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Abstract

Background: Genetic variant effect prediction algorithms are used extensively in clinical genomics and research
to determine the likely consequences of amino acid substitutions on protein function. It is vital that we better
understand their accuracies and limitations because published performance metrics are confounded by serious
problems of circularity and error propagation. Here, we derive three independent, functionally determined
human mutation datasets, UniFun, BRCA1-DMS and TP53-TA, and employ them, alongside previously described
datasets, to assess the pre-eminent variant effect prediction tools.

Results: Apparent accuracies of variant effect prediction tools were influenced significantly by the benchmarking
dataset. Benchmarking with the assay-determined datasets UniFun and BRCA1-DMS yielded areas under the receiver
operating characteristic curves in the modest ranges of 0.52 to 0.63 and 0.54 to 0.75, respectively, considerably lower
than observed for other, potentially more conflicted datasets.

Conclusions: These results raise concerns about how such algorithms should be employed, particularly in a clinical
setting. Contemporary variant effect prediction tools are unlikely to be as accurate at the general prediction of
functional impacts on proteins as reported prior. Use of functional assay-based datasets that avoid prior dependencies
promises to be valuable for the ongoing development and accurate benchmarking of such tools.

Keywords: Variant effect prediction, Functional datasets, Benchmarking, Mutation assessment, Pathogenicity prediction,
Protein function, Functional assays, Genomic screening

Background
Screening the entire protein-coding compartment of the
human genome yields thousands of protein amino acid
substitutions per individual, the majority of which are
present at low frequencies (minor allele frequency
(MAF) <0.1%) within the population [1]. Genetic screens
typically seek to classify variants and genes of relevance
to given phenotypes, including disease states. To this end,
it is desirable to know whether a given variant is likely to
impact protein function, with the inference being that this
might influence phenotypes of interest [2–5]. However,
appropriate functional assays exist for only a minority of
proteins, and in those cases where functional assays do

exist, their associated resource requirements are often
prohibitive to routine, large-scale application.
Widely used variant effect prediction methods include

SIFT [6, 7], PolyPhen (v2) [8, 9], GERP++ [10, 11],
Condel [12], CADD [13], fathmm [14], MutationTaster
[15], MutationAssessor [16, 17], GESPA [18] and, more
recently, REVEL [19]. These use information, variously,
about local sequence phylogenetic conservation, amino
acid physicochemical properties, functional domains
and structural attributes (Table 1). Ensemble or consen-
sus methods such as fathmm, Condel, CADD and
REVEL integrate and weight predictions from collec-
tions of tools. Recent approaches to algorithm training
have applied machine learning techniques. Training
and validation (or ‘benchmarking’) of these algorithms* Correspondence: djp@unimelb.edu.au
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has been conducted using datasets that list variants
with assigned classifications. Commonly used datasets
include HumDiv [20], HumVar [21], Humsavar [22],
EPS [23], dbSNP [24] and HGMD [25].
All of the above algorithms have reported potential

merit and are widely used in practice. The original publi-
cation of REVEL, for example, reported that when this
tool was tested against a set of variants from Clinvar, the
resulting area under the receiver operating characteristic
curve was an impressive 0.96. However, fundamental
problems exist with the manner of the training and
benchmarking for this and prior tools, centred primarily
on the independence and truthfulness of reference sets.
Indeed, the authors of REVEL acknowledged that these
issues placed potential limitations on their study.
Grimm et al. [20] described the issue of data circular-

ity and its effect on the assessment of prediction algo-
rithms, explaining the importance of the choice and
composition of variant datasets used for training and
validation. Type 1 circularity results from substantial
overlap between training and testing datasets, leading to
artificially inflated apparent accuracy in contexts where
variants or genes are well represented in training data
and to deflated apparent accuracy in settings where they
are poorly represented. Type 2 circularity results from
all variants in featured genes having been labelled pre-
dominantly as either deleterious or benign. Grimm et al.
postulated a third type of circularity. In this case, predic-
tion tools contribute to new variant classifications,
which, in turn, are used in further benchmarking. Variant
classifications within training and benchmarking datasets
have been guided substantially by computational predic-
tions, resulting in imperfect ‘truth sets’. Disease risk infla-
tion has been observed in the Clinvar and HumVar

