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Abstract

Copy number variants (CNVs) are important contributors to the human pathogenic genetic diversity as
demonstrated by a number of cases reported in the literature. The high homology between repetitive elements
may guide genomic stability which will give rise to CNVs either by non-allelic homologous recombination (NAHR)
or non-homologous end joining (NHEJ). Here, we present a short guide based on previously documented cases of
disease-associated CNVs in order to provide a general view on the impact of repeated elements on the stability of
the genomic sequence and consequently in the origin of the human pathogenic variome.
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Background

Copy number variants (CNVs) are structural genomic
markers (insertions or deletions) ranging in size from
1 kb to several megabytes for each copy. They are cate-
gorized as copy number polymorphisms (CNPs) when
multiple allelic states exist in the population or as rare
copy number variants when they are found to be associ-
ated with genetic diseases (pathogenic copy number
variants) [1, 2]. The origin of each repeated element of
the CNV is influenced by the local genomic architecture
which includes the presence of repetitive sequences
within or flanking the repeated segment [3-7]. These
repeated sequences drive non-allelic homologous recom-
bination (NAHR) events which result in recurrent
insertions and deletions with similar sequence sizes and
clustered breakpoints [3, 6, 8] or non-homologous end
joining (NHE]) events that result in non-recurrent rear-
rangements that vary in terms of their size and break-
point location [3, 6, 9]. Although several studies have
been demonstrating the contribution of structural
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variants to the genome architecture, few have specifically
focused the influence of repeated sequences at break-
point locations. With the aim to draw attention to these
unstable regions and to establish their role in CNVs, we
collated a number of cases of CNV-associated disorders
proven to have been generated by low and high copy
number repeats which may have influenced the degree
of stability of the genomic sequence.

Low copy repeats and their influence on
pathogenic CNV formation
Low copy repeats (LCRs) are homologous sequences
of 21 kb in length which are found in many copies
throughout the genome since they are generated by
duplication events [3, 10]. Large LCRs (>10 kb) with
high sequence homology promote non-allelic homolo-
gous recombination (NAHR) [3-6, 10-12] and the
misalignment of directly oriented sister chromatids
carrying the LCR may promoted NAHR thereby gener-
ating both duplications and deletions [4, 5] which in
turn give rise to copy number variation. A schematic
representation of this process is shown in Fig. 1.
Certain properties of the LCRs such as homology
length, sequence similarity, and distance, serve to influ-
ence the frequency of NAHR events [3, 6, 12] (Fig. 1). As
recently reviewed by Carvalho and Lupski [3], the NAHR
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Fig. 1 Optimal LCRs features for the occurrence of NAHR events that result in CNV formation. Distinct LCR pairs with counter features such as
homology, size, and inter-LCR distance influence NAHR rate and lead to the formation of common recurrent (a) or rare recurrent (b) copy number
variants. Adapted from (3, 6, 12]

rate varies according to the length of the LCR sequence,
the distance between distinct LCR sequences and the
DNA sequence. The NAHR rate is, therefore, positively
correlated with the LCR length but is inversely propor-
tional to the distance between distinct LCRs [3, 9]. Since
there is a high homology between distinct LCR sequences
proximal to copy number variation regions; there is also
an increased predisposition to NAHR events in these gen-
omic regions [3, 4, 6, 9, 12].

A considerable number of disease-associated CNVs
generated by LCRs have been documented and reviewed
in previous works (e.g. [3, 6]), but for the purposes of
this paper, we have only collated cases for which the spe-
cific repetitive element was found at the breakpoints of
the structural variant and not those for which the caus-
ality of the repeats elements was only suggested. The

resulting set is presented in Table 1. For example, a
complex array of LCRs spanning a 4-Mb region around
the X-linked MECP2 gene was associated with unique
duplications ranging in size from 200 kb to 2.2 Mb in
developmentally delayed males [13]. Duplications and
deletions affecting the PLPI gene causing Pelizaeus-
Merzbacher disease (OMIM #312080) are also associ-
ated with a specific LCR (LCR-PMD A/B pair) within a
3-Mb region flanking the gene in which a multitude of
LCRs are located [14]. LCRs are also frequent at the
2q11-q21.1 locus [11], where recurrent deletions of the
NPHPI gene (2q13) have been associated with nephro-
nophthisis 1 (OMIM #256100). A 0.3-Mb copy number
gain was detected in three X-linked intellectual disability
(XLID) families and one sporadic patient [15]. The region
overlapped the GDII gene, an important XLID-associated

Table 1 Repetitive elements detected at the breakpoints of CNVs associated with clinical phenotypes

Phenotype Critical genes Type of variant  Locus Repetitive element involved  Ref.

