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Intragraft transcriptional profiling of
renal transplant patients with tubular
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Abstract

Background: Proximal tubular dysfunction (PTD) is associated with a decreased long-term graft survival in renal
transplant patients and can be detected by the elevation of urinary tubular proteins. This study investigated
transcriptional changes in biopsies from renal transplant patients with PTD to disclose molecular mechanisms
underlying graft injury and functional recovery.

Methods: Thirty-three renal transplant patients with high urinary levels of retinol-binding protein, a biomarker of
PTD, were enrolled in the study. The initial immunosuppressive scheme included azathioprine, cyclosporine, and
steroids. After randomization, 18 patients (group 2) had their treatment modified by reducing cyclosporine dosage
and substituting azathioprine for mycophenolate mofetil, while the other 15 patients (group 1) remained under
the initial scheme. Patients were biopsied at enrollment and after 12 months of follow-up, and paired comparisons
were performed between their intragraft gene expression profiles. The differential transcriptome profiles were
analyzed by constructing gene co-expression networks and identifying enriched functions and central nodes in
each network.

Results: Only the alternative immunosuppressive scheme used in group 2 ameliorated renal function and tubular
proteinuria after 12 months of follow-up. Intragraft molecular changes observed in group 2 were linked to autophagy,
extracellular matrix, and adaptive immunity. Conversely, gene expression changes in group 1 were related to fibrosis,
endocytosis, ubiquitination, and endoplasmic reticulum stress.

Conclusion: These results suggest that molecular networks associated with the control of endocytosis, autophagy,
protein overload, fibrosis, and adaptive immunity may be involved in improvement of graft function.
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Introduction
Proximal tubular dysfunction (PTD) is characterized by
proteinuria, aminoaciduria, and glucosuria. It is associ-
ated with a decreased long-term graft survival in renal
transplant patients and can be detected by the elevation
of urinary tubular proteins [1, 2].
Low-molecular-weight proteins (LMWP) are promin-

ent urine biomarkers of PTD [3–7], as they are cleared
by glomerular filtration and almost totally reabsorbed by
tubular epithelial cells. Specifically, increased urinary
levels of the LMWP urinary retinol-binding protein
(uRBP) have been associated with tubular injury and fi-
brosis after renal transplantation [8, 9]. Therefore, meas-
uring uRBP levels may contribute to the detection of
patients at a higher risk for renal function loss [10, 11].
The early detection of transplanted patients with kid-

ney dysfunction helps optimizing their immunosuppres-
sion protocols in the attempt to improve graft outcomes.
For instance, PTD is found in heart transplant patients
with a progressive worsening on renal function due to
cyclosporine (CsA) nephrotoxicity [12]. In parallel, im-
munosuppression with mycophenolate mofetil (MYF) is
associated with less acute rejection after kidney trans-
plantation [13], offering a therapeutic alternative for pa-
tients with renal dysfunction caused by CsA. However, a
large number of transplant patients in developing coun-
tries still receive maintenance immunosuppression
regimens containing low-cost drugs, including CsA, aza-
thioprine (AZA), and steroids [14]. Hence, the follow-up
of renal transplant patients diagnosed with PTD allows
the adoption of tailored immunosuppression regimens
and provides a window of opportunity for investigating
renal injury and recovery.

Here, we followed up renal transplant patients with el-
evated uRBP levels that were submitted to specific im-
munosuppression regimens for 12 months. Kidney
biopsies were performed to investigate intragraft tran-
scriptional profiles and to correlate their molecular
changes with renal function outcomes. Through this ap-
proach, we identified some potential molecular mecha-
nisms associated with graft function improvement in
renal transplant patients.

Results
Assessment of renal dysfunction in transplanted patients
and association between tubular proteinuria and
glomerular function rates
Table 1 summarizes the patients’ baseline clinical and la-
boratory features. None of these characteristics showed
statistically significant differences (p < 0.05) between
group 1 and group 2 patients. The analysis of renal hist-
ology in our cohort revealed no significant differences in
the baseline Banff classification scores between the
groups and also no significant differences in the Banff
scores within the same group after 12 months of follow-
up. At enrollment, the biopsies of three patients from
group 1 showed no evidence of interstitial fibrosis and
tubular atrophy (IF/TA), while nine, three, and zero bi-
opsies showed mild, moderate, and severe IF/TA, re-
spectively. At the end of the follow-up period, all
biopsies from group 1 showed some evidence of IF/TA,
with eight biopsies at mild, two at moderate, and two at
severe IF/TA classification, respectively.
For group 2, the biopsies of two patients at enrollment

showed no evidence of IF/TA, while nine, five, and two
biopsies showed mild, moderate, and severe IF/TA,