databases, whereby considerably fewer individuals in the
general population are afflicted with given diseases than
would be expected based on pathogenicity classifications
within these clinical databases [1]. Ideally, mutation effect
prediction training data for supervised machine learning
methods should have good coverage of the protein land-
scape and mutation categorisation that is based on strong
evidence from protein functional studies [26]. Miosge et
al. [27] reported that of all the amino acid-substituting
mutations predicted by PolyPhen to be deleterious to the
mouse form of the key tumour suppressor, TP53, 42% had
no assay-detectable functional consequence. Similarly,
45% of CADD-predicted deleterious mutations conferred
no assay-detectable impact on protein function.
In this study, we conduct benchmarking of eight com-

putational variant impact prediction methods. In addition
to assessing their performance using commonly used
benchmarking variant datasets, we have derived three in-
dependent, functional assay-determined datasets that we
have called UniFun (UniProt-derived, functionally charac-
terised, based on UniProt mutagenesis data), BRCA1-
DMS (based on deep mutational scanning of BRCA1) and
TP53-TA (TP53 mutational scanning via transactivation
assay). Our findings have important implications with re-
gard to our confidence in variant classifications derived
from computational prediction methods and to how we
should train and benchmark such methods in the future.

Results
In order to limit problems of circularity and systematic
error, we derived three human protein mutation datasets
that strive for independence from training data and are
characterised by direct functional assays: UniFun,
BRCA1-DMS and TP53-TA. UniFun represents 11,519

Table 1 Characteristics of the protein variant effect prediction tools assessed in this study. The table indicates their scoring ranges
and thresholds, training data, summary information about features and, where applicable, machine learning method

Prediction
tool

Score
range

Deleterious
score cutoff

Training data Features Machine learning
method

GERP++ −12.0
to 6.17

>0.047 None Infers conserved or constrained elements from 33 mammalian
genomes

–

fitCons 0 to 1 >0.4 None Functional genomics data mainly sourced from chromatin analysis,
e.g. ChIP-seq, and evolutionary conservation data

–

SIFT 1 to 0 <0.05 None Conservation data (MSA of homologous sequences) and transformed
into normalised probability matrix

–

PolyPhen 0 to 1 >0.5 HumVar, HumDiv Conservation data (MSA of homologous sequences), protein functional
domain data and protein structural features

Naïve Bayes
classifier

CADD 0 to 35
+

>15 Simulated,
Swissvar, HumVar

Integrates several annotations into a single score, e.g. SIFT, GERP++,
PolyPhen, CPG distance, GC content

SVM

Condel 0 to 1 >0.5 Builds a unified classification by integration output from a collection of
tools, e.g. SIFT, PolyPhen

Weighted average
normalised scores

REVEL 0 to 1 >0.5 HGMD, EPS HGMD and rare EPS variants used for training Random forest

fathmm 0 to 1 >0.45 HGMD, Swiss-
Prot

Combines evolutionary conservation with disease-specific protein
weights for intolerance to mutation

Hidden Markov
models
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mutations from UniProt for which categorical assign-
ments of protein functional consequence have been
made based on direct assays (‘Datasets and methods’).
The UniFun variants were sourced from 2209 proteins
and exhibit minimal overlap with variants featured in
prior disease catalogue datasets (Fig. 1). UniFun is com-
posed of a relatively high percentage of proteins that
contribute both deleterious and benign mutations
(Additional file 1: Figure S1). BRCA1-DMS (BRCA1
deep mutational scanning) was generated from measured
efficiencies of BRCA1 mutants in activities required for ef-
ficient homology-directed DNA repair (HDR) and tumour
suppression [28]. TP53-TA (TP53 transactivation assay)
comprises variants in human TP53 classified by transacti-
vation assay [29] (‘Datasets and methods’) (Table 2).
Employing the independent, ‘functional’ datasets Uni-

