indicators, and e,; and
ey, are independent N (0, 03) and N(O, 03) random vari-
ables. Additionally, there are two more covariates in the
human model: PriorTherapy (a four-level categorical vari-
able indicating patients’ therapy prior to the clinical trial)
and ConMed (a two-level categorical variable for con-
comitant medication status).

Equation (4) was used to model the distribution of the
estimated treatment effects. Genes in categories (1, 2, 3,
4) are believed to be potential biomarkers that can greatly
improve the design of the process of drug development as
these orthologous genes interact with drugs in a way that
shows some relationship between two different species (in
this case, human and mouse) and so studying the behav-
ior of these genes in preclinical trials might help scientists
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better understand the mechanism of drug activities in
clinical trials.

Results

Parameter estimation

The maximum likelihood estimates of the parameters in
the bivariate normal mixture model using the EM algo-
rithm are given in Table 5. The estimated mixture weight
for category 0 was 7o = 0.889 indicating approximately
10,599 (11,922 x 0.889) pairs of uninteresting mouse
and human orthologs. (1, 1y,)7 denotes the mean vec-
tor of each mixture component. The estimated treatment
effect means of mice were in general larger than that of
humans, indicating that the magnitude of the difference
of expression in genes due to treatment intervention in
mice tended to be larger than in genes where differential
expression is exhibited in humans. The estimated variance
for mice 5%, tended to be larger than that for humans 57,
suggesting that overall, the variability in the mouse data
set was larger than the human data set. The estimated
correlation coefficients between the treatment effects for
both species were (—0.531,0.380, —1,0.102) for categories
(1,2, 3,4), respectively. The estimated correlation for cat-
egory 3 was based on only two observations. Standard
errors of the parameter estimates from the two-species
experiment were obtained by bootstrapping with 1,000
bootstrap replicates. Based on the bootstrap standard
errors, there was little evidence of bias for the parameter
estimates.

Gene identification

The vector of the number of genes identified for each
category was (7ig, 711, . ..,718) T = (10,814, 41, 12, 2, 20,
168, 578, 12, 275)T. Figure 1 displays the scatter plots of
(,élap ﬁAlh,v)T before and after gene membership identifi-
cation, including the scatter plot of (,éml-,,ém,-)T for all
orthologs, orthologs after eliminating the uninteresting

Table 5 Parameter estimates of the bivariate mixture model
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ones (orthologs not in category 0), and orthologs reacting
to the treatment stimulus for both species (orthologs in
categories (1, 2, 3, 4)).

Based on the bivariate mixture model, among the 11,922
pairs of orthologs, 10,814 pairs did not react to the drug
treatment for either species, 75 pairs of orthologs (sum
of the gene counts in categories 1 through 4) showed
evidence of differentiation between treatments for both
species. Genes in categories (5,6,7,8) are also poten-
tial candidates for further investigation to improve the
process of drug development since studying these genes
might uncover the myth of the overall high attrition rate of
a drug compound from preclinical trials to clinical trials.

In comparison, an attempt was made to identify differ-
entially expressed human genes using solely the human
data, i.e., traditional ¢ statistics were used to test whether
or not By, = 0 and the approach of Benjamini and
Hochberg [19] was used to adjust for multiple compar-
isons. With the nominal FDR controlled at 0.01, 0.1, 0.5,
and 0.9, this single-species method failed to identify any
differentially expressed human genes at any levels of FDR.
With the p values histograms in Figure 2 showing an
obvious difference between the observed significance of
differential expression for mice and humans, specifically,
the p values were nearly uniformly distributed for humans,
the result was not surprising.

