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Improved drug therapy: triangulating phenomics
with genomics and metabolomics
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Abstract

Embracing the complexity of biological systems has a greater likelihood to improve prediction of clinical drug
response. Here we discuss limitations of a singular focus on genomics, epigenomics, proteomics, transcriptomics,
metabolomics, or phenomics—highlighting the strengths and weaknesses of each individual technique. In contrast,
‘systems biology’ is proposed to allow clinicians and scientists to extract benefits from each technique, while limiting
associated weaknesses by supplementing with other techniques when appropriate. Perfect predictive modeling is not
possible, whereas modeling of intertwined phenomic responses using genomic stratification with metabolomic
modifications may greatly improve predictive values for drug therapy. We thus propose a novel-integrated approach to
personalized medicine that begins with phenomic data, is stratified by genomics, and ultimately refined by
metabolomic pathway data. Whereas perfect prediction of efficacy and safety of drug therapy is not possible,
improvements can be achieved by embracing the complexity of the biological system. Starting with phenomics,
the combination of linking metabolomics to identify common biologic pathways and then stratifying by genomic
architecture, might increase predictive values. This systems biology approach has the potential, in specific subsets
of patients, to avoid drug therapy that will be either ineffective or unsafe.
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Introduction
Recent advances in genomics, epigenomics, transcripto-
mics, proteomics, metabolomics, and phenomics have
allowed identification of certain factors associated with
variable drug responses. However, with few exceptions,
high-fidelity prediction of drug efficacy and safety on a
larger scale has proven elusive. We have experienced
many failures with pharmacogenetic attempts to predict
success of drug therapy; this is due to insufficient know-
ledge and oversimplification of experimental approaches,
as well as failure to accept that even the simplest traits
almost always reflect an intersection of multiple genetic,
epigenetic, and environmental factors. Therefore, we
make an argument for embracing complexity. Starting
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with a clinically relevant trait—the individual patient drug
response, which we refer to as ‘phenotype’—and then
working backward to integrate biological data, is more
likely to identify common pathways and inter-individual
variability between patient responses. We propose that
this integrated-systems biology approach, focused on drug
response and adverse drug reactions (ADRs), might be the
best way to improve drug efficacy and safety.
Limitations of single biological associations
‘Personalized medicine’ has endured many failures. Clin-
ical phenotype of complex diseases (defined as any bio-
logical, physiological, morphological, or behavioral trait)
is difficult to predict because most common diseases
represent multifactorial traits.
Use of pharmacogenomics in predicting drug efficacy

or toxicity is more advanced in oncology than perhaps
in any other area of medicine. A high degree of efficacy
and toxicity can be predicted for chemotherapeutic
agents in cancer, based partially upon patient and tumor
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genotyping. For example, 5-fluorouracil toxicity is associ-
ated with dihydropyrimidine dehydrogenase polymor-
phisms [1,2], erlotinib [3] or cetuximab [4] responsiveness
is linked to epidermal growth factor receptor polymor-
phisms, and there are other examples [5]. However, be-
cause tumor cells mutate or the patient develops associated
co-morbidities (e.g. renal failure, pulmonary hypertension),
then efficacy and toxicity remain difficult to predict. Focus-
ing on a single biological association can sometimes effi-
ciently predict drug response within a subset of a large
cohort of patients, but rarely, if ever, can we expect to pre-
dict drug response in the individual patient [6].

Genotype-phenotype associations
Virtually, all clinical traits are polygenic, raising the num-
ber of potential phenotypes factorially; even the simplest
genetic predictors lead to a range of phenotypes. This was
demonstrated in 1960 when the earliest pharmacoge-
nomic association of polyneuropathy with slow acetylation
of isoniazid by N-acetyltransferase-2 (NAT2) was reported
[7]. Not all individuals with the slow-acetylator trait de-
velop neuropathy, and there remains a range of serum
drug concentrations within each group of NAT2 geno-
types. Currently, at least 190 different NAT2 alleles have
been identified, and these polymorphisms result in a
large range from “no effect”, to slow, to very efficient
acetylation [8]. In addition, NAT2 performs AcCoA-
dependent O-acetylation of N-hydroxyarylamines and
AcCoA-independent N,O-acetylation of N-hydroxy-N-
acetylarylamines, which suggests a pleiotropic effect of
this polymorphism, likely contributing to variable pene-
trance of the phenotype [9]. Prediction of the expressed
phenotype is more complex than initially appreciated,
due to the wide range of downstream modifications and
environmental factors that can function to alter expres-
sion of the underlying genetic code—leading to the ul-
timate biological response.
If prediction of success is defined as ‘high positive and