Fun, BRCA1-DMS and TP53-TA alongside four prior
datasets, we conducted benchmarking of eight prominent
variant effect prediction systems (Fig. 2 and Table 3). For
all methods, the choice of benchmarking data influenced
measured prediction accuracy markedly. When UniFun
was employed across tools, the apparent prediction accur-
acies were consistently among the lowest two measures
when compared to measures derived for all the datasets.
BRCA1-DMS also tended to yield relatively low apparent
prediction accuracies, although the apparent accuracies
for Condel, REVEL and fathmm were somewhat elevated
when benchmarked using BRCA1-DMS compared
with UniFun (see Fig. 3). Compared with UniFun, the

BRCA1-DMS and TP53-TA datasets yielded more variable
apparent predictive accuracies, with apparent accuracies
tending higher for TP53-TA. The apparent prediction ac-
curacies for UniFun, BRCA1-DMS and TP53-TA were in
the ranges 0.52 to 0.63, 0.54 to 0.75 and 0.53 to 0.91, re-
spectively. To highlight the strength of influence that the
benchmarking dataset choice can have, the apparent accur-
acy of REVEL, for example, dropped from AUC= 0.945 to
AUC= 0.629 when assessment was conducted using Uni-
Fun instead of ClinvarHC. For a majority of tools, there
was a general grouping of relatively high measured accur-
acy for the ClinvarHC, Humsavar and TP53-TA datasets.
fathmm exhibited its highest apparent accuracy when
benchmarked against Varibench (AUC= 0.936), consistent
with the observations of [20], and appeared to perform
relatively poorly when benchmarked using any of our func-
tional datasets. Remarkably, when benchmarking was con-
ducted using the most extensive and independent of our
functional datasets, UniFun, SIFT achieved the highest
measured accuracy score of any method tested, at a
level comparable with recent machine learning-based
methods.

Discussion
We have generated three functional datasets that attempt
to better represent the truth with regard to variant classifi-
cations, guided by direct in vitro functional assays. They
are relatively unrelated to prior variant effect prediction
tool training datasets. As such, they promise to be useful
for tool benchmarking and training, along with similar,
expanded datasets in the future. A potential confounder
of our functional datasets (although the same applies to

Fig. 1 Venn diagram of datasets used in this study showing the
overlaps among the deleterious and benign variants observed in
these datasets. Humsavar displays a relatively high degree of overlap
with the ClinvarHC and Swissvar datasets. The remaining datasets
overlap to relatively small extents

Table 2 Composition of the variant reference datasets used in
this study. This table separates mutation catalogues into those
derived from clinical databases (disease mutation catalogues) and
those derived directly from functional assays (functional mutation
catalogues). The table provides summary information for the
numbers of proteins and variants of different classifications that
have contributed to each dataset. See Additional file 1: Figure S1
and Table S1 for more detailed information

Total variants Deleterious Benign Total proteins

Disease mutation catalogues

ClinvarHC 29,752 19,461 10,291 2979

Humsavar 43,878 19,329 24,549 10,231

Swissvar 12,729 4526 8203 5036

Varibench 10,266 4309 5957 4203

Functional mutation catalogues

TP53-TA 1886 582 1304 1

BRCA1-DMS 1683 408 1275 1

UniFun 11,519 9503 2016 2209
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other datasets) is that we cannot be certain of our variant
classifications—despite being guided by dedicated in vitro
tests. Although our functional datasets include genetic
variants that have not been observed in human popula-
tions to date, observations for established pathogenic mu-
tations support their relevance to the disease setting.
Starita et al. [28] showed that for ten known disease-
causing missense mutations in BRCA1, all were found to
be deleterious by functional assay. Since UniFun repre-
sents 2209 proteins, it includes a relatively broad sampling
of the human protein landscape and should provide a
good basis for general variant effect benchmarking, in-
cluding for proteins that have not been studied in depth
previously. The BRCA1-DMS and TP53-TA datasets focus
on single proteins. As single-gene datasets, they do not
necessarily offer good representation of the broader pro-
tein landscape. They are also likely to be confounded
by type 1 circularity because BRCA1 and TP53 are
relatively highly represented at the protein level, albeit

via different collections of variants, in prior training
datasets.
Our observations upon benchmarking a range of in