MECP2 duplication syndrome MECP2, L1CAM Dup Xq28 Several LCR-MECP2s pairs [3, 6, 13, 44-46]
Rett syndrome MECP2 Del Xq28 Several LCR-MECP2 pairs [6]
Neurofibromatosis type | NF1 Del 17911.2 NF1-REPs A/B/C [3, 6]
Nephronophthisis NPHP1 Del 2913 Several LCR pairs [11, 47-49]
Mental retardation, X-linked 41 (MRX41)  GDI1 Dup/Trip Xq28 LCR-K1/L2 pair [15]
Angelman and Prader-Willi syndromes UBE3A Del 15q11-g13  END-repeats (LCRs) [6, 50]
Smith-Magenis syndrome RAIT and PMP22 Del 17p11.2 SMS-REPs (LCRs) [3,6,18]
Williams-Beuren syndrome 28 dosage-sensitive genes  Dup/Tripe/Del ~ 7g11.23 A/B/C LCR blocks [3,6,51]
15013.1 microdeletion syndrome CHRNA7 Dup/Trip 159133 BP3/4/5 [3,6,52, 53]
3029 microduplication or microdeletion  DLG]1, PAK2 Dup/Del 3929 A/B/C LCR blocks [3, 54, 55]
syndrome

Pelizaeus-Merzbacher disease PLPT Dup/Del Xq22 LCR-PMD A/B pair [3,6,14]
DiGeorge syndrome/velo-cardio facial COMT, TBX1 Del 22q11.2 8 specific LCR22 repeats [6, 17, 40]
syndrome

Charcot-Marie-Tooth type 1A PMP22 Dup 17p12 CMTA1-Reps (LCRs) [3, 6,37, 38]
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gene highly expressed in the brain. The aberration was lo-
cated in Xq28, a locus that includes other intellectual dis-
ability genes and that is frequently associated with
recombination events caused by proximal LCRs (e.g., LCR
K1/L2). The Angelman syndrome (AS) (OMIM #105830)
and Prader-Willi syndrome (PWS) (OMIM #176270) are
caused by recurrent 4-Mb deletions at the 15q11-q13
locus. The deleted region is flanked by LCRs [6] and ac-
counts for 70 % of cases of AS and 70-75 % of cases of
PWS [16]. The Smith-Magenis syndrome (SMS) (OMIM
#182290) results from recurrent deletions of 3.7 Mb at
17p11.2 which account for more than 70 % of cases; about
25 % of affected individuals harbor deletions ranging from
1.5-9 Mb [6, 17]. The deletions are flanked by 200-kb
highly homologous LCRs that play a role in generating
meiotic NAHR events [16]. These deletions encompass
the RAII gene, which is critical in organ and neuronal
development—patients with larger deletions manifest a
more severe phenotype when the dosage-sensitive gene
PMP22 is deleted [18].

Retrotransposons (high copy repeats) and their
influence on pathogenic CNVs

Interspersed repeats are the most common type of high
copy repeats, covering about 44 % of the human genome
[4]. Retrotransposons account for the majority of trans-
posable elements [5, 7, 19]. These are mobile elements
that through reverse transcription have the ability to in-
tegrate into different regions [7, 19]. Long interspersed
nuclear elements (LINEs), short interspersed nuclear ele-
ments (SINEs), and retrovirus-like elements (LTR trans-
posons) are the three major categories of mammalian
retrotransposons (Table 2).

Among LINEs, L1 is the most abundant element, typic-
ally of 6-8 kb in length, with the ability to increase gen-
omic instability through NAHR events [4]. It is known that
about 83 % of the human genome is prone to LINE-LINE
recombination events that contribute to genomic instabil-
ity and can give rise to unbalanced structural variants [20].