high negative predictive value of the test’, then all single
biological associations have failed miserably. Strong bio-
logical associations can be made in small homogenous
cohorts; in larger, more diverse populations, however,
these associations are inevitably poor predictors of
phenotype.
The literature is replete with examples of small co-

hort or observational studies, later shown in larger pro-
spective trials to be poorly predictive; CYP2C9 and
vitamin K oxidoreductase complex subunit-1 (VKORC1)
polymorphism-guided warfarin anticoagulation is fore-
most among such examples. Several early studies demon-
strated benefit to CYPC9 and VKORC1 genotyping for
prediction of ‘time in the therapeutic window’ and ‘dose’
of warfarin [9–12]. These correlations did not hold up in
larger randomized controlled trials [13–15].
Genome-wide association studies
Genome-wide association (GWA) studies have demon-
strated a strong association between HLA-B*1502 and
carbamazepine-associated Stevens-Johnson Syndrome and
toxic epidermal necrolysis in Asian [16], but not in Euro-
pean populations [17]. The epigenomic drug vorinostat, a
histone deacetylatase inhibitor, was initially found to pro-
foundly decrease lymphoid proliferation in human cell
lines [18], but demonstrated only a 30% response rate in a
small cohort, prior to US FDA approval for cutaneous T-
cell lymphoma [19]. Initial studies had suggested that
transcriptomic screening for rejection following cardiac
transplantation might be more sensitive than endomyo-
cardial biopsy [20]. In a larger prospective trial, fewer bi-
opsies were necessary in transcriptome-tested patients,
although this did not eliminate the need for biopsy and
only 6 of 34 rejection episodes were identified by the gene
profiling test [21].
Testing for such single biological associations is there-

fore clinically impractical, due to such poor predictive
values. Single biological associations should not be
viewed as predictive; failure should be expected because
of the extraordinarily large number of steps required to
yield a phenotype after drug ingestion [5,6,22,23]. Specif-
ically, the amount of drug absorbed may vary due to in-
testinal metabolism or disease, unpredictable hepatic
blood flow can change the rate that enzymes metabolize
the drug, polymorphisms in transporters and metabolic
enzymes can lead to variable amounts of drug delivered
to the systemic circulation, the drug must be transported
to the site-of-action, and the site-of-action itself may be
altered by polymorphisms en route to the observed clin-
ical response, and the rate of elimination may be variable
due to altered renal clearance [5]. This is further compli-
cated in multifactorial traits, which increase potential
phenotypic variability.

Starting with phenomics
Phenomics, defined as the unbiased study of a large
number of expressed traits across a population, is the lo-
gical starting point for biological association studies.
Traditional biological experiments, such as GWA stud-
ies, begin with the investigator selecting a phenotype
and then attempting to associate biological differences
within a population. Significant resources have been de-
voted to characterize the individual patient’s whole gen-
ome, epigenome, transcriptome, proteome, metabolome,
as well as gut microbiome. This approach has been ro-
bust; GWA studies have identified more than 4,000
polymorphisms linked to more than 500 clinical traits
[24]. Unfortunately, it remains possible that identified
single-nucleotide variants (SNVs) are not the causative
factor but rather are associated with some additional
metabolic factor that is polygenic. This effect-modification
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phenomenon has been recognized for decades in epidemi-
ologic studies [25].
Ultimately, the unequivocal phenotype is what patients

and clinicians wish to predict. Therefore, studies should
shift focus away from these single biological associations
that are only statistically associated with a phenotype
when studying a large cohort, to an approach that char-
acterizes the biologic system starting with phenotypic
variables. Initiating analysis from a wide number of charac-
terized traits [termed phenome-wide association (PheWA)
studies] allows the investigator to see the intertwined
biological processes leading all the way back to genetic
associations.
Phenomics captures pleiotropic associations (genes as-