silico variant effect prediction tools against different
datasets appeared to broadly reflect the properties of the
datasets and how the tools had been calibrated. The high
variability of observed prediction accuracies (as mea-
sured by the AUC) of the various tools depending on
the benchmarking dataset casts serious doubts over the
interpretation of outputs from and utility of such tools.
That the ‘conservation-only’ tools tended to yield rela-
tively low measured prediction accuracies across datasets
is likely due to their comparative naïvety. The low mea-
sured prediction accuracies observed when UniFun was
used to benchmark machine learning-derived prediction
tools are likely to have been influenced by avoidance of
circularity problems. This is supported by similar AUC
values having been observed by Grimm et al. when they
applied their VariBenchSelected and SwissVarSelected

Fig. 2 Histogram depicting apparent accuracies of in silico variant effect predictors based on ROC curve AUCs for the benchmarking datasets
used in this study

Table 3 Measured accuracies of eight in silico predictors as benchmarked against seven different variant reference datasets.
Measured accuracies are calculated as the areas under the respective ROC curves (AUCs) and Matthews correlation coefficients
(MCCs). See Additional file 1: Figure S4 for the ROC curve graphs

ClinvarHC Humsavar Swissvar Varibench TP53-TA BRCA1-DMS UniFun

AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC AUC MCC

GERP++ 0.863 0.587 0.777 0.469 0.677 0.286 0.571 0.15 0.719 0.283 0.544 0.069 0.538 0.04

fitCons 0.641 0.3 0.533 0.033 0.564 0.008 0.651 0.024 0.557 0 0.559 0 0.515 0.033

SIFT 0.848 0.489 0.841 0.543 0.698 0.289 0.651 0.228 0.835 0.484 0.653 0.199 0.631 0.184

PolyPhen 0.827 0.447 0.831 0.541 0.699 0.301 0.672 0.256 0.859 0.469 0.596 0.088 0.623 0.168

CADD 0.939 0.731 0.851 0.57 0.73 0.331 0.663 0.25 0.869 0.418 0.556 0.032 0.589 0.119

Condel 0.879 0.51 0.911 0.664 0.728 0.333 0.86 0.57 0.883 0.074 0.747 0.172 0.614 0.098

REVEL 0.945 0.68 0.968 0.83 0.792 0.462 0.89 0.59 0.907 0.465 0.737 0.088 0.63 0.148

fathmm 0.787 0.288 0.902 0.538 0.701 0.253 0.936 0.509 0.53 0 0.621 0 0.531 0.02
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datasets, engineered to avoid circularity, to the bench-
marking of a variety of variant effect prediction tools.
The general grouping observed for the ClinvarHC,

Humsavar and TP53-TA datasets with respect to apparent
accuracies of variant effect prediction tools has likely been
influenced by substantial protein representation overlaps
between these datasets. Approximately 83% of ClinvarHC
proteins overlap with Humsavar variant proteins, and
TP53 mutations are represented strongly within each of
these (Additional file 1: Table S2 and Figure S3). However,
BRCA1 variants are even more strongly represented in
ClinvarHC and Humsavar than those of TP53, without
BRCA1-DMS displaying similar grouping. It is possible
that TP53 behaves as a relatively highly representative
protein for these datasets with respect to selected predict-
ive features. We observe that a relatively high proportion
of TP53 mutants in ClinvarHC and Humsavar are dele-
terious (Additional file 1: Figure S3). As inferred by
Grimm et al., that fathmm’s best apparent performance
was observed when benchmarked using Varibench is
likely due to type 2 circularity-associated inflation. Vari-
bench contains mutations across 4203 genes, of which
only 1.6% have mutations labelled as both benign and
deleterious. That SIFT exhibited comparable apparent
performance to more recent machine learning-based
tools when tested against UniFun may be explained by
their training datasets not being conducive to improved
general protein effect prediction.
Important to the selection of datasets for training is

the issue of whether a prediction tool aims to determine
functional consequences generally or only in specific (e.g.
particular disease-relevant protein set) contexts. The ex-
tent of functional damage conferred by a given variant is
an important consideration, which may inform the clinical
relevance and preferred classification. Future prediction
tools will likely perform best when trained specifically for

particular sets of proteins and mutation/variant classes,
via multiple partitioned ‘sub-tools’. Regardless, in vitro
assay-informed datasets similar to UniFun promise
to make important contributions by enabling high-
confidence protein functional consequence classifications
while allowing training and benchmarking independence.