Table 1 Baseline clinical and laboratory characteristics of the renal transplant patients enrolled in this study (n = 33)

Variables Group 1a (n = 15) Group 2b (n = 18) p value

Recipient age ± SD, in years 44.9 ± 11.2 45.4 ± 9.9 0.79

Recipient weight ± SD, in kg 67.5 ± 13.8 69.6 ± 14.7 0.35

Recipient male, N (%) 11 (73.3 %) 10 (55.6 %) 0.34

Deceased donors, N (%) 6 (40 %) 6 (33.3 %) 0.69

Haploidentical HLA, N (%) 5 (33.3 %) 10 (55.6 %) 0.20

Time post-transplant ± SD, in months 93.3 ± 35.7 92.4 ± 33.1 0.94

Systemic arterial hypertension, N (%) 13 (86.7 %) 16 (88.9 %) 0.84

Diabetes mellitus, N (%) 2 (13.3 %) 1 (5.6 %) 0.44

Serum creatinine levels ± SD, in mg/dL 1.59 ± 0.28 1.67 ± 0.33 0.46

uRBP levels ± SD, in mg/L 2.79 ± 2.55 2.72 ± 2.24 0.88

Banff classificationc at enrollment No evidence (3), mild (9), moderate (3),
severe (0)

No evidence (2), mild (9), moderate (5),
severe (2)

0.64

Banff classificationc after 12 months No evidence (0), mild (8), moderate (2),
severe (2)

No evidence (3), mild (7), moderate (6),
severe (1)

0.25

aGroup 1 patients: initial immunosuppression scheme with cyclosporine, corticosteroids, and azathioprine
bGroup 2 patients: alternative immunosuppression scheme with reduced levels of cyclosporine and use of mycophenolate mofetil
cBanff classification: mild, moderate, or severe evidence of interstitial fibrosis and tubular atrophy (IF/TA)

Azevedo et al. Human Genomics  (2016) 10:2 Page 2 of 12



respectively. At the end of the follow-up period, three
biopsies from group 2 showed no evidence of IF/TA,
while the biopsies of seven, six, and one patients dis-
played mild, moderate, and severe IF/TA, respectively.
Figure 1 illustrates serum creatinine levels, estimated

creatinine clearance, and uRBP levels at 0 and 12 months
of follow-up. Interestingly, only patients from group 2
significantly improved these renal function parameters.
Serum creatinine levels increased in group 1 after
12 months of follow-up, indicating a worsening in renal
function (Fig. 1a). In parallel, creatinine clearance calcu-
lated by either Cockcroft-Gault (Fig. 1b) or modification
of diet in renal disease (MDRD) (Fig. 1c) equations was
only significantly improved in patients submitted to the
alternative immunosuppression protocol (group 2).
uRBP concentration was also decreased in patients from
group 2 after 12 months (Fig. 1d, e).

The distribution of uRBP values relative to estimated
glomerular function rate (eGFR) equally showed a sig-
nificant increase in RBP proteinuria in patients whose
eGFR values ranged from 30 to 45 mL/min (with moder-
ate kidney function reduction). uRBP levels in patients
with eGFR <30 mL/min did not differ to those with
eGFR values >45 mL/min (Fig. 2a).
A linear regression analysis was conducted to examine

the association between delta values (t12–t0) for uRBP
and eGFR over 12 months of follow-up. We found a
small but significant correlation between delta values for
uRBP and eGFR calculated via either Cockcroft-Gault
(r2 = 0.2062, p = 0.0103) or MDRD (r2 = 0.2880, p =
0.0019) formulas, as depicted in Fig. 2b. This analysis
showed that around 25 % of the variance in eGFR
values was significantly explained by the variation in
uRBP values.