sociated with several traits) that are often overlooked
[26]. Examples include HLA8.1 association with both
myasthenia gravis and thymus hyperplasia [27] (and
likely other autoimmune diseases), as well as lipid-gene
associations with plasma glucose and insulin resistance
[28]. Whereas two traits may both be associated with
the same SNV, this association does not provide un-
equivocal information about the relationship between
the traits.
Some traits may be the direct result of SNVs while

others are secondarily associated, thereby confounding
the relationship. The aldehyde dehydrogenase-2 (ALDH2)
Glu504Lys polymorphism is a classic example of this
phenomenon; this amino-acid change is associated with
a disulfiram-like reaction in Asians [29], one of the
strongest genotype-phenotype associations. This poly-
morphism can also be associated with alcohol intoler-
ance, but this is not the causal phenotype of the
ALDH2 polymorphism. Instead, a decrease in ALDH2-
dependent metabolism is the associated phenotype, and
decreased tolerance is likely due to the unpleasant
disulfiram-like reaction rather than an inability to de-
velop alcohol tolerance [30]. The clinically-relevant
phenotype of alcohol intolerance may be modified by
co-linearity with other metabolism enzyme gene polymor-
phisms such as CYP2E1 [31,32], with genotypic factors
dictating body mass index [33], and/or with addictive be-
haviors [34].
Examination of a wide range of phenotypes can iden-

tify which pathways are causal, and which are secondary
effects. Specialized analysis techniques for PheWA stud-
ies must be utilized because phenomic data structure
varies significantly, comprising binary as well as continu-
ous variables when compared with other large datasets
such as GWA studies [35,36]. At present, we are not
aware of any phenomics studies that have been applied
to drug therapy, although we predict this will happen
soon. Detailed electronic medical record (EMR) data will
allow for large-scale phenomic studies, when paired with
GWA studies or other biological databases [37].
Phenomics demands a systems biology approach. Phe-
notypes must be associated with biological pathways,
which in turn reflect genomic architecture. For example,
a systems biology approach, starting with the trait ‘sepsis
survival’, has identified new metabolic pathways charac-
terizing survival [38]. This breakthrough gives us a more
comprehensive understanding of the metabolite markers
of survival as well as numerous genetic contributors,
thereby permitting identification of biomarkers and po-
tential therapeutic targets. Lack of a full understanding
of all involved biological pathways can lead to false
prioritization of phenotypes. For example, for years, the
‘cataplexy’ phenotype in rodents was targeted for the de-
velopment of neuropsychiatric drugs. Unfortunately, this
narrow focus appears to have led to the development of
more drugs that produce extrapyramidal symptoms than
provide antipsychotic efficacy [39].
Adding metabolomics to your arsenal
Metabolomics is the study of small molecules in biologic
fluids or tissues. This methodology has been used to dis-
cover metabolites that act as diagnostic tools for a growing
number of medical conditions. For example, metabolite
profiles from human tissue, urine and plasma accurately
predicted differentiated benign prostate hypertrophy from
clinically-localized prostate cancer and metastatic disease
[40]. In this case, complex and overlapping clinical pheno-
types are tightly correlated with specific changes in metab-
olite homeostasis, which could then be further segregated
into precise, distinguishable disease states. A similar sce-
nario has been seen for metabolomic studies of ovarian
cancer progression [41]. Moreover, urinary and serum bio-
markers may also serve as a non-invasive and rapid means
of identifying and monitoring phenotype-metabotype
relationships during the onset and progression of disease
[42,43]. Performed in an unbiased manner, addition of
metabolomics to systems biology has provided insight into
gene networks, resultant metabolic changes, and genotype-
phenotype relationships [44]. These studies highlight the
need for unbiased metabolomics to link phenomic data
with genomic data.
Metabolomics: linking genomics with phenomics
Small molecules identified by metabolomics represent the
substrates, intermediates, and products of all biochemical
pathways. Consequently, this technique represents an inte-
grated snapshot-in-time of all upstream biologic processes,
ultimately leading to a clinical phenotype. Therefore, the
metabolome may be the closest biological representation
of a clinical trait. Indeed, metabolomics has identified pos-
sible biomarkers for cardiac [45], kidney [46], liver [47],
and gastrointestinal [48] diseases, as well as many other
pathophysiological conditions.
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Metabolomics profiling is incredibly sensitive and can
detect femtomolar to attomolar changes in metabolite
concentrations [49]. Anything from small dietary changes,
increased physical activity, elevated stress, or even sea-
sonal variables can significantly alter the composition of
metabolomic profiles. This profound sensitivity has obvi-
ous advantages: small metabolomic changes can account
for complex physiological changes. However, because of
increased sensitivity, specificity may be sacrificed, thus de-
creasing the predictive value of the test.
In some cases, large metabolic changes are able to main-