Alu elements are the most common SINEs and have
been associated with NAHR events that lead to patho-
genic duplications and deletions [3, 4, 21, 22]. Table 3
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presents examples of high copy repeats that have been
detected at the breakpoints of disease-associated CNVs.
Borun and colleagues [23] reported the presence of
CNV breakpoints within Alu elements in the STKII
gene which lead to the Peutz-Jeghers syndrome (OMIM
#175200), where CNVs account for 30 % of cases. The
17p13.3 locus is enriched in copy number variations as-
sociated with genomic disorders, such as the Miller-
Dieker syndrome (17p13.3 deletion syndrome) (OMIM
#247200) and its reciprocal 17p13.3 duplication syn-
drome (OMIM #613215) [24]. The breakpoints of the
reported CNVs at this locus are highly enriched in Alu
elements, which mediate these junctions through an
Alu-Alu mechanism. About 70 % of CNVs found in the
SPAST gene have been associated with Alu recombin-
ation events [25]. Local Alu-rich architecture predis-
poses to the formation of pathogenic structural
rearrangements associated with spastic paraplegia
(OMIM #182601). An extra copy of the LMNBI gene at
the 5q23 locus has been previously associated with auto-
somal dominant adult-onset demyelinating leukodystro-
phy (ADLD) (OMIM #169500). The analysis of twenty
ADLD-affected families revealed sixteen duplications
ranging from 128 to 475 kb in size, all of them spanning
the LMNBI gene [26]. The centromeric region of the
critical gene is enriched with SINE elements, particularly
Alus. Alu-mediated recombination events were also
found to be linked to pathogenic deletions at the OTC
gene [27], a urea cycle gene for which a significant num-
ber of structural variants are known [28]. NAHR events
between Alu repeats are also strongly correlated with
the birth of structural rearrangements at the Alu-rich
BRCAI locus [29] which is associated with breast cancer.
Duplications (220 to 394 kb) and a triplication (1.61 to
2.04 Mb) of the SNCA gene located at 4q21 locus have
been implicated in autosomal dominant Parkinson’s dis-
ease (PD1 and PD4) (OMIM #168601, #605543). The
phenotypic severity is consistent with a gene dosage ef-
fect [6]. Regarding recessive PD (OMIM #600116), about
one third of pathogenic variants associated with the
PRKN gene are CNVs occurring between exon 2 and
exon 5, which may therefore be considered to be a

Table 2 Main characteristics of the most abundant retrotransposons [4, 5, 7, 19]

Retrotransposons (interspersed repeats)—44 % human genome

Non-long terminal repeat (LTR)

Long terminal repeat (LTR)

Repetitive Long interspersed nuclear repeats (LINEs)

element

Genomic 20 % 1%
coverage

Features «+ L1 is the most abundant class

+ Autonomous transposons
« Reverse transcriptase (RT) encoded by
LINE-1

Short interspersed nuclear repeats (SINEs)

« Alu is the most abundant class

« Dependent on LINEs transposable
machinery

+ Mobile polymerase Ill promoter

Endogenous retroviruses (ERV)

8 %

+ Reduced transposable activity
- Presence of gag and pol viral
genes

+ 100-400 bp in length
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Table 3 High copy repeats detected at the breakpoints of CNVs associated with clinical phenotypes

Phenotype Critical genes Type of variant  Locus Repetitive elements involved  Ref.
Peutz-Jeghers syndrome STKT1 Del 19p13.3  Several AluY/AluY pairs [23]
Spastic paraplegia 4 SPAST, SLC30A6 Dup/Del 2p22.3 Several Alu pairs [25]
OTC deficiency or1C Del Xp114 AluSx/AluSq pair [27, 56]
Miller-Dieker syndrome and 17p13.3 duplication  LIST Del 17p13.3  Several Alu pairs [6, 24]
syndrome
Breast cancer BRCAT Del 1792131 AluSx/AluSc pair [29, 57]
Autosomal dominant adult-onset demyelinating  LMNBIT Dup/Trip 5g23.2 LIPA3 LINE repeats [26]
leukodystrophy (ADLD) AlUYAZAIUYB pair
Azoospermia AZFa Del Yql1 HERV15 A/B proviruses [34, 58]
Mental retardation, X-linked 60 (MRX60) OPHNI1 Del Xql12 AluY/AluY pair [35]
Pelizaeus-Merzbacher disease PLPT Del Xq22 AluSg/AluSx pair [3,6,59]
DiGeorge syndrome/velo-cardio facial syndrome  COMT, TBX1 Del 22q11.2  Unclassified Alu/Alu pair [6, 17, 40]
Charcot-Marie-Tooth type 1A PMP22 Dup 17p12 AluY/AluY pair [39]
AluSg/AluSg pair
Williams-Beuren syndrome 28 dosage-sensitive genes  Dup/Del 791123 AluS subfamily elements [36]
Parkinson’s disease SNCA Dup/Trip 4g21 Several Alu pairs [32]

recombination hotspot [30, 31]. Ross and colleagues [32]
reported the presence of Alu and LINE1 elements at the
SNCA locus that may contribute to the genomic in-
stability at this locus.

