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Abstract

tissues associated with CIMP.

Background: The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has
been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical
importance as it has been reported to be associated with prognosis or response to treatment. However, the
identification of a universal molecular basis to define CIMP across tumors has remained elusive.

Results: We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess
the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is
associated with specific gene expression variations. However, we do not find a common genetic signature in all

Conclusion: Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the
CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

Background

Epigenetic modifications have been recognized as impor-
tant players in cancer etiology and development and
constitute promising therapeutic targets for diagnosis or
treatment due to their possible reversibility [1-3]. In
particular, aberrant methylation of CpG islands (CGlIs)
located in promoter regions of tumor suppressor and
DNA repair genes, leading to their silencing, is now con-
sidered a hallmark of cancer playing an important role in
neoplasia [1-6].

The CpG island methylator phenotype (CIMP) was first
defined and observed by [7] in a subset of colorectal can-
cers as the joint methylation of several promoter regions,
leading to the inactivation of the corresponding genes.
The stratification of patients based on CIMP was shown to
be clinically relevant, as CIMP-positive patients had bet-
ter prognosis than CIMP-negative ones, and could lead to
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personalized treatments. Since the identification of CIMP
in colorectal cancers, many studies have tried to replicate
the analysis to find CIMP in different types of cancers
including but not limited to colon [8—12], breast [13, 14],
lung [15], stomach [16], and glioblastoma [17-19]. While
most of these works concluded in the existence of a CIMP
in different cancers, other studies did not yield the same
conclusions [20, 21], and the genes whose promoter CGI
methylation are considered to define the CIMP differ
between studies. This raises the question of whether the
CIMP is tissue specific or is a universal phenomenon with
common biological causes affecting common genes across
cancers. A recent review of CIMP-related studies across
different cancers pointed out the diversity of methods and
measurement technologies used to define CIMP, which
hinders the establishment of a molecular basis for CIMP
in spite of growing evidence linking mutations in specific
genes and CIMP in several cancers [22].

In the present study, we investigate the existence and
universality of CIMP by performing a systematic genome-
wide methylation analysis on several large datasets of dif-
ferent cancer types simultaneously. We propose a simple
methodology to assess the existence of a CIMP phenotype
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in each cancer and to identify a set of genes whose pro-
moter methylation is a marker for the CIMP. This allows
us to compare the different cancer types in search for
a cross-cancer CIMP signature and to analyze the link
between CIMP and gene expression in different cancers.
Finally, we assess the clinical relevance of CIMP on the
overall survival.

Results

A cross-cancer CIMP signature

We first assess with a common methodology whether a
CIMP can be detected on different cancers and whether
CIMP in different cancers share a common signature
in terms of which gene promoters are hypermethylated
in CIMP-positive patients. For that purpose, we col-
lected high-density methylation datasets from the cancer
genome atlas (TCGA) data portal providing more than
485,000 CpG methylation levels for more than 2000 sam-
ples from five tissues of origin: bladder, breast, colon, lung,
and stomach (Table 1). For each sample, we aggregate the
methylation levels of CpG probes by CGI, including the
CGI itself and its shores and shelves, resulting in a single
methylation level for each of 21,176 CGIs in each sample.

A CIMP corresponds to the joint hypermethylation of
a subset of CGIs in a subset of samples [7]. To charac-
terize from whole-genome methylation data whether a
CIMP exists for a cancer and which CGIs characterize
it, we follow a standard methodology: (i) select the 5 %
most variant CGIs in the set of samples, which we call the
CIMP signature and (ii) check by unsupervised classifica-
tion whether the samples cluster into two main clusters
(CIMP-positive and -negative clusters) when we restrict
them to the methylation values they take on the CGIs in
the CIMP signature.

