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Abstract

Background: Observations of recurrent somatic mutations in tumors have led to identification and definition of
signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells
contain both an individual’s inherited genetic variants and somatic mutations, challenges arise in distinguishing
these events in massively parallel sequencing datasets. Typically, both a tumor sample and a “normal” sample from
the same individual are sequenced and compared; variants observed only in the tumor are considered to be
somatic mutations. However, this approach requires two samples for each individual.

Results: We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of
normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to
remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods.
Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal
samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal
approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing
dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-
only mutation detection shows similar recall (43–60%) but lesser precision (20–21%) to current matched tumor/normal
approaches (recall 43–73%, precision 30–82%) when compared to a “gold-standard” tumor/normal approach. The
inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in
the tumor-only analysis.

Conclusions: A detailed method for somatic mutation detection without matched normal samples enables study of
larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/
recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for
classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher
precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.
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Background
Methods for massively parallel sequencing analysis have
matured, even as sequencing technologies have undergone
continued, rapid improvement. Detection of somatic mu-
tations in cancer samples has proven to be challenging
due to the presence of inherited germline variants, sample
heterogeneity, and genomic instability. Somatic mutations
can be identified from massively parallel sequencing data

by directly comparing the DNA sequence from tumor
samples with their matched normal samples. This allows
subtraction of the germline variants shared by all cells in
an individual, leaving only acquired somatic mutations.
Somatic mutations include the important driver mutations
that give a cell the growth advantage leading to tumori-
genesis [1]. The paired tumor/normal approach to pre-
cisely identify somatic mutations has been used in
landscape studies that have identified commonly mutated
positions and genes in a wide variety of cancers, including
recent publications by The Cancer Genome Atlas consor-
tium (for review, see Watson et al. [2]). There are several
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implementations, including VarScan [3, 4], Shimmer [5],
SomaticSniper [6], Strelka [7], and MuTect [8]. However,
this approach effectively doubles the number of samples
that must be sequenced and analyzed and limits investiga-
tion to those tumor samples for which a matched normal
tissue sample is available. This approach is theoretically
sound and widely used, and many methods have been
compared and evaluated, including in the crowdsourced
DREAM challenge [9] and others [10]. However, the effi-
cacy of somatic mutation detection without matched nor-
mal samples has not been widely studied. Recently, Jones
et al. reported that tumor-only mutation detection re-
sulted in large numbers of false positive detections and
concluded that tumor-only detection should be used with
caution, even though the approach is common in clinical
testing [11].
As part of the Total Cancer Care® (TCC) project [12],

we have developed a large tumor bank consisting of
26,473 frozen tumor samples. Through collaboration
with a pharmaceutical partner, Merck & Co., 3917 sam-
ples from 3380 unique individuals were subjected to tar-
geted gene sequencing (TGS) covering 1321 genes of
interest. Here, we describe and evaluate a detailed ap-
proach for somatic mutation detection without matched
normal samples based on a Genome Analysis ToolKit
(GATK) [13, 14] pipeline. Although GATK is built on a
model assuming a diploid genome that is often not ap-
plicable in tumor samples, the tool is widely used for
somatic mutation detection. We therefore deliberately
choose to evaluate this approach because of the discon-
nect between theoretical concerns and widespread use.
We describe the effect of various filters on mutation de-
tection rates and compare tumor-only mutation detec-
tion to paired tumor-normal comparison approaches
using TGS data and whole exome sequencing (WES)
data from the TCGA project (250 samples from 5 dis-
eases). This study expands on the findings of Jones et al.
to allow for a better understanding of the limitations
and potential utility of tumor-only mutation detection.
We finally describe the detailed pipeline built for this
evaluation from publically available analysis tools, allow-
ing researchers to evaluate and utilize tumor-only muta-
tion detection themselves.

Methods
Experimental design
The objectives of this study were to define a specific meth-
odology to detect somatic mutations without matched
normal samples and to evaluate its performance. As a sub-
set of tumor samples did have a matched normal sample,
mutations were also directly compared between tumor-
only and tumor-normal mutation detection strategies to
calculate precision and recall.