Concluding remarks

This research was motivated by a fundamental yet still
not well-understood problem in the drug development
process. The results obtained in preclinical animal trials
do not seem to translate well enough to make inferences
for human clinical trials, resulting in an undesirably high
attrition rate in human experiments. A bivariate mixture
model which utilizes information across two species was
proposed to identify genes that exhibit similar patterns
of expression across species, with the hope that studying

Parameter estimates

Category Tk Rak ik 2 PO Gk Ok o

0 0.889(0.013) NE NE 0.117(0.002) NE 0.052(0.001)
1 0.002(0.001) 1.440(0.190) 0.139(0.203) 0.112(0.064) —0.070(0.040) 0.154(0.061)
2 0.001(0.001) —1.174(0.228) —0.853(0.128) 0.156(0.132) 0.033(0.053) 0.048(0.039)
3 0.000(0.001) 2.104(0.319) —1.231(0.361) 0.006(0.124) —0.005(0.078) 0.003(0.1171)
4 0.002(0.001) —1.047(0.081) 0.660(0.128) 0.027(0.018) —0.005(0.023) 0.087(0.047)
5 0.021(0.0071) NE 0.669(0.003) 0.144(0.000) NE 0.050(0.006)
6 0.049(0.002) NE —0.787(0.001) 0.149(0.000) NE 0.055(0.004)
7 0.003(0.008) 1.528(0.310) NE 0.543(0.201) NE 0.084(0.022)
8 0.034(0.009) —1.038(0.146) NE 0.225(0.051) NE 0.055(0.006)

Bootstrap (B = 1,000) standard errors in parentheses. NE, not estimated.
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species (categories (1,2,3,4)).
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Figure 1 Scatter plots of the estimated treatment effects (Iélai; ﬁlhi)T before and after gene membership identification. From left to right:
all orthologs, orthologs differentially expressed in either species (categories (1,2,3,4,5,6,7,8)), and orthologs differentially expressed in both

genes could help understand biological differences across
species at the molecular level and ultimately help reduce
attrition in drug development. It is also of great interest
to identify genes active in animal, but not in human since
studying this group of genes might lead to answers that
explain why some drug trials fail in translation to humans.
The comprehensive simulation study suggested that the
proposed model, though highly structured, can accommo-
date various configurations of differential gene expression,
especially when the magnitude of differential expression
due to different treatment intervention was weak.

In the application of the bivariate mixture model on
the GSK type II diabetes experiment, the mixture model
was able to separate differentially expressed genes from
non-differentially expressed genes. A potential multi-gene
predictor may be developed according to the genes iden-
tified by the bivariate mixture model to benefit patients in
therapeutic decision making.

The mixture model is highly structured, with strong
but somewhat simplifying assumptions. The grouping of
all genes for which the expression difference is positive
in both species into a single category parameterized by

a single bivariate mean may be somewhat of a simplistic
approach. In practice, the data may not be normally dis-
tributed or be comprised by exactly nine groups and lead
to bias and inefficiency. Forcing the normality assump-
tion and the grouping may be inefficient. However, by
modeling the least squares estimates of the expression
differences as bivariate realizations from a distribution
with a single mean vector, some flexibility in the model is
retained. It is perhaps less important to precisely quantify
the magnitude of the expression difference than to deter-
mine whether it is positive or negative and whether or not
the direction is preserved across species.

Using the proposed mixture model for gene identifi-
cation is completely data-driven. The simulation study
in Section ‘Simulation’ indicated that the mixture model
at times report a poor observed false discovery rate due
to large variability in measurement of expression. Cur-
rently, gene membership classification is determined by
maximizing the posterior probability that observation y;
belongs to the kth cluster. It is possible to choose costs
to attach weight to different types of misclassification and
then choose a classification rule to minimize expected
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Figure 2 Histograms of p values from tests of no treatment effects. From left to right: p value histogram for mice and p value histogram for
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cost. This rule may lead to a more desirable list that can
better accommodate goals for future research.

The mixture model currently only handles data with two
treatments/cancer types/drugs, i.e., data containing only
two-level variables. In practice, it is often the case that an
experiment is run under multiple conditions. An exten-
sion of the model to handle experiments with factors with
three-or-more levels is an important future work.

This approach focuses on identifying orthologs that
show same/opposite mechanism between two species.
However, genes identified by the bivariate mixture model
(genes in categories (1, 2, 3, 4)) may not lead to the most
powerful model for prediction of cancer types/response
status for either one of the species. The most power-
ful model may be based on those human genes that
lie in categories 5 and 6. For those genes, the cor-
responding animal genes show no signs of differential
expression. Hence, incorporating prediction ability into
the model or developing a prediction model that can
help utilize the genes selected by the mixture model is
of great interest and is an obvious candidate for future
research.