Fig. 1 Measurement of serum creatinine, creatinine clearance, and urinary retinol-binding protein (uRBP) levels. a Serum creatinine levels (mg/dL)
at the beginning and at the end of the follow-up period of 12 months. b Creatinine clearance (mL/min) calculated using Cockcroft-Gault formula.
c Creatinine clearance (mL/min) calculated using MDRD formula. d uRBP levels (mg/L) from all enrolled patients. e uRBP levels (mg/L) from patients
used for intragraft gene expression profiling. f Comparison between very high and high uRBP levels at t0 and t12 post-enrollment periods. Statistical
significance was assessed using paired Student’s t test with p < 0.05. Renal function parameters were significantly altered in the groups treated with
azathioprine (*AZA group comparison) or mycophenolate mofetil (**MYF group comparison) for 12 months
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Network enrichment analysis reveals intragraft molecular
changes associated with specific immunosuppression
regimens
The lists of differentially expressed (DE) genes obtained
in each comparison and their fold changes are displayed

in Additional file 1. These DE genes were used to con-
struct co-expression gene networks, and centrality mea-
sures were calculated for all nodes in order to determine
the central nodes in each network. The centrality mea-
sures calculated were degree, which denotes the number

Fig. 2 Distribution of uRBP levels according to glomerular filtration rates and hierarchical clustering analysis of samples from different ranges of
uRBP levels. a Histograms showing uRBP values according to eGFR levels at enrollment (t0) and after 12 months of follow-up (t12). uRBP levels
are expressed as the mean ± SEM. The estimated glomerular filtration rates (eGFR) were calculated using the MDRD formula. **p < 0.05, **p < 0.001
compared to eGFR at 30–45 mL/min, using ANOVA followed by Tukey’s correction. b Best-fit slope of the linear regression of the delta values
from urinary retinol-binding protein (uRBP) levels and eGFR between t0 and t12. The estimated eGFR was calculated using Cockcroft-Gault or
MDRD formulas. c Hierarchical clustering analysis of samples in the high group (HG, uRBP levels from 0.4 to 1 mg/L) and very high group (VHG,
uRBP≥ 1 mg/L) at t0 and t12
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of interactions a node has, and betweenness, which rep-
resents the fraction of shortest paths that passes through
a specific node.
These central nodes were then categorized in three

subclasses of hubs, high-hubs, and bottlenecks, using
the information from the scatterplots in Figs. 3b, 4b, 5b,
and 6b. High-hubs, hubs, and bottlenecks are displayed
in the scatterplots respectively at the up-right, down-
right, and up-left quadrants, due to their differences in
degree and betweenness values. This classification is in
accordance with previous studies showing that node
subclasses exert important functions in the context of
health and disease [15–17]. For instance, hub genes
regulate many other genes and tend to be essential in
biological networks [18] and their node degrees increase
in tumor networks, suggesting their association with
gain of regulatory control [19]. In addition, high-hubs
were linked to mechanisms underlying refractory epi-
lepsy [20] and bottleneck genes were correlated with

essentiality [21] in biological networks. The high-hubs,
hubs, and bottlenecks are described in Additional file 2.
Enriched biological functions were revealed among

central nodes in the subnetworks. These biological func-
tions are displayed in Figs. 3a, 4a, 5a, and 6a. Biological
functions enriched by the genes from group 1 and group
2 comparisons are shown respectively in Figs. 3 and 4.
Genes derived from the group 1 comparison (group 1
network) were related to endocytosis, ubiquitin-
mediated proteolysis, endoplasmic reticulum stress,
TGF-β pathway, and adherens junctions. Conversely,
genes from the group 2 comparison (group 2 network)
were linked to phagosome, antigen processing and pres-
entation, cell adhesion, autoimmunity, allograft rejection,
and graft-versus-host disease. The subnetworks contain-
ing the most central nodes in each group are displayed
in Figs. 3c to 6c. Genes associated with specific key-
words in each case were marked in a different color, as
described in the legend of each figure.

Fig. 3 Analysis of the intragraft transcriptional network related to the alternative immunosuppression scheme (group 2 patients) after 12 months
of follow-up. Network genes were obtained by performing paired comparisons between the intragraft transcriptional profiles (t12 versus t0) of
patients submitted to the alternative immunosuppression scheme and by subsequently inputting those genes in the GeneMania tool. a KEGG
categories showing enrichment in functions for the network nodes. b Scatterplot of degree versus betweenness centralities for nodes obtained in
the transcriptional network analysis. High-hubs, hubs, and bottlenecks are depicted respectively in royal blue, red, and oil blue colors. c Transcriptional
subnetwork containing the most central nodes in the group 2 network. Differentially expressed (DE) genes and DE-related genes are represented
respectively as gray diamonds and blue circles in the network. Node sizes are based on betweenness centrality measurements. Genes previously
associated with the keywords “autophagy,” “extracellular matrix,” “cell adhesion,” and “autoimmunity” are displayed in green color
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Analysis of the intragraft molecular changes associated
with higher retinol-binding proteinuria
We also associated the increased tubular proteinuria
with a specific gene expression pattern, considering
the differences in uRBP levels between the very high
group (VHG) and high group (HG) (Fig. 1f ). In
addition, a hierarchical clustering analysis on the DE
gene subsets was conducted to verify if the samples
in each group showed similar gene expression pat-
terns (Fig. 2c). With this approach, we confirmed
that patients in the HG and VHG clustered together
at t0 and t12, respectively.
Biological functions overrepresented by network