Conclusions
Our findings, consistent with those of Grimm et al. [20], in-
dicate that the accuracies of contemporary variant effect
prediction tools are likely to be considerably lower than re-
ported in their original method publications. This has pro-
found implications for how we use such tools in clinical
diagnostic and disease-gene discovery programs. Indeed, we
should treat the predictions generated by such tools with
considerable caution. We offer a new paradigm for bench-
marking such tools that avoids many of the prior conflicts
with the ideals of machine learning. Use of these, and expan-
sion to similar independent, functionally determined muta-
tion datasets as training and benchmarking datasets, will be
extremely valuable to the progression of this field. Investigat-
ing the properties of incorrectly classified variants and using
the findings to better inform algorithm design should result
in improved prediction accuracy in the future.

Datasets and methods
We have employed seven benchmarking datasets (refer
to Table 1) to assess the performance of eight amino acid
mutation impact prediction methods: GERP++, fitCons,
SIFT, PolyPhen, CADD, Condel, REVEL and fathmm.
These datasets contain variants classified as deleterious
(likely significant effect on protein function) or benign
(unlikely significant effect on protein function). We have
used a variety of datasets that can be broadly categorised
into two classes: (1) variants sourced from disease vari-
ation catalogues and (2) variants sourced from molecular

Fig. 3 Apparent prediction accuracies of variant effect prediction tools when assessed using ClinvarHC versus functional mutation derived
datasets, reported as AUCs derived from ROC curves
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functional analysis experiments. Figure 1 depicts the over-
laps between parent datasets used in this study.

Disease variant catalogues
Databases such as the Swiss-Prot/UniProt-based Humsa-
var and others, including OMIM [30] and HGMD [25],
catalogue disease-associated mutations along with relevant
evidence, mainly sourced from the literature. Benign mu-
tations are catalogued via a combination of Swiss-Prot
classifications and common alleles (MAF > 1%) from
population-based variant databases such as dbSNP and
1000 Genomes.
Clinvar is a database to which contributors submit var-

iants and their classifications along with accompanying
evidence. Variously, classifications are based on evidence
and assertion criteria such as the Emory Genetics Labora-
tory Classification Definitions and the InSiGHT Variant
Interpretation Committee guidelines [31]. For the present
study, we have further filtered Clinvar data to include only
high-confidence, expert panel-verified variants with clin-
ical significance scores of 2 (CLNSIG = 2), in the case of
benign variants, and 5 (CLNSIG = 5), in the case of dele-
terious mutations. We term this dataset ClinvarHC
(Clinvar high confidence). Mutations classified as likely
benign, likely deleterious or of uncertain significance
were excluded due to insufficient evidence supporting
their influence on protein function and disease.

‘Functional’ mutation catalogues
As indicated previously, the disease mutation catalogues
in common use for in silico prediction tool training and
benchmarking suffer from circularity through a lack of
independence on multiple levels [20]. To address this,
we have identified that data relating to biochemical assays
of protein function, without significant overlap with disease
mutation catalogues, should be highly valuable for variant
effect prediction tool assessment (and training). These re-
flect validated effects on protein function while achieving
independence. Since highly curated and accessible data-
bases with these properties are not available, we have engi-
neered three such datasets, based on (1) mining functional
mutagenesis data from UniProt, (2) the deep mutational
scanning (DMS) protocol applied to BRCA1 and (3) the as-
sessment of TP53 mutants by transactivation assay.

UniFun dataset
UniFun is derived using protein annotation data from
UniProt. In particular, we employed results from human
protein mutagenesis experiments in which amino acids
had been mutated prior to measuring their effects on pro-
tein function. We mined the UniProt data using keywords
and the SPARQL querying framework to compose two
sets of variants: (1) a ‘functional’ set containing amino acid
mutations that disrupt protein function and (2) a ‘non-

functional’ set of mutations that have no apparent effect
on protein function. More details on how we generated
this data are presented in Additional file 1: Figure S2.