We apply this methodology to each of the five families
of tumors, cutting the tree obtained by hierarchical clus-
tering to two clusters in order to enforce a classification of
all samples into two subgroups based on the methylation

Table 1 Patients’ dataset. Number of samples available for the
different cancer types (first column) for methylation (Meth) and
gene expression (GE). The “Meth/GE" column summarizes the
number of samples with both methylation and gene expression,
while the “Meth/Mutations” column shows the number of
samples with both methylation and DNA mutation data
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of CGIs in the CIMP signature. Interestingly, in all five
cases, one of the two clusters is clearly characterized by
an overall hypermethylation of most CGIs in the signature
compared to the second cluster, allowing us to character-
ize it as the CIMP-positive cluster, the second one being
the CIMP-negative cluster (Additional file 1). The propor-
tion of CIMP-positive samples according to this definition
varies from about 20 % for breast and colon cancers to
30 % for bladder and about 60 and 70 % for stomach and
lung cancers (Table 2). Proportion of the CIMP-positive
group in each tissue is similar to previously reported stud-
ies [22]. Varying the size of the CIMP signature from 1
to 10 % of all CGIs had a small impact on the clustering
stability (Additional file 2).

Comparing the epigenetic signatures that define CIMP
for each tissue, we find a common set of 89 CGIs associ-
ated with 51 genes (Fig. 1a). If the signatures were random
subsets of 5 % of all CGIs independent from each other,
the overlap would contain on average (5 %)° ~ 3.107> %
of all CGlIs, namely 0.006 CGI. This provides a strong evi-
dence that a common set of genes is involved in CIMP in
different cancers. We call these 89 CGIs the cross-cancer
CIMP signature (Table 3). A hierarchical clustering on
all samples restricted to this cross-cancer CIMP signa-
ture is able to cluster CIMP-positive and CIMP-negative
patients independently of the tissue of origin (Fig. 1b),
suggesting that CIMP observed in each individual can-
cer share in common a significant proportion of genes
whose promoter CGls are hypermethylated in all CIMP-
positive cancers. A functional enrichment analysis of the
cross-cancer CIMP signature reveals that it is significantly
enriched in genes involved in cell differentiation and
neuronal developmental and immune response processes
(Fig. 1c).

Are there 2 or 3 CIMP classes?

Several studies suggest the existence of a third class in
CIMP phenotype that corresponds to an intermediate
level of methylation [12, 23, 24]. While we enforced an

Table 2 CIMP proportion. For each cancer type, this table shows
the number of samples clustered in the CIMP-negative and
CIMP-positive clusters and the percentage of CIMP-positive
samples

Tissue Meth GE Meth/GE Meth/Mutations Tissue Negative Positive Ratio (%)
Bladder 373 56 43 28 Bladder 262 111 30
Breast 626 778 478 468 Breast 509 117 19
Colon 291 193 34 219 Colon 232 59 20
Lung 452 125 82 411 Lung 136 316 70
Stomach 338 373 309 199 Stomach 144 194 57
Overall 2090 1525 941 1325 Overall 1283 797 38
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Fig. 1 Pan-cancer clustering on common epigenetic signature clusters CIMP-positive and CIMP-negative tumors independently of tissue type.
a Venn diagram of the CIMP signatures for each tissue. b Hierarchical clustering on the common epigenetic signature for all tissues. € Gene
ontology analysis of the genes associated with the promoters of the common epigenetic signature

analysis with 2 classes to define the CIMP of each sam-
ple as positive or negative in the previous section, we now
examine whether the data call for a third class. Follow-
ing [25], we assess the existence of an intermediate CIMP
phenotype for each tissue by comparing the increase in
empirical cumulative distributive distribution A(K) for
different values of K = 2,...,5 where K is the number of
clusters considered for CIMP.