Appendix

Mixture models and the EM algorithm

Estimating the parameters in (4) is nontrivial. Redner and
Walker [22] offer an excellent review of estimating the
parameters which determine a mixture density. In partic-
ular, the paper is devoted to a particular iterative proce-
dure for numerically approximating maximum likelihood
estimates (MLE) of the parameters in mixture densities.
This method was formalized by Dempster et al. [23] and
termed the EM (Expectation-Maximization) algorithm,
and is used for numerically approximating the maximum
likelihood estimates for (4).

The EM algorithm with no constraints

For a finite mixture model with C components, given data
y with independent multivariate observations yy,...,Y,,
eachy; is taken to be a realization of the mixture probabil-
ity density function,

C
FO) =) mfelyilO)s

k=1

where ¥ = (01,...,0C,7T1,...,7Tc)T, a vector of un-
known parameters. f; and 6 are the density and param-
eters of the kth component in the mixture, respectively.
7k is the probability that an observation arises from the
kth component. Note that 7; > 0 and Zlle T =
1. For classification purpose and to achieve minimum
misclassification rates, y; is assigned to the population
(category) for which the posterior probability that y;
belongs to the kth cluster (the kth component of the
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mixture) is maximized. The posterior probability is given
by
7 Ji(yil0x)
Sieet T (¥;108)
In summary, the EM algorithm may be implemented to

maximize the likelihood of a multivariate normal mixture
model by following these two steps:

T(y; W) =

E-step: The E-step on the (j+1) iteration takes the con-
ditional expectation of the complete-data log likelihood,
given the observed data (Q(W | WY,

At the (j + 1) iteration, the E-step results in

g C
QW) =3 "i(y; W) (log mi+log fi(y;l0x)),
i=1 k=1
(7)
where fi(y;10)) = (2m) 5Tl 2e 20 m0 B (im0

7 fe(y,10)
%) N
Z}?:l ”h]fh(yiwh] )

and 74 (y; W) =

M-step: The M-step on the (j+1) iteration requires the
global maximization of Q(¥|W)) with respect to W over
the parameter space to give the updated estimate WY +D,

A (+D) Z}g=1 Tk(Yi?‘I’(j)),
P

(8)
’4
a0 _ T s ¥y, o)
k ¢ nly; )
. 4 () _ T(y. _
~ > T S ., .
2;{/4‘1) _ Zl:l k(YI )(Yz "Lk) (YL ILk)‘ (10)

?:1 (Y ‘I’(j))

The iterations of the EM algorithm continue until some
stopping criterion is met, such as the difference of the con-
ditional expectation of the complete-data log likelihood
at the (j + 1) step and the conditional expectation of the
complete-data log likelihood at the j step is sufficiently
small, i.e.,

Q(q,(j+1)|q>(i)) _ Q(q,(/)'q)(i)) <e.
Throughout this research, e = 0.0001.

The EM Algorithm with constraints

With constraints on the parameter space, the EM algo-
rithm derived in Section ‘The EM algorithm with no
constraints’ cannot be used directly. To accommodate the
restricted parameter space introduced for (4), first note
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that (4) is a bivariate normal mixture with nine compo-
nents and the density for each component can be written
as

Ji (Yi\ak)

2 2
1 1 2 2
e’i 72”@ ) (‘T‘w (J’a;ﬂlak) —20k0a; Oy, (yu,*uuk)(yh;uhk)wuk (J’h,»*)lhk) )

g,

= )

2 /afkcrfk (1 — ,01%)

where y; = (g i) " = (Buay Pun) T and 0y = (ay, iy
Jp%kr ngr pk)T-

The solution for the E-step remains the same. The
membership probability 7 (y; W) can be obtained by
taking the conditional expectation of the complete-data
log likelihood, given the observed data.