Study cohorts
A cohort of samples from 3380 unique individuals (2575
primary solid tumors, 675 metastatic solid tumor, and 130
hematologic malignancies) from the TCC project was uti-
lized in this study (Fig. 1a). Samples were classified accord-
ing to site of tumor origin (Additional file 1: Table S1). The
sites with the highest number of samples include the lung,
large bowel, breast, kidney, ovary, and skin. These samples
were subjected to TGS across the protein coding exons of
1321 genes covering 3.8 megabases (Additional file 2:
Table S2). The median number of reads aligning per
sample was 15,283,830. The read depth was consistent
across tissue sites of origin with a median depth cover-
age of 141× (Additional file 3: Figure S1d). The median
percentage of targeted bases which covered ≥ 10× across
samples was 93.7%. Altogether, 53.4 million reads were
generated, for a total of 4.8 trillion bases.
To identify potential batch effects or other confound-

ing factors, a principal component analysis (PCA) was
performed on various sequence metrics, including miss-
ing values, mutation counts, read counts, and transition/

a

b

Fig. 1 Overview of cohorts. Cohort description and sample counts
for the TGS (a) and WES (b) cohorts

Teer et al. Human Genomics  (2017) 11:22 Page 2 of 13



transversion ratios. The majority of samples were
grouped together, with two smaller subgroups showing
some deviation (Additional file 3: Figure S1a). PCA load-
ings showed that the 1st component subgroup (tailing
out to the right) was affected by missing values and the
2nd component subgroup (tailing to the bottom left)
was affected by mutation counts (presumed to be sam-
ples with a hyper-mutator phenotype) (Additional file 3:
Figure S1b) It was noted that the sites of origin did not
cluster together, suggesting that the batch effects were
not responsible for similarities between samples within a
site of origin.
To assess the extent of potential sample issues using se-

quencing data and clinical metadata alone, the balance of
sequence reads aligning to the X and Y chromosomes was
examined to infer gender, which was then matched to
clinical data for each patient. The ratio of sequence reads
on chromosome X compared to chromosome Y varied
over 7 logs, but formed a very distinct bi-modal pattern
(Additional file 3: Figure S1c). The high ratio peak was in-
ferred to be female, and empirical cutoffs were set to deter-
mine gender across the cohort (male ≤ 4, female ≥ 5.75). Of
all samples with determined gender, 0.7% showed a discrep-
ant gender call and were excluded from further analysis.
As a part of the TCC cohort, 238 adjacent normal tissue

samples were available from individuals with cancer,
which were used to create a normal pool for filtering pur-
poses. Of these, 182 normal samples were paired with a
primary tumor sample: matched tumor/normal mutation
detection software was applied to these pairs for compari-
son to tumor-only mutation detection.
WES was also included from a cohort of 250 samples as-

sembled from five different cancers characterized as part of
The Cancer Genome Atlas (TCGA) project (Fig. 1b). Fifty
tumors each were selected from acute myeloid leukemia
(LAML), glioblastoma multiforme (GBM), lung adenocar-
cinoma (LUAD), ovarian serous cystadenocarcinoma (OV),
and skin cutaneous melanoma (SKCM) (Additional file 4:
Table S3). These samples each had a matched normal sam-
ple, which was used for the matched tumor/normal muta-
tion identification methods. One hundred of these normal
samples were selected for a normal pool, which was used
for tumor-only mutation detection.

Tissue samples and consent
Tissue samples were collected according to the TCC
methods and consent protocols detailed by Fensterma-
cher et al. [12].

TGS sequencing
DNA was subjected to solution-hybridization-selection
using SureSelect technology (Agilent Technologies, Santa
Clara, CA) targeting 1321 genes. Samples were then

sequenced on GAIIx sequencers using a 90 bp, paired-end
configuration (Illumina, Inc., San Diego, CA).

Analysis—alignment
Sequence reads were aligned to the human reference gen-
ome (hs37d5) using the Burrows-Wheeler Aligner (BWA)
version 0.5.9-r16 [15]. Duplicate reads were marked with
Picard-Tools 1.56 (http://broadinstitute.github.io/picard/).
Indel realignment and base quality score recalibration were
performed with GATK [13, 14]. GenomeAnalysisTKLite-
2.2 was used as it was one of the last freely available ver-
sions and therefore usable by a wider audience. Samtools
v0.1.16 was used for BAM file handling.

Analysis—tumor-only genotype determination
Multi-sample genotype determination was performed with
GATK UnifiedGenotyper. Variant confidence/quality by
depth (QD) metric was excluded from Variant Quality
Score Recalibration (VQSR), as we have previously found
this to penalize variants deviating from the expected 50%
alternate allele frequencies. Further modifications to the
pipeline are described in Additional file 5. Sequence vari-
ants were annotated with ANNOVAR [16], and additional
information was included from 1000 Genomes [17]
(20110521 release), ESP (http://evs.gs.washington.edu/EVS/
, version ESP6500SI-V2), and COSMIC [18] version 61.

Analysis—matched tumor/normal mutation detection
Tumor-normal mutation detection of SNVs and indels
was performed with Shimmer [5] (–minqual 20 –mapqual
16), Strelka [7] (v1.0.13, default settings), and MuTect [8]
(v1.1.4, –max_alt_alleles_in_normal_count 3 –max_alt_al-
lele_in_normal_fraction 0.05). In the MuTect analysis,
indels were called using GATK SomaticIndelDetector.