Figure 2 shows how A(K) varies as a function of K for
each cancer, suggesting how many clusters exist in each
case. We observe that the existence of a third class is not
clear-cut. While colon and breast tissues show a signifi-
cant increase in A(K) for K = 3 suggesting a possible
third cluster in CIMP, the bladder is flat between 2 and
3 clusters, while lung and gastric cancers do not support

Table 3 List of genes associated with the common set of CGls
that define CIMP in each tissue

LOC339524, GSTM1, CD1D, LMXTA
CACNATE NR5A2, WNT3A, GNG4
EMX1, CTNNA2 ,LRRTM1, DLX1

EVX2, HOXD13, GBX2, SYN2

HAND2, NBLAO0301, EBF1, HIST1H2BB
HISTTH3C, HLA-DRB1, Cé0rf186, IKZF1
CDKN2A, HMX3, KNDC1, KLHL35
HOTAIR, SLC6A1S5, ALX1, RFX4
CLDN10, ADCY4, RIPK3, NID2

OTX2, OTX20S1, GSC, KIF26A

GREM1, SEC14L5, HS3ST3B1, IGF2BP1
HOOK2, NFIX, ZNF577, ZNF649
CPXM1, CDH22, CHRNA4

Epigenetic

Signature

the presence of 3 classes. In addition, we assess the stabil-
ity of 3 clusters by varying the number of CGIs that define
CIMP and observed that while CIMP clusters are highly
robust for K = 2, there is some high variability in the clus-
ter definitions for K = 3 (Additional file 2). In summary,
the presence of 2 clusters is well supported by the data in
all cancers, while the third cluster is much more debatable.

Similar gene expression variations are predictive of CIMP
To shed light on the relationship between methylation and
transcription, we now assess to what extent a transcrip-
tomic signature can classify the samples as CIMP positive
or negative. For that purpose, we collected for each family
of cancer samples with both methylation and gene expres-
sion data available, leading to a subset of samples with
an overall proportion of CIMP-positive samples compara-
ble to that of the original dataset (Table 4). We measure
by cross-validation how well expression data alone can
recover the two CIMP classes.

We first perform a multivariate regression analysis using
the lasso technique to assess whether gene expression of
a few genes can be predictive of the CIMP status for each
tissue separately. The cross-validation accuracies for each
family of cancer are shown in Table 5. We observe that
while a classifier based on gene expression performs sig-
nificantly better than random to recover CIMP-positive
samples in breast, lung, and stomach cancers, the per-
formance on the bladder and colon is not different from
a random classifier. Moreover, we compare the lists of
genes selected in the transcriptomic signature after boot-
strap resampling of the samples in order to assess their
robustness and potential biological significance (Fig. 3a).
We observe that very few genes are robustly selected in
the signatures, and in particular that no gene is associ-
ated with BLCA-CIMP and COAD-CIMP prediction in
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Fig. 2 Variation in the empirical cumulative distributive function A(K) for each tissue. The empirical cumulative distributive function A(K) is a
data-driven criterion which can indicate the number of clusters K in the data when it reaches its maximum [25]. This plots shows how A (K) varies as
a function of K, for the different tissues

more than 15 % of the bootstrap resampling . In addition,
the transcriptomic signatures of different cancers are very
diverse, and no gene is present in all of them (Fig. 3b).
Overall, these results suggest that there is information in
the transcriptome related to the CIMP status, but that a
robust signature across cancers is difficult to obtain.
However, the poor accuracy as well as the non-
robustness of genetic signatures to predict CIMP may be

Table 4 CIMP Proportion in samples with both methylation and
gene expression data. This table shows the number of
CIMP-positive and CIMP-negative samples characterized by both
methylation and gene expression data, for each cancer type, as
well as the proportion of CIMP-positive samples