genes from t0 and t12 comparisons are shown in
Figs. 5 and 6. Genes derived from the former compari-
son (t0 network) are associated with osteoclast differ-
entiation, protein digestion and absorption, and Toll-
like, B cell, and T cell receptor pathways. On the other
hand, genes derived from the latter comparison (t12
network) were linked to neuroactive ligand-receptor
interaction, pathways in cancer, diabetes, and glycos-
aminoglycan degradation.

Discussion
Patients submitted to the alternative immunosuppression
scheme show better renal function outcomes and a
survival-related intragraft molecular profile
In the study cohort, patients that had their immunosup-
pression scheme altered by reducing the cyclosporine
dosage and replacing AZA by MYF (group 2) improved
serum creatinine and uRBP levels after 12 months of
follow-up. Therefore, we hypothesized that distinct renal
function outcomes could reflect intragraft molecular dif-
ferences between patients from groups 1 and 2.
In the group 1 network (Fig. 3), the most overrepre-

sented function was endocytosis. Therefore, endocytosis
disturbance may be involved in proteinuria, as tubular
injury is linked to the inhibition of LMWP receptor-
mediated endocytosis [22]. Moreover, tubular atrophy
biomarkers are associated with endocytosis in renal
transplant patients [23]. Besides endocytosis, genes in
the group 1 network were related to ubiquitination and
endoplasmic reticulum stress. Endoplasmic reticulum
stress is activated by unfolded protein accumulation and
induces fibrosis in proteinuric kidney diseases [24, 25].

Fig. 4 Analysis of the intragraft transcriptional network related to the standard immunosuppression scheme (group 1 patients) after 12 months
of follow-up. Network genes were obtained by performing paired comparisons between the intragraft transcriptional profiles (t12 versus t0) of
patients submitted to the standard immunosuppression scheme and by subsequently inputting those genes in the GeneMania tool. a KEGG
categories showing enrichment in functions for the network nodes. b Scatterplot of degree versus betweenness centralities for nodes obtained
in the transcriptional network analysis. High-hubs, hubs, and bottlenecks are depicted respectively in royal blue, red, and oil blue colors. c
Transcriptional subnetwork containing the most central nodes in the group 1 network. Differentially expressed (DE) genes and DE-related genes
are represented respectively as gray diamonds and blue circles in the network. Node sizes are based on betweenness centrality measurements.
Genes previously associated with the keywords “endocytosis,” “fibrosis,” and “inflammation” are displayed in beige color
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In the group 2 network (Fig. 4), the most overrepre-
sented function was phagosome, a type of vesicle formed
during phagocytosis and autophagy. Interestingly, au-
tophagy plays a role in tissue homeostasis, as damaged
structures are degraded by autolysosomes after injury
[26, 27]. Moreover, the role of autophagy as a protective
mechanism against ischemic injury was investigated in
tubular cells [28] and autophagy activation by MYF was
able to prolong cell survival [29]. Central nodes in the
group 2 network were also related to autophagy, such as
Coro1a, Akt1, Ifi30, Cd14, and Ncf4. Coro1a, for ex-
ample, inhibits autophagosomes in macrophages [30].
Other overrepresented functions in the group 2 net-

work were antigen presentation, autoimmune diseases,
and allograft rejection. Two of these genes, Igfpb4 and
Il10ra, were already associated with graft function loss
[31]. Moreover, the up-regulated gene Klrb1 disclosed
the existence of tolerance mechanisms related to FoxP3+
T cells [32]. Genes coding for class I and II major histo-
compatibility molecules (MHC) were also found in the
group 2 network, highlighting the role of HLA-G (MHC

class I) for protecting renal transplants from autoimmun-
ity [33] and the function of Hla-dpb1 (MHC class II) in
renal allograft rejection [34].
Finally, cell adhesion and extracellular matrix func-

tions were overrepresented by genes in the group 2 net-
work. Serping1 and Mmp12, for example, were already
associated with parenchyma deterioration in allografts
undergoing rejection [35, 36]. Therefore, the alternative
immunosuppression regimen may exert part of its
protective effects by regulating the extracellular matrix,
considering that MYF reduces fibroblast infiltration, col-
lagen deposition, and ECM synthesis in kidney [37].