Human endogenous retroviruses (HERVs) represent
about 4.9 % of the human genome [4]. Sequences with
about 95 % sequence similarity were previously associ-
ated with NAHR events and recurrent CNVs, some of
which with pathogenic implications [3, 33]. For example,
the occurrence of NAHR between a particular set of
HERYV elements flanking the male fertility AZFa locus in
the Y chromosome is strongly associated with pathogenic
deletions associated with male infertility (OMIM #400042,
#415000) [4, 34].

Pathogenic copy number variants associated with
both LCRs and retrotransposons

The breakpoints of some disease-associated CNVs have
been reported to be caused by more than one type of re-
petitive elements which indicates that the same pheno-
type involves both low copy and high copy repeats that
affect the stability of a target gene. Bergmann and col-
leagues [35] conducted a family study in which five
brothers shared the same phenotypic pattern that in-
cluded intellectual disability. The analysis of the OPHN1
locus (Xq12) revealed the presence of a 17.6-kb intronic
deletion and the breakpoints spanning the deletion re-
vealed two highly homologous Alu repeats and add-
itional repetitive sequences (interspersed and simple
repeats).

A recurrent deletion of 1.6 to 1.8 Mb (>95 % of the pa-
tients) at the 7q11.23 locus causes the Williams-Beuren
syndrome (OMIM #194050) [6]. Genes within this re-
gion are dosage-sensitive and the recurrently deleted re-
gion encompasses a total of 28 genes. This locus is
characterized by highly homologous flanking LCRs that
contribute to NAHR events [6]. Antonell and colleagues
[36] reported the presence of Alu elements at the junc-
tions of large duplicated blocks in 7q11.23 suggesting
the influence of these retrotransposons in the generation
of large LCRs.

Heterozygous duplication and reciprocal deletions of a
1.4-1.5-Mb segment at the 17p12 locus have been previ-
ously linked with the Charcot-Marie-Tooth type 1A syn-
drome (CMT1A) (OMIM #118220). About 70 % of
CMTI1A patients have a recurrent duplication of the
dosage-sensitive PMP22 locus and the NAHR event that
gave rise to this copy number variation was mediated by
LCRs [3, 6, 37, 38]. A study by Zhang and colleagues
[39] revealed the presence of SINEs (Alu elements) and
LINEs (L1 and L2) as well as LCRs within the break-
points of rare non-recurrent deletions and duplications
at the CMT1A locus.

About 96 % of the DiGeorge syndrome (DGS) (OMIM
#188400)- and velo-cardio-facial syndrome (VCES)
(OMIM #192430)-affected patients harbor a 1.5-3 Mb
deletion at the 22q11.2 locus that includes 24 to 30
genes [16]. The breakpoints of the common recurrent
deletions at this locus are associated with LCRs [17] and
one Alu sequence [40]. Both the deletions and duplica-
tions at this locus are generated by NAHR events
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between the repeated regions flanking the CNV, specific-
ally the low copy repeat known as LCR22 [41]. Further-
more, 20-25 % of individuals who harbor this deletion
also show signs of schizophrenia, mood disorders, and
other behavioral alterations [41].

Conclusions

Although the majority of genetic diseases are caused by
non-structural variants (e.g. [42, 43], an increasing num-
ber of causative mutations have been associated with
CNVs and these cases were the focus of this short re-
view. Low copy repeats and retrotransposons are the
major contributors to CNV formation. Recurrent CNVs
are mainly directed by NAHR events that occur between
highly homologous LCR sequences. In terms of non-
recurrent CNVs, NHE] (among other molecular mecha-
nisms [3]) generally occurs between sequences with a
degree of homology lower than that observed between
distinct LCRs. The diversity of breakpoint junctions of
non-recurrent variants renders the establishment of
phenotype-genotype relationships less reliable because
the sequence that is deleted or duplicated in each patient
is different and the affected region may also involve
other genes. This review focused on disease-associated
CNVs in order to show that although numerous cases of
instability driven by repeated sequences around the af-
fected locus (or loci) have been documented, we are still
far from understanding all the phenotypic complexities
associated with these unbalanced variants, mainly be-
cause the number of reported cases is still too small to
draw general conclusions. Finally, it is important to
mention that collated data, such as those presented in
this paper, pertaining to the pathogenic structural var-
iome are expected to drive future studies with the aim of
establishing a map of unstable genomic hotspots which
promises to be useful in the context of clinical genetic
testing where the determination of the molecular basis
of Mendelian and complex diseases (e.g., cancer) is of
paramount importance.
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