Tissue Negative Positive Ratio (%)
Bladder 27 16 37
Breast 385 93 20
Colon 27 7 20
Lung 22 60 75
Stomach 131 178 58
Overall 592 354 37

due to the small size of some datasets (ngrca = 43,
ncoap = 34). To overcome the lack of statistical power
due to small sample size, we combine in a second analysis
the different datasets into a single multivariate regression
analysis, based on the assumption that the CIMP signa-
tures of different cancers may share the same genes. We
train classifiers to predict CIMP status from gene expres-
sion data jointly across cancers using two methods, based
on two different assumptions: (i) assuming that all tissues
share the same gene signature and coefficients for the pre-
diction task, we run a single lasso classification on the
combined datasets (“Combined-Lasso” prediction) or (ii)
assuming that all tissues share the same gene signature but
with different coefficients, we jointly train several mod-
els with a group lasso approach to constrain the selected
genes to be the same across cancers without imposing
their coefficients to coincide (“Group-Lasso” prediction)
(see supplementary methods in Additional file 3). The
rationale for the group lasso approach is that while CIMP
may be caused by a common subset of genes, the spe-
cific contribution of each gene may vary between tissues.
Our results show that both methods significantly out-
perform the tissue-specific predictions (P < 2.1071°,
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Table 5 Accuracy of CIMP prediction using gene expression profiles
Accuracy
Random Lasso Combined lasso Group lasso

Bladder 62.8 629(p=1) 742 (p < 2.107°) 721 (p < 2107'%)
Breast 805 839 (p <2.107°) 847 (p < 2.107'6) 855 (p < 2.107'%)
Colon 794 795(p=1) 950 (p < 2.10716) 942 (p < 2.107'6)
Lung 732 842 (p <2.1071°) 762 (p < 2.107'%) 86.6 (p < 2.1071°)
Stomach 576 812 (p <2.1071%) 830 (p < 2.10716) 84.8 (p < 2.1071°)
Overall 71.9 824 82.6 85.0

This table shows the accuracy, assessed by threefold cross-validation repeated 100 times over each tissue (first column), of sample classification in CIMP-positive and
CIMP-negative classes from gene expression data using random classification (second column), lasso logistic regression (third column), combined lasso (fourth column), or

group lasso logistic regression (fifth column)

Fig. 3¢, Table 5) in particular for the bladder and colon
where the size of the initial datasets could not give suffi-
cient statistical power to predict CIMP accurately. There
is overall little difference between both methods, with
the notable exception of lung cancer where the com-
bined lasso approach is significantly worse than the group
lasso (and even the single lasso) model, suggesting that
in that case, the weights of the genes in the CIMP sig-
nature may differ from other cancers. More importantly,
each method allows to identify a common genetic sig-
nature (51 genes for the “Combined” prediction and 58
genes for the “Group-Lasso” prediction) that distinguishes
CIMP-positive and CIMP-negative class for each tumors
which is more robust than all the tissue-specific signa-
tures (Fig. 3d). In addition, these signatures share a large
common set of genes (25 common genes, Table 6). We
represented the gene expression distribution for this com-
mon set of genes on the different datasets and observe
a clear separation between CIMP-positive and CIMP-
negative classes for all tissues (Additional file 4). Gene
ontology analysis on the intersection of the two predic-
tive gene signatures showed specific enrichment only for
genetic regulatory processes.

A genetic signature is associated to CIMP only for colon
and gastric cancers

Several somatic mutations have been found to be tightly
associated with epigenetic aberrations in CIMP. Recent
studies have pointed out the causal role of IDH1 muta-
tions in Glioblastoma-CIMP [17, 19] and tight associ-
ations between IDH2 and TET2 mutations with other
CIMPs (leukemia [26], enchondroma, and spindle cell
hemangioma [27, 28]). In the colon, BRAF and KRAS
mutations are associated with microsatellite instability
and COAD-CIMP [9].

We re-assess the association between mutations in these
genes and CIMP in the different types of cancers (Fig. 4a).
We recover a strong association between BRAF muta-
tion and CIMP-positive colon tumors but no specific

association with other tumor types. We also find no coor-
dinated association between IDHI, IDH2, KRAS, BRAF,
or TET2 mutations and CIMP phenotypes for all tissues.
In addition, we perform genome-wide mutation analysis
to assess whether specific gene mutations are associated
with CIMP. We find no significant gene mutation asso-
ciation for bladder, breast nor lung CIMPs. For colon
and gastric cancer, we find respectively 459 and 1070
gene mutations associated with CIMP with a common
intersection of 195 genes (Additional file 5 panel A).
Gene ontology analysis of this set of genes shows signifi-
cant enrichment for extracellular matrix organization and
cell adhesion but also neuronal developmental processes
(Additional file 5 panel B).