tain stability of a clinical trait; these findings can identify
potential areas of metabolic decompensation. For instance,
elevated lactate is a marker of impaired gluconeogenesis,
as are increased concentrations of other gluconeogenic
substrates, such as pyruvate and alanine, which are prefer-
entially metabolized to lactate [50,51]. Mildly elevated
levels of these metabolites are not clinically significant,
but instead represent compensated buffer activity. If fur-
ther stress is placed on the system, lactic acid itself can
overwhelm the buffered system and lead to decompen-
sated metabolic acidosis with high mortality [52]. Meta-
bolic changes, such as lactic acidosis, can be the result of
numerous upstream responses; post-exposure monitoring
may predict severe disease processes and ADRs prior to
phenotypic manifestation.
Therefore, the metabolome may be viewed as an overly

sensitive tool with insight into adaptive physiology [53].
This sensitivity can serve to identify a wider range of gen-
omic polymorphisms that contribute to expressed pheno-
types, even if only under specific circumstances. Unbiased
metabolomics has identified novel pathways in hyperten-
sion that include microbiome associations and sex steroid
mediators previously not appreciated to contribute to the
hypertensive phenotype [54]. Metabolomics identified the
mechanism of anti-retroviral drug interaction mediated by
the CYP3A4 enzyme through newly recognized enzymatic
functions [55]. These mechanisms have implications for
choosing drug therapy in HIV patients. The presence of
five amino acids was correlated with the development of
diabetes as well as an insulin-resistant phenotype in a co-
hort of initially normoglycemic patients followed for
12 years [56]. Similar findings identified new pathways in
insulin resistance identified by the oral glucose tolerance
test [57]. Metabolomics was able to predict poor response
to insulin; thus, metabolomics has potential to predicting
development of disease and therapeutic success [58].
Metabolomics can be a powerful tool to elucidate complex
mechanisms of drug-modified clinical traits [59].

Genomic architecture
Despite the claim that pharmacogenetics has ‘at best, a
marginal benefit’ [60], genetics represents a constant in
any biological system on which we can build models and
stratify expected phenotypes. As noted above, limitations
of GWA studies must be recognized, but stratification of
clinical traits can be accomplished with a systems biol-
ogy approach. Pharmacogenetics may allow stratification
of starting doses for drugs and identification of patients
who are unlikely to respond at the recommended pre-
scribed dose or who are at risk for serious ADRs.
Elucidation of such ‘extreme discordant phenotypes’

(EDPs) [61] is useful to physicians because EDP method-
ology can lead to decreased healthcare expense and
lower patient morbidity. Seventy-four percent of all
physician office visits involve drug therapy. In 2008, pre-
scriptions accounted for $234.1 billion in patient costs
[62]. Forty-eight percent of people in the USA take at
least one prescription; more than 76% of people 60 years
and older take two or more [62–64]. Despite the re-
markable number of prescribed drugs, many of these
medications are ineffective. For instance, hypertension is
the most common chronic disease in the USA, yet 64%
of patients receiving antihypertensive therapy fail to
achieve blood pressure control [65]. Another factor be-
yond the scope of this review is the issue of ‘non-com-
pliance’: the patient failing to adhere to his prescribed
drug regimen. Non-compliance can easily be misinter-
preted by the investigator as drug failure, thereby leading
to increased ‘noise’ in any study of genotype-phenotype
associations [6]. This confounder can be addressed by
metabolomic screening to confirm drug ingestion [66].
If patients can be stratified with an EDP approach and