Analysis—secondary
BEDTools [19] was used for overlap calculations. The
analysis pipeline, VCF filtering scripts, and other analysis
scripts were written in Perl, bash, and R. Principal com-
ponent analysis was performed using Evince (v2.5.5 (Pre-
diktera AB, Umeå, Sweden)) (http://www.prediktera.se/).
Precision (positive predictive value) was calculated as

follows: mutations observed in both test method (GATK
tumor-only) and standard method (MuTect) (true posi-
tives) divided by total mutations called in test method.

Precision ¼ tp
tpþ fp

¼ mutations observed in test AND standard methods
total mutations observed in test method

Recall (sensitivity) was calculated as follows: mutations
observed in both test method and standard method (true
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positives) divided by total mutations called in standard
method.

Recall ¼ tp
tpþ fn

¼ mutations observed in test AND standard methods
total mutations observed in standard method

Results
Genotype calling and VQSR tuning
Somatic mutations were identified from tumor samples
using BWA [15] alignments and GATK [14] quality im-
provement and genotype determination. GATK’s Unified-
Genotyper module has the ability to determine the exact
genotype of each sample at every variant position when
using the multi-sample detection mode. This returns not
only a list of variants seen in each sample but also whether
non-variant samples have the reference genotype or are
“missing” at a position due to insufficient data. This ap-
proach is critical to ensure precise classification of samples
as mutated or reference for downstream phenotype associ-
ation analyses. We initially followed the best practices
guidelines with several adjustments (see Additional file 5).
BWA-GATK mutation detection was applied to the TGS

dataset, and VQSR FILTER status was examined. A high
rate of PASS putative mutations was observed, with about
5% of variants being assigned the least specific “SNPto100”
tranche. However, with near-default discovery and VQSR
settings, only 3.8% of the COSMIC v61 [18] mutations seen
more than five times had a value of PASS (Additional file 3:
Figure S2b), while 60% were in the least specific tranche
(SNPto100). Neither VQSR tuning (removing Haplotype-
Score and percentBadVariants) nor adding a cancer muta-
tion training set (COSMIC v61 mutations seen more than
once) greatly increased PASS count. The variant list was
then filtered on the target regions plus 25 flanking base
pairs (total size = 4.9 megabases) before VQSR, resulting in
a large increase in the number of final passing COSMIC
variants, 86.4%. This also resulted in a greater proportion
of all variants passing filter (Additional file 3: Figure S2a).
Finally, the target-region pre-filtering was combined with
cancer-specific VQSR settings and training, and a COSMIC
pass rate of 98.0% was observed. The overall pass rate also
increased to 95.5%, suggesting these settings may have re-
duced specificity (as fewer positions are filtered) but have
allowed very high sensitivity for known cancer mutations.
WES samples were less impacted by GATK settings

(Additional file 3: Figure S2c, d). The overall PASS rates
were slightly higher than in the TGS data, and COSMIC
mutations had a much higher PASS rate with default set-
tings (66.3% in WES vs. 3.8% in TGS). No COSMIC muta-
tions were observed in the SNPto100 tranche with any
applied settings. Tuned settings applied to the TGS cohort

above were also applied to the WES dataset and also in-
creased the proportion of both COSMIC and all PASS
mutations. As was observed in the TGS cohort, the high-
est PASS rate in the WES cohort occurred when the mu-
tations were first target-filtered, and then, VQSR was run
using COSMIC training. While less critical, tumor-specific
settings benefit whole exome sequencing as well by ensur-
ing known somatic mutations are not falsely removed.

Efficacy of various filtering strategies
Several strategies were applied to enrich for somatic muta-
tions. A median of 3328 potential mutations per sample
was detected with the tuned BWA-GATK pipeline (Fig. 2a,
“All”). The 1000 Genomes project [17, 20] has cataloged
common inherited genetic variation across many different
populations around the globe. Variants seen in this dataset
were excluded as a first-pass filter for inherited variation,
which decreased the putative mutation rate to a median of
608 per sample (Fig. 2a, “minus 1000 Genomes”). The
NHLBI Exome Sequencing Project (ESP) dataset, which
includes 6503 individuals, was used for further filtering.
Although we expected that the large increase in “control”
sample numbers would result in the exclusion of many
more rare inherited variants, the median mutation count
dropped only to 526 (Fig. 2a, “minus ESP”). Several larger
population databases have recently become available.
We examined the efficacy of filtering with ExAC [21]
and KAVIAR [22]. ExAC includes data from > 60,000
whole exomes, although we used the non-TCGA down-
load to avoid filtering known somatic mutations. KAVIAR
includes > 13,000 whole genomes and > 64,000 whole
exomes (including the ExAC database) and excludes
cancer genomes. Although cancer samples should be ab-
sent from these databases, we observed common somatic
mutations in both, necessitating the use of an allele fre-
quency cutoff. We found that removing variants present
in these databases at ≥ 1% allele frequency further de-
creases the number of detected mutations (Additional
file 3: Figure S3a).
Many putative variants are likely artifacts arising from