Finally, we also look at the rate of mutations in each
tissue given the CIMP phenotype. We observe a signif-
icant association between the number of mutations and
the CIMP status for colon and gastric cancer (Fig. 4b), in
accordance with the tight association between CIMP and
microsatellite instability for these two tissues [9, 29-31].
However, the same observation could not be made for the
bladder, breast, and lung.

Clinical impact of CIMP

Survival analysis in several CIMP studies has often shown
distinct outcome between CIMP-positive and CIMP-
negative tumors. However, there is no consensus in the
general survival associated with CIMP: while CIMP has
been associated with improved survival and lower risk of
metastasis in breast [14], colorectal [9], leukemia [32-35],
or gliomas [17], it has also been reportedly associated with
poor survival for bladder [36], lung [15, 37], or prostate
cancers [38], and prognosis even remains unclear for
gastric cancers [39-43].

We perform a systematic survival analysis on the dif-
ferent tissues to assess the clinical impact of CIMP.
However, we observe no significant association between
CIMP and survival, in any of the tissues (Table 7 and
Additional file 6).
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Fig. 3 Gene expression variations predictive of CIMP. a Stability of each gene signature for each tissue-specific CIMP prediction as well as the
“Combined-Lasso” and the “Group-Lasso” CIMP prediction task obtained and ranked by frequency of appearance using bootstrap (n = 100 repeats).
For bladder and colon CIMP prediction task, the signature was non-robust (frequency of the most redundant gene inferior to 10 %). The combined
prediction task signature outperforms the tissue-specific signatures in robustness. b Venn diagram of the tissue-specific gene signatures using lasso
for each tissue separately. € Distribution of the accuracy of the CIMP-phenotype prediction task given the patient gene expression profile using

n = 100 bootstrap and threefold cross-validation for several methods (pink = "tissue-specific” lasso, green = “Combined-Lasso,” blue = “Group-Lasso,”

red star = random prediction). d Venn diagram representing the intersection between the “Combined” and “Group” lasso gene signatures

Other clinical parameters have been associated with
CIMP such as microsatellite instability (MSI) in the colon
[9] and hormone receptor statuses in the breast [14]. We
therefore assess the association between the CIMP sta-
tus and eight clinical annotations provided in the TCGA,
namely, age, MSI, ER status, PR status, HER2 status,
tumor size, lymph node invasion, and presence of metas-
tasis. We first observe that CIMP is significantly associ-
ated with a higher age in the breast, colon, and stomach
(Poreast = 210741 Peolon = 2-1073: Pstomach = 0.036, stu-
dent test, Additional file 7 panel A) but not in the bladder
and lung. In the colon, we recover a significant association
between CIMP and MSI (P = 5.107, chi-squared test,
Additional file 7 panel B). We also recover a significant

association between CIMP and ER, PR, and HER?2 statuses
in breast (Pgr = 2.107°, Ppg = 0.03, Pypry = 5.1078,
chi-squared test, Additional file 7 panel C). However, we
observed no significant association between CIMP and
either tumor size, lymph node invasion, or metastasis in
any tissue.

Discussion

CIMP has been thoroughly studied over the past few
years in several tissue types but the heterogeneity of the
methods and measurement technologies has hindered the
assessment of a common epigenetic and genetic signa-
ture predictive of CIMP across all cancer sites [22]. In
the present study, we analyze a large dataset of over
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Table 6 Intersection of the genetic signatures for
“Combined-Lasso” and “Group-Lasso” predictive of CIMP ranked
by decreasing level of robustness