clinical phenotypes modeled using sensitive metabolo-
mics, it may be possible to reduce the number of office
visits for ineffective therapy or ADRs. However, virtually,
all clinical traits are multifactorial, with each haplotype
contributing only a small fraction (0.1%–0.0001%) to the
ultimate phenotype. For example, in a GWA study of al-
most 184,000 subjects, 180 loci associated with ‘height’
as the trait were identified; however, these loci together
contributed only approximately 10% to variation in the
phenotype [67]. This underscores the need to account
for downstream modifying factors, and to assess the in-
dividual as a sum of his phenotypic parts.
Another major problem in all genotype-phenotype asso-

ciation studies is that our present-day methods can capture
only additive genetic variance, which probably accounts for
70%–80% of heritability for any multifactorial trait. The
remaining 20%–30% represents non-additive genetic vari-
ance. At this time, we have no methodology for finding this
‘missing heritability’ [cf. [68,69] for further details].

Triangulating phenomics with genomics and
metabolomics
Combining metabolomic and GWA databases has re-
sulted in identification of new biological pathways in
cardiovascular, kidney disorders, type-2 diabetes, cancer,



Figure 1 Illustration of an integrated systems biology approach
to improve drug therapy. Using phenomics to fully characterize
clinical traits associated with drug therapy. When combined with
metabolomics, common biological pathways can be identified,
providing insight into mechanisms of efficacy and safety. When
phenomic data associated with genomics data are also combined,
pleiotropic associations can be further identified and contribute to our
understanding of underlying biological pathways. Other techniques,
such as RNA-seq, can be integrated to add depth to the pathway data
and supplement our understanding of genomic expression.
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gout, venous thromboembolism, and Crohn’s disease
[70]. Phenomics has not yet been overlaid upon these
analyses. Thus, important pleiotropic clinical traits with
common biological pathways remain to be discovered.
By viewing each phenotype as a node within a systems

biology model, linked by metabolic pathways and dic-
tated by genetic architecture, we can more fully under-
stand the relationship between biological processes that
result in variable clinical traits. Proof of this concept has
been demonstrated in the KORA F4 cohort that identi-
fied several SNVs associated with type-2 diabetes by way
of metabolomics association studies [71]. Preliminary
metabolomic studies have also proved useful in helping
to differentiate phenotypically heterogeneous disorders,
such as Parkinson’s disease (PD). PD can present as either
slowly or rapidly progressive forms, which can be distin-
guished early by comparing metabolite profiles. Identified
metabolites might subsequently be used to shed light on
the underlying metabolic abnormalities and pathway per-
turbations driving phenotypic variation [72]. Only by em-
bracing the complexity of the biological system can we
improve predictive accuracy.

Combining transcriptomics and metabolomics
Other methodologies will undoubtedly need to be inte-
grated. For instance, transcriptome analysis using RNA
sequencing (RNA-seq) can be used to quantitatively
identify global changes in gene expression in tissues and
serum. Integration of transcriptomics and metabolomics
data allows accurate identification of genes and enzym-
atic pathways driving downstream alterations in metabolite
distribution, production, and degradation. These data can
provide profound insight into a given phenotype by posi-
tioning biochemical compounds within metabolic path-
ways as substrates, intermediates or products. In addition,
compensatory mechanisms can be identified during path-
way analysis and help explain the absence of an expected
phenotype. Integration of transcriptomics-metabolomics
data provides a means to track how metabolic pathways
change, in response to disease and/or therapy, and then
directly tie those alterations with phenotypic outcomes.
Multilayer systems biology is still an emerging field, but

initial studies using combined transcriptomics and meta-
bolomics data look promising with regard to identifying
phenotype-genotype-metabotype relationships (Figure 1),
including those observed during pancreatic cancer pro-
gression, melanoma response to chemotherapy, as well as
others [73–77].
Technically, the biggest bottleneck confronting the