Patients with higher retinol-binding proteinuria have
intragraft transcriptional changes associated with injury
and repair mechanisms
Increased uRBP levels were significantly correlated with
lower creatinine clearance in the cohort, corroborating
the relevance of uRBP levels for assessing the extent of
glomerular dysfunction after renal transplantation. Thus,

Fig. 5 Analysis of the intragraft transcriptional network related to proximal tubular dysfunction (PTD) right after enrollment (t0). Network genes
were obtained by comparing the intragraft transcriptional profiles of patients with elevated uRBP levels and by subsequently inputting those
genes in the GeneMania tool. a KEGG categories showing enrichment in functions for the network nodes. b Scatterplot of degree versus
betweenness centralities for nodes obtained in the transcriptional network analysis. High-hubs, hubs, and bottlenecks are depicted respectively
in royal blue, red, and oil blue colors. c Transcriptional subnetwork containing the most central nodes in the t0 network. Differentially expressed (DE)
genes and DE-related genes are represented respectively as gray diamonds and blue circles in the network. Node sizes are based on betweenness
centrality measurements. Genes previously associated with the keywords “immune response,” “T regulatory cells,” “autophagy,” or
“ubiquitin-proteasome” are displayed in orange color
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we conducted a network analysis to identify molecular
events correlated with higher tubular proteinuria.
Intragraft transcriptional changes in the t0 network

(Fig. 5) reflected molecular mechanisms of immune-
mediated allograft injury. Indeed, intragraft gene expres-
sion changes during transplant rejection are associated
with immune response and precede the onset of IF/TA
[38, 39]. In parallel, a gene subset in the t0 network was
associated with the Foxp3+ T regulatory cell phenotype.
The high-hub Satb1, for example, inhibits the transcrip-
tion factor Foxp3 [40], and Srrm1, the most up-regulated
gene in the t0 comparison (fold change = 23.9), is part of
the Foxp3 network [41].
Central nodes in the t0 network such as Trappc8,

Agrp, Syk, and Baz2b were also linked to autophagy and
ubiquitin-proteasome functions. As a matter of fact, au-
tophagy components interplay with ubiquitination pro-
cesses [42], and autophagy exerts protective functions by
inhibiting endoplasmic reticulum stress and ubiquitin-
proteasome system [43]. Hence, the imbalance of these
two protein degradation systems may be involved in kid-
ney graft dysfunction.

In the t12 network, central nodes were associated with
fibrosis (Fig. 6), like Irf3, Myod1, and Crybb3 [44–46].
Moreover, genes encoding actin and myosin, biomarkers
of fibrosis, were highly up-regulated in the VHG (fold
change around 300). Notably, the most overrepresented
function in the t12 network was “neuroactive ligand-
receptor interaction”, highlighting the role of neuronal
genes for the response against ischemic renal injury [47]
and maintenance of an epithelial phenotype in tubular
cells [48].

Conclusions
This study showed that increased retinol-binding pro-
teinuria is associated with kidney function worsening in
renal transplant patients. Patients under the alternative
immunosuppressive scheme (group 2) improved renal
function after 12 months of follow-up. The examination
of their intragraft transcriptional profiles revealed mech-
anisms linked to graft injury and recovery. These results
can be useful for further studying the mechanisms
underlying graft injury and functional recovery. In par-
ticular, the role of genes participating in ubiquitination,

Fig. 6 Analysis of the intragraft transcriptional network related to proximal tubular dysfunction (PTD) after 12 months of follow-up (t12). Network
genes were obtained by comparing the intragraft transcriptional profiles of patients with elevated uRBP levels and by subsequently inputting
those genes in the GeneMania tool. a KEGG categories showing enrichment in functions for the network nodes. b Scatterplot of degree versus
betweenness centralities for nodes obtained in the transcriptional network analysis. High-hubs, hubs, and bottlenecks are depicted respectively in
royal blue, red, and oil blue colors. c Transcriptional subnetwork containing the most central nodes in the t12 network. Differentially expressed (DE)
genes and DE-related genes are represented respectively as gray diamonds and blue circles in the network. Node sizes are based on betweenness
centrality measurements. Genes previously associated with the keywords “fibrosis” and “tissue repair” are displayed in purple color
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autophagy, protein overload, and neuroactive ligand-
receptor interaction should be further investigated.