ZIC2, AMH, LHX1,

ZIC3, XKR9,TNNT1,
CAMK2NZ,PCDHBY, RAETIK,
HISTIH2AB, C2CDA4C, FBXL20,
TFCP2L1

Over-expressed

MAGEC2, ZNF300,SLCT5A1,TSPYLS,

MLF1, GATA2, MAGEA12,

LOC441666, MAGEA2, LOC389493, H2AFY2,
LDHC

Under-expressed
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Fig. 4 Mutation analysis. a Association between specific mutations
(IDH1, IDH2, BRAF, and KRAS) with the CIMP phenotype for all tissues
(vellow = CIMP positive, blue = CIMP negative). b Significantly higher
mutation rate for CIMP-positive (yellow) compared to CIMP-negative
(blue) tumors is observed for colon and gastric cancers only and is
concordant with CIMP association with microsatellite instability for
these tissues

2000 tumor methylation profiles measured with a single
technology from 5 different tissue types. We observe a
universal epigenetic signature that defines CIMP indepen-
dently from the tissue of origin, which might suggest a
common molecular basis to CIMP across tissues. Genes
associated with these CGIs are enriched in several bio-
logical pathways linked to organ development and include
several interesting genes such as CDKN2A coding for
pl6, a well-characterized tumor suppressor protein [44],
which is aberrantly hypermethylated in CIMP-positive
tumors and might contribute to tumor development.

Other genes present in the cross-cancer CIMP signature
such as HOTAIR, which is known to reprogram the chro-
matin state and is associated with breast cancer metastasis
[45], might on the contrary be repressed in CIMP tumors
and be linked with a better prognosis for breast cancer
patients. GREM 1 is another gene present in the CIMP sig-
nature and is associated with tumor cell proliferation [46].
Less documented genes present in the CIMP signature
could potentially be investigated for a biological validation
of their role in tumor development.

Recent studies have pointed out that epigenetic aber-
rations could be derived from genetic aberrations [47].
By combining the different datasets into a single pre-
diction task, we are able to identify a common set of
genes whose expression levels can predict the CIMP sta-
tus for each tissue. This gene list is enriched mostly
in genetic regulatory pathways, suggesting that the epi-
genetic reprogramming and thus CIMP might be an
intermediate step in the regulatory mechanism. Among
the genes contained in the signature, ZIC2, which is
robustly selected in each bootstrap of the CIMP predic-
tion task and is significantly more expressed in CIMP-
positive tumors for each tissue, has been known to act
as a Wnt/f-catenin signalling inhibitor [48] which is

Table 7 Clinical impact of CIMP. Overall survival proportion
given the CIMP phenotype and the p value associated with the
survival analysis (logrank test)

Tissue Event p value
CIMP— CIMP+

BLCA 47/214 21/96 0.74

BRCA 29/495 9/114 0.20

COAD 28/218 6/54 057

LUAD 24/127 67/295 0.49

STAD 26/141 20/193 0.29
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usually upregulated in several cancers. Another inter-
esting characteristic of this genetic predictive signature
from a clinical point of view is the recurrence of can-
cer/testis antigens (CTAs) such as MAGEC2 [49-51],
MAGEAI2 [52, 53], MAGEA2 [54], and LDHC [55],
which are interesting targets for cancer immunother-
apy [56] and are consistently under-expressed in CIMP-
positive tumors. Recently, Gevaert et al. [57] also showed
a strong association between MAGEA4 hypomethyla-
tion and CIMP-positive tumors which further supports
the link between CTAs and the absence of a methylator
phenotype.

Mutation analyses are not very conclusive in defining
a set of specific somatic mutations significantly associ-
ated with CIMP. In particular, lowly mutated cancer sites
such as the bladder, breast, or even lung do not show any
mutations significantly associated with CIMP. For highly
mutated cancer sites such as colon or stomach, our results
confirm a strong association between BRAF mutation and
COAD-CIMP [9] but do not show any particular associa-
tions with IDH1/2, which have been reported to be causal
in gliomas and leukemia [19, 26]. There is a strong asso-
ciation between COAD and STAD-CIMP and the specific
mutations of genes related with extracellular matrix and
cell adhesion, both reported to be strongly associated with
metastasis [58—61]. Interestingly, neuronal developmental
processes are highly enriched but affecting different genes
from the universal epigenetic signature. Associations with
neuronal development were already mentioned in [17].