As for the M-step, the MLE for m; remains the same,
(i < )
n,ijﬂ) = %. However, the MLEs for p; and

¥, need to be modified according to the constrained

parameter space for each mixture component.

Essentially, the MLEs on the (j + 1) iteration for
(Maik th)T, k=1,...,4,are

S s Py o5 )
i) S oo i ns Y ). 2 0;
M’£111+1) = Z§=1 fl(Yi;‘I’(/)) Zl:l l(yl )ya, =
0 otherwise.
‘ T n 0%, i (y; WDy, > 0;
ﬁz(/fl) Y aysvY) i=1 T1Y5 Vi, > 0;
0 otherwise.
(41) L 00y o5 gDy < 0
ITLLIJZ ?:1 72()’,';‘1’(])) i=1 i a; = U5
0 otherwise.
/A‘;quﬂ) ¢ nay ) 5 a(ys ¥ )y, <0
0 otherwise.
LL m0¥ Dy e )
2 S o E i sy ¥ )ye = 0;
M;};—l) Z§=1 TS(Yﬁ‘I’(/)) Zl=1 3(Yl )yﬂz >
0 otherwise.
; T % if Y% w3y D)y <0
Agz]:sﬂ) Y nysvY) i=1 T3\Yp Vi, < 0;
0 otherwise.
AR Lol if 35 aly; ¥ )y, < 0;
111;4 lgzl 74()’[}\1’(])) i=1 i a; = U5
0 otherwise.
/:‘;1]: ' = o Ty i=1 14\Yp Vi = 05
0 otherwise.
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The MLEs of Xy, k = 1,...,4, at the (j + 1) M-step
remain unchanged as in (10).

The MLEs on the (j + 1) iteration for (ak, wn)”, k =
5,...,8,are

PIINE07 A0 Y — ;
a0 = L Sy i 75 (y; W)y, > 0;
B i=1 5
0 otherwise.
Yio o0 Py e ) )
(j+1) S oty iz WY ¥y = 0;
~ 1’+ _ = 1A
Hpe =
0 otherwise.
, Y v vy e e Dy > 0
~(+1) W 1 Zizl t7(yi, )ya,' > 0;
a7 - i= g
0 otherwise.
S YYDy g ;
~(j+D) W if Zi:1 TS(Yi;\I’(]))yat =0
a8 - i= v
0 otherwise.

The MLE for X4, k = 0,5,6,7,8, on the (j+ 1) iteration is

;g:l Tk (Yi;\l’(’))ygi

S = o Ty )
0

0
Y wys ¥ D)
i wlys ¥ )

Regularized covariance matrices in the EM algorithm

The component covariance matrices of a mixture model
may be singular or near singular in the EM iterative pro-
cess. When the covariance matrices corresponding to one
or more components are ill-conditioned (singular or near
singular), the EM algorithm breaks down. Particularly,
applying the EM algorithm for a mixture model with large
numbers of components when there are actually fewer
groups often results in the failure of the EM algorithm
due to ill-conditioning [24,25]. Indeed, this break-down
of the EM algorithm may imply that clusters contain
insufficient observations and too many components are
used to fit the data set where there are actually fewer
clusters, or clusters contain points that are of very little
variation compared to other clusters. Hence, an intu-
itive solution to this is to decrease the number of the
mixture components. However, this immediately leads to
another question: how many clusters are needed. Though
an active area of research, it is beyond the scope of this
study. Nonetheless, various approaches have been pro-
posed to generate numerically non-singular covariance
matrices [26-33]. Among such, the regularization method
proposed by Sato and Ishii [32] has been adopted to obtain
numerically non-singular covariance matrices throughout
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this research. In Sato and Ishii [32], the regularized covari-
ance matrix for the kth mixture component in the (j + 1)
M-step is

(+1)
- : w(z/)
RARIES AR a#lp, (11)

where 0 < « < 1 is a small constant and I, is a

p-dimensional identity matrix. If Z,(ZH) equals 0, then

tr().?,((jﬂ)) is set to be a small threshold value (0.0001 in

this research).
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