Methods
Patients
We studied a cohort of 33 subjects who underwent renal
transplantation in the Kidney Hospital at the Federal
University of São Paulo. Patients with at least 1 year of
transplant surgery were checked for uRBP levels during
a 3-month follow-up. Patients with uRBP >0.4 mg/L in
three consecutive monthly measurements were diag-
nosed with PTD, according to studies establishing this
upper normal limit [2, 12], and sequentially included in
this study. The study was approved by the Research Eth-
ics Committee at UNIFESP (number 0420/05).

Clinical study design
All patients enrolled were initially (t0) in use of CsA,
prednisone, and AZA. They were randomized at enroll-
ment for a prospective treatment with the standard
protocol (group 1, n = 15) or with an alternative protocol
with reduced CsA dosage and MYF introduction (group
2, n = 18). Patients were followed up for 12 months (t12)
to determine if modifying their immunosuppression reg-
imens could result in better renal function outcomes. All
patients were submitted to graft biopsy at t0 and t12,
and each biopsy was individually assessed in the tran-
scriptomic profiling analysis.

Kidney histological analysis
Histological findings were evaluated by a pathologist using
optical microscopy. Biopsies were interpreted following
the Banff classification for kidney allograft pathology: each
biopsy was categorized according to classification grades
of interstitial fibrosis and tubular atrophy (IF/TA), which
establishes the degree (I, II, and III) of interstitial fibrosis
(mild, moderate, severe) and tubular atrophy (mild to
moderate) for each evaluated sample [49]. Histological dif-
ferences between the groups were determined using the χ2

test for the categorical variables.

Renal function evaluation
Serum creatinine, creatinine clearance, and uRBP levels
were measured in patients at enrollment and at the end
of the follow-up period. Serum creatinine and uRBP
levels were measured according to described elsewhere
[10]. The glomerular function rate (eGFR) estimation
was based on serum creatinine concentration and calcu-
lated using the Cockcroft-Gault and the modification of
diet in renal disease (MDRD) formulas. The prediction
of creatinine clearance by the Cockcroft-Gault equation
was calculated as (140 − age) × body weight/plasma cre-
atinine × 72 (×0.85 if female), and the MDRD estimate
was determined as 175 × plasma creatinine − 1.154 × age

− 0.203 (×0.742 if female; ×1.21 if black). Serum creatin-
ine levels are represented in mg/dL, creatinine clearance
in mL/min, and uRBP levels in mg/L. Statistical analysis
(Student’s t tests, with p < 0.05) was performed using
GraphPad Prism 5.

Comparative analysis of the intragraft gene expression
profiles
To investigate transcriptional changes related to specific
immunosuppressive regimens, we performed paired
comparisons (t12 versus t0) between biopsies from the
same patients in group 1 (group 1 comparison) and in
group 2 (group 2 comparison). A second analysis was
performed to determine transcriptional changes associ-
ated with increased retinol-binding proteinuria. Patients
were divided into subgroups: patients with uRBP values
above 1.0 mg/L were classified in the very high group
(VHG), whereas patients with uRBP levels above 0.4 mg/
L but less than 1.0 mg/L were classified in the high
group (HG). The uRBP cutoff level of 1.0 mg/L was se-
lected because renal transplant patients with uRBP levels
≥1 mg/L are at a much higher risk for kidney function
deterioration [10]. Moreover, the average uRBP levels in
transplant patients with an estimated GFR less than
60 mL/min (i.e., with moderate to severe renal damage)
were also higher than 1 mg/L [12]. The comparative
analyses were done between the transcriptional profiles
of patients from the VHG and HG at t0 (t0 comparison)
and t12 (t12 comparison).