Studies have often reported a clear distinct clinical prog-
nosis associated with CIMP [9, 14, 17, 32]. This reiterates
that a main reason for defining CIMP in each tissue site
is its potential use as a prognosis marker. However, CIMP
could be associated with a good or bad prognosis depend-
ing on the type of tumors. In the current study, we do not
observe a significant association with any good nor bad
prognosis linked with CIMP.

Conclusion

This meta-analysis of more than 2000 samples sheds new
light on CIMP across cancers, its link with gene expres-
sion, and its clinical relevance. We found strong evidence
that a panel of genes, which we call the pan-cancer CIMP
signature, is involved simultaneously in the establishment
of the CIMP in various cancer sites, which might be an
indicator of a universal biological process behind CIMP.
We found that differences in the CIMP status of a sam-
ple is associated to differences in the transcriptome, and
also found a core set of genes whose expression levels
differentiates CIMP-positive and CIMP-negative samples,
in all cancers studied. Finally, we found little evidence of
association between CIMP and mutations, except for the
well-known BRAF mutation in colon cancer and also little
association with patient survival.
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Materials and methods

Patient selection

All data were retrieved from the TCGA data portal. We
selected samples from bladder, breast, colon, lung and
gastric adenocarcinomas because large matched datasets
were available for methylation, gene expression, and
mutation profiles. Moreover, all these tissues were pre-
viously reported to exhibit a methylator phenotype. The
datasets are detailed in Table 1 and the different insti-
tutions that released the data are mentioned in the
“Acknowledgements” section.

Methylation profiling

Methylation profiles were retrieved from level 2 TCGA
data. They were obtained with the Illumina Human-
Methylation450K DNA Analysis BeadChip assay, which is
based on genotyping of bisulfite-converted genomic DNA
at individual CpG sites to provide a quantitative mea-
sure of DNA methylation [62]. Following hybridization,
the methylation value for a specific probe was calculated
as the ratio M/(M + U) where M is the methylated sig-
nal intensity and U is the unmethylated signal intensity.
Across the genome, 485,577 CpG methylation levels, asso-
ciated with 27,176 CGIs and 21,231 genes, were measured
as such.

Following [63], we considered not only the CGI methy-
lation profile but also included in the analysis proximal
regions in the near vicinity (up to 4 kb), namely the CGI
Shores and Shelves regions in a general CGI4-SS methyla-
tion profile.

Gene expression profiling

Gene expression profiles were retrieved from level 3
TCGA data. They were obtained from the [llumina HiSeq
RNASeq technology and processed following [64]. We
used the reads per kilobase per million mapped reads
(RPKM) to quantify the gene expression level from RNA
sequencing data.

Mutation profiling

Mutation profiles were retrieved from somatic mutation
profiles from level 2 TCGA data obtained through whole
exome sequencing. To compare the rate of mutation given
the CIMP status, we performed a hypergeometric test and
corrected for multiple testing using Benjamini-Hochberg
correction.

CIMP analysis

To assess the existence of CIMP, we performed Ward hier-
archical clustering using euclidean distance on the top
5 % most variant CGIs. Variations from 1 to 10 % of the
most variant CGIs had a small impact on the clustering
stability (Additional file 3). We then cut the hierarchi-
cal clustering tree in two classes namely CIMP-positive



Moarii et al. Human Genomics (2015) 9:26

and CIMP-negative tumors given their average level of
methylation (CIMP-positive = high level of methyla-
tion, CIMP-negative = low level of methylation). Robust-
ness of the clustering was obtained through consensus
clustering [25].