utilization of extremely large combined datasets is the
difficulty in analysis and processing bioinformatics. In
other words, there can be drawbacks to adding too
much data. We will likely experience an ‘hourglass effect’
as we integrate more variables into predictive models.
Initially, more data may improve such a model. As too
many factors become integrated into the model, overfit-
ting becomes problematic and the model becomes in-
herently unstable, sacrificing predictive accuracy. This
phenomenon has been well documented in climate
modeling. This argues for simplification of the model
variables at points distant from the phenotypic out-
come, as well as elimination of factors that contribute
only marginally. New software systems, such as GenA-
MAP have been developed specifically for this purpose.
GenAMAP allows for integration of genomics, tran-
scriptomics, and phenomics data accounting for differ-
ences in dataset structure when one uses multivariate
structured association-mapping algorithms [78].

A clinical example
Ideally, the approach starts with phenomics, then is
stratified by genetic associations, and finally, further re-
fined with metabolomic associations. This will require
following thousands of patients with full characterization
of biological samples and clinical outcomes for every
commonly prescribed drug. For example, if we consider
hydrocodone efficacy and safety phenotypes, we can
build a model based on genetics/genomics and metabo-
lomics factors. Consider patients given 10 mg of hydro-
codone with careful characterization of phenotypic
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clinical responses and ADRs (Figure 2). Adding RNA-seq
transcriptomic data from serum may allow determination
of human opioid mu-1 receptor expression (OPRM1),
which would differentiate chronic users from naïve users.
Metabolomic analysis in pre- and post-drug-challenged pa-
tients may identify factors associated with efficacy, ADR
phenotypes, and genetic architecture known to be associ-
ated with hydrocodone variability in response. Clinical
responses can be stratified by genetic factors such as
CYP2D6 polymorphisms, principle metabolic pathways for
hydrocodone activation associated with active drug levels
[79], the multi-drug resistance transporter-1 (MDR1; offi-
cial name ABCB1) that transports many opioid drugs [80],
and OPRM1, in which 118A/A homozygous patients ex-
hibit a correlation with hydrocodone pain relief [81]. Again,
metabolomics associations may provide markers of these
polymorphisms and identify the pertinent pathways in-
volved, as well as new previously unrecognized pathways
that might serve to identify additional associations.
Ultimately, this stratification of data can be distilled

into an integrated model using programs that raise the
receiver operator characteristic (ROC) curve for deter-
mining rate of efficacy and risk of ADRs. Some clinical
factors may contribute to the ultimate drug-response
Figure 2 A clinical example of the proposed integrated method for pre
(2) Clinical phenotypes are captured fully and completely. These may include
differences, and demographic factors. (3) Association studies may contribute t
help distinguish chronicity of treatment). (4) The drug response is categorized
are identified and linked by individual metabolomic markers. (6) Stratifica
polymorphisms and controlled for phenotypic variables captured in #2 above
perfect, receiver operating characteristic (ROC).
phenotype, to varying degrees between patients. For in-
stance, stomach acidity may affect drug dissolution; this
complex trait (among other factors) can be influenced
by inter-individual gene expression, concomitant drug
therapy, and even the time of the day. Consequently, it
should be obvious that specific factors may contribute
significantly to the ultimate phenotype in some patients,
provide only a minor contribution in others, and only
contribute under certain circumstances (e.g. suppression
of stomach acid with a proton pump inhibitor), in a
third group. Because many of these complex relation-
ships are present in each drug-patient interaction, a per-
fect predictive model will never be possible.

Conclusions
Whereas perfect prediction of efficacy and safety of drug
therapy is not possible, improvements can be achieved
by embracing the complexity of the biological system.
Starting with phenomics, linking metabolomics to identify
common biologic pathways, and stratifying by genomic
architecture—this combination can increase predictive
values. We believe that this systems biology approach has
the potential to eliminate drug therapy that will either be
ineffective or unsafe, in specific subsets of patients.
dicting drug response. (1) Patients are given 10 mg of hydrocodone.
(among others) development of ADRs, chronicity of treatment, ethnic
o characterization of the clinical phenotypes (e.g. RNA-sequencing may
into phenotypically pertinent groups. (5) Relevant biological pathways
tion of drug response is refined by accounting for biological pathway
. (7) The final stepwise model is built, allowing for a high, although not
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