Oligonucleotide microarray experiments
Microarray experiments were performed as previously
described [50]. Only samples with a RNA integrity num-
ber greater than 7 were employed in microarray experi-
ments. Gene expression profiles were assessed using
Agilent whole human genome 4x44K oligonucleotide
microarrays. The R environment (http://www.r-project.org)
was used to filter and pre-process the data. The mean
of the probes for each gene was calculated, and the
signal intensities were log2 transformed. These logarithmic
values were input in the TmeV software to perform the stat-
istical analyses [51]. No further normalization step was per-
formed after visual inspection of the data distribution
across the samples. The complete data set is available at the
National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus, through the accession number
GSE48250.

Bioinformatics workflow
The analyses described below were performed to obtain
further information on the comparative gene expression
profiles.
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i) Statistical testing. Differentially expressed (DE) genes
were found by paired (group 1 and group 2
comparisons) and unpaired (VHG ×HG
comparisons) t tests, with p < 0.05 as the significance
threshold. The false discovery rate (FDR) control
was initially applied to adjust the p values for
multiple comparisons, but only few significant genes
were obtained using this procedure. Therefore, a less
stringent approach was used by analyzing the data
with no FDR adjustment, with the understanding
that false positives were not restrained a priori. In
addition, the FDR corrections were not used in
order to obtain a relevant number of genes for the
network enrichment analysis.

ii) Hierarchical clustering analysis. Hierarchical
clustering (HCL) analysis [52] was performed using
TmeV. HCL was used to group DE genes based on
their expression similarities across the samples.
The average distance clustering method was
employed, using sample tree selection and sample
leaf order optimization. The distance metric
used was the Pearson correlation, and HCL
was performed only in the significant genes to
reduce cluster noise.

iii)Gene co-expression network analysis. The differential
transcriptomic datasets were used to generate the
gene co-expression networks. The Cytoscape plug-in
GeneMANIA [53] was used to predict DE gene
interactions. Networks were generated using informa-
tion from the co-expression category in GeneMANIA.
Genes that co-express with DE genes (DE-related
genes) were also included in the networks to study
the interactions between DE genes and other co-
expressed genes. To analyze the centrality of the
nodes (genes) contained in the networks, the node
centrality parameters “degree” and “betweenness”
were calculated using the Cytoscape plug-in
CentiScaPe [54]. Node degree is a local structure
measure in networks that determines the number of
edges linked to a node. Conversely, betweenness
centrality is a global structure measure that defines
the fraction of shortest paths passing through a node.

iv) Identification of high-hubs, hubs, and bottlenecks.
Scatterplots were constructed using degree and
betweenness values for each node in GraphPad
Prism®5. These scatterplots allowed node hierarchy
categorization in high-hubs, hubs, and bottlenecks.
This categorization takes in account gene
localization in different quadrants of the graph.
High-hubs are placed in the up-right quadrant due
to their higher degree and betweenness values. Con-
versely, hubs are located in the down-right quadrant,
as they present high degree but lower betweenness
values compared to high-hubs. Finally, bottlenecks

are located in the up-left quadrant, as they show
high betweenness but low degree values.

v) Functional enrichment analysis. Overrepresented
biological functions were searched in the differential
transcriptomic datasets using FunNet, a
bioinformatics tool that performs functional
profiling of gene expression data [55].

vi)Analysis of subnetworks derived from central nodes.
Subnetworks were built with the aid of Cytoscape
[56], using the central nodes identified in each
comparison. Semantic relationships were identified
between genes and keywords with the text mining
tool GenClip [57]. We searched for relationships
using the keywords “immune response”, “T
regulatory cells”, “autophagy”, “ubiquitin-
proteasome”, “endocytosis”, “fibrosis”,
“inflammation”, “extracellular matrix”, “cell
adhesion”, and “autoimmunity”. These relationships
were highlighted in each subnetwork.

Additional files

Additional file 1: Differentially expressed genes obtained in each
comparison. This table contains the differentially expressed (DE) genes
obtained in each comparison and their fold changes. Statistical analysis
using unpaired and paired t tests identified 250, 434, 417, and 593 DE
genes according to the respective comparisons: t0 (very high versus high
uRBP levels), t12 (very high versus high uRBP levels), group 1 (t12 × t0),
and group 2 (t12 × t0).

Additional file 2: High-hub, hub, and bottleneck genes identified in
each comparison. Hubs were defined as highly connected nodes according
to node degree values. High-hubs are top-ranked hubs presenting also high
betweenness centrality values. Bottleneck genes were classified as nodes with
high betweenness centrality but low node degree values.
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