Predicting CIMP status from gene expression profiles

We performed logistic regression using a lasso penalty
[65] to predict CIMP status from gene expression profiles
for each tissue separately. Accuracy is calculated through
threefold cross-validation averaged over 100 repeats.
To combine the different datasets into a single predic-
tion task, we performed group-lasso logistic regression
(Additional file 1). Given the imbalanced proportion of
CIMP in each datasets, we defined the “random” predic-
tor as a predictor that always predicts the majority class.
The statistical significance of a gene expression-based pre-
dictor over the “random” predictor was calculated using a
Student ¢ test.

To determine the genetic predictive signature, genes
were ranked according to the frequency at which they
appeared in the optimal lasso estimator signature aver-
aged over the different folds and repeats. Genes with a
frequency of at least 50 % were selected.

Survival analysis

Overall survival was estimated using the Kaplan-Meier
method [66] to compare the survival between CIMP-
positive and CIMP-negative tumors. A multivariate Cox
proportional hazards regression model [67] was also fitted
to assess the CIMP odd ratio.

Endnotes
1Bladder tissue
2Breast tissue
3Colon tissue
*Lung tissue
5Stomach tissue

Additional files

Additional file 1: Hierarchical clustering and CIMP status of samples
in each tissue. Each sample is represented by the methylation levels of
the 5 % of the probes that vary most in the tissue considered. Heatmaps
range from hypomethylated (blue) to hypermethylated (yellow). The
column colorbar represents the resulting assignment of each sample as
CIMP positive (yellow) or CIMP negative (blue). Panel A. bladder; panel B.
breast; panel C. colon; panel D. lung; panel E. stomach. (PDF 13722 kb)

Additional file 2: Stability of CIMP clusters with respect to the size of
the CIMP signature. Robustness of cluster assignment for each sample
(columns) as a function of the proportion of variant CGls kept to define the
CIMP signature, from 1 to 10 % (rows) and given the number of CIMP
clusters considered (left panels: K = 2, right panels: K = 3, yellow =
CIMP-positive, blue = CIMP-negative, black = CIMP-low) for bladder
(panel A/B), breast (panel C/D), colon (panel E/F), lung (panel G/H),
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stomach (panel I/J)). Panel K. Table summarizing the stability of the cluster
assignments for each tissue and different number of CIMP clusters
considered. (PDF 381 kb)

Additional file 3: Supplementary methods. (PDF 153 kb)

Additional file 4: Gene expression profiling on the common genetic
predictive signature for each tissue. The column color bar represents the
CIMP status (yellow = CIMP-positive, blue = CIMP-negative) while the row
color bar represents the clustering of genes (green = under-expressed in
CIMP, red = over-expressed in CIMP). Panel A. bladder; panel B. breast;
panel C. colon; panel D. lung; panel E. stomach. (PDF 561 kb)

Additional file 5: Study of a genetic signature associated with CIMP.
Panel A. Venn diagram representing the intersection of the mutations
significantly associated with CIMP in colon and gastric cancers. Panel B.
Gene ontology analysis of the common genes associated with CIMP.
(PDF 82 kb)

Additional file 6: Clinical impact of CIMP on the patient surival. The
plots show the Kaplan Meier survival curves based on CIMP status for
different tissues. Panel A. bladder; panel B. breast; panel C. colon; panel D.
lung; panel E. stomach. (PDF 89 kb)

Additional file 7: Association between CIMP and clinical annotations.
Panel A. Association between CIMP and age: distribution of patients’ age
given their CIMP phenotype in each tissue. Panel B. Association between
CIMP and MSI in colon: ratio of MSI-positive and MSI-negative patient given
the CIMP phenotype in the colon. Panel C. Association between CIMP and
ER status in breast: ratio of ER-positive patients given the CIMP phenotype
in the breast. Panel D. Association between CIMP and PR status in the
breast: ratio of PR-positive patients given the CIMP phenotype in the breast.
Panel E. Association between CIMP and HER2 status in the breast: ratio of
HER2-positive patients given the CIMP phenotype in the breast. (PDF 86 kb)
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