BRCA1-DMS dataset
This relatively new protocol efficiently analyses the im-
pacts of thousands of missense mutations on a protein’s
function [32]. Because of the relative recency of this
approach, only one publicly available dataset could be
sourced [28], derived from measurements of mutated
BRCA1 ubiquitin ligase activity and binding to the
BARD1 RING domain. Both functions are required for
efficient homology-directed DNA repair (HDR) and
tumour suppression. The HDR rescue score is used to
measure disease risk and is derived from a functional
assay to measure the ability of mutant BRCA1 to repair
double-stranded DNA breaks. Starita et al. defined an
HDR rescue score of 0.53 as the point of inflection be-
tween the classifications of deleterious (<0.53) and benign
(≥0.53). The authors developed a support vector regres-
sion predictor based on both ubiquitin ligase activity and
BARD1 RING domain binding to predict the HDR rescue
scores for DMS data. In the present study, we employed
the conservative approach of categorising variants as ‘dele-
terious’ if their associated HDR rescue scores were less
than 0.33 (above which, no known pathogenic variant
score was recorded) and ‘benign’ for HDR rescue scores
above 0.77 (below which, the scores of no known benign
variants were measured).

TP53-TA dataset
We sourced unique TP53 amino acid substitutions that
had been deposited in the IARC TP53 database [33]
(http://p53.iarc.fr) in accordance with the work of Kato
et al. [29]. We defined the TP53-TA dataset to exclude
variants exhibiting ‘partial’ reduction in transactivation
and those variants that are present in the Clinvar and
Humsavar databases.

Data processing
For consistency, Ensembl Variant Effect Predictor (VEP)
[34] was employed to convert all variant datasets into
variant call format (VCF), using their HGVS amino acid
mutation notations as inputs. The resultant VCF files
were then annotated using VEP and SnpEff [35]. Condel
and fathmm scores were annotated using the VEP cus-
tom annotation tools based on precalculated scores
available from FannsDB (http://bg.upf.edu/fannsdb).
Similarly, GERP++ and fitCons conservation scores were
annotated using custom BED files. CADD scores were
annotated using CADD v1.2 (http://cadd.gs.washington.
edu/download).
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Assessing impact prediction
Prediction performances were evaluated using receiver
operating characteristic curves (ROC curves) derived
using ratios of true positive rates (TPR or sensitivity)
and false positive rates (FPR or 1 − specificity), and the
areas under the ROC curves (AUCs) were calculated.
AUC values range between 0 and 1, inclusive, where 1
corresponds to a perfect classifier and 0.5 implies a ran-
dom classification. The Matthews correlation coefficient
(MCC) was calculated to measure classifier quality. A
score of 1 implies perfect classification and 0 implies
random classification.

Additional file

Additional file 1: Figure S1: Proportion of genes represented in both
deleterious and benign variant sets for the respective datasets employed
in this study. Figure S2: The UniFun variant dataset is derived from UniProt
mutagenesis data (http://www.uniprot.org/help/mutagen). Figure S3:
Proportion of deleterious variants for TP53, BRCA1 and the per protein
mean in ClinvarHC, Humsavar, Swissvar, Varibench and UniFun variant
datasets. Figure S4: ROC curves illustrating the measured performance of
eight variant effect prediction methods, GERP++, fitCons, SIFT, PolyPhen,
CADD, Condel, REVEL and fathmm, evaluated by seven reference variant
datasets: (a) ClinvarHC, (b) Humsavar, (c) Swissvar, (d) Varibench, (e) TP53-TA,
(f) BRCA1-DMS and (g) UniFun. Table S1: Protein distribution for deleterious
and benign variant classifications across datasets. Table S2: Numbers of
variants contributed to the ClinvarHC, Humsavar, Swissvar, Varibench
and UniFun datasets by BRCA1 and TP53 and the mean per protein for
(a) deleterious variants and (b) benign variants. (DOCX 665 kb)
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