improper sequence alignment [23, 24], and these artifacts
tend to be common across samples. We reasoned that var-
iants observed commonly in tumor samples and also in a
pool of normal samples are not likely to be cancer driver
mutations and are more likely artifacts, especially when
common population variants have already been removed.
Potential artifacts were identified in a pool of 238 normal
samples using the tuned BWA-GATK pipeline. Although
these were matched samples, they were treated as un-
matched: any mutation observed in this normal pool data-
set at greater than or equal to 5% population allele
frequency was removed. This dramatically reduced the
number of putative tumor mutations to a median of 109
per sample (Fig. 2a, “minus Normal ≥ 5%”). A stricter filter
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of no more than 1% normal allele frequency further re-
duced the median putative mutation count to 62 (Fig. 2a,
Additional file 3: Figure S3a, “minusNormal ≥ 1%”).
Finally, excluding the VQSR Tranche100 variants resulted
in a final median mutation count of 57 (“minus VQSR
100”). This resulted in a final median mutation rate of
11.6/megabase investigated.
A subset of the TGS cohort also had matched adjacent

normal samples, allowing for a direct comparison of
matched tumor/normal mutation methods to our tumor-
only pipeline. We applied three different commonly used
algorithms for detection of mutations using matched
tumor/normal pairs: Shimmer, Strelka, and MuTect. These

methods have performed reasonably well in comparisons
[9, 10] and are all capable of detecting single nucleotide
and deletion/insertion mutations. Somatic mutations were
identified in 182 matched primary tumor/normal pairs
using Shimmer, Strelka, and MuTect, resulting in a median
mutation count of 48.0 per sample (9.83/megabase),
23.0 per sample (4.71/megabase), and 23.0 per sample
(4.71/megabase), respectively (Fig. 2a, right-hand side).
The same filtering strategy was applied to the WES

cohort tumor-only analysis. As different TCGA Genome
Sequencing Centers used different targeted capture de-
signs, the refSeq coding exons (plus 25 flanking base pairs)
were used as target regions. Although all 250 tumors had
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Fig. 2 Tumor-only mutation counts with filtering. a Boxplot showing numbers of mutations detected in the TGS cohort using tumor-only methods after
each filtering step (left) and using matched tumor-normal methods on 182 sample pairs (right). b Boxplot showing numbers of mutations detected in the
WES cohort using tumor-only methods after each filtering step (left) and using matched tumor-normal methods (right). c Boxplot demonstrating that in
the TGS cohort, analyzing the normal samples independent of the tumor samples results in reduced ability to remove potential artifacts. GATK variant
detection on all tumor and normal samples together, followed by isolation of the normal subset to annotate the tumor samples, results in the removal of
more potential artifacts. Median counts are indicated by the dark line in the middle of the box. The bottom and top of the box are the first and third
quartiles, respectively. The whiskers represent the most extreme points within 1.5 times the interquartile range. The y-axes are in a log scale
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a matched normal sample in the TCGA dataset, a subset
of 100 was selected for the normal pool and analyzed to-
gether with the tumor samples using the GATK tumor-
only mutation detection strategy. Putative mutation
counts were determined after each sequentially applied
filter. Mutation counts were higher than the TGS cohort
due to the larger target size (whole exome vs. 1321 genes).
As observed for the TGS cohort, the median putative
mutation count decreased with each additional filter
(Fig. 2b, Additional file 3: Figure S3b): all detected
(31,335), minus 1000 genomes (4099.5), minus ESP
(3180.5), minus normal ≥ 5% (680), minus normal ≥ 1%
(335), minus Tranche100 (327). A final mutation rate of
7.6/megabase was observed within the refSeq coding tar-
get (43.0 megabases, including 25 bp flanking regions).
The difference between mutation rates of TGS and WES
is most likely due to the differences in cohort makeup
(the TGS cohort has more samples from the more highly
mutated tumor types). Importantly, the pattern of putative
mutation count decrease was similar in the TGS and
WES cohorts: large initial decreases when removing
1000 genome variants; modest decreases after further
excluding ESP, KAVIAR, and ExAC; and then large
decreases after further filtering with a normal pool.
As the WES cohort used TCGA data, matched normal

samples were available for all tumors, enabling a direct
comparison of tumor-only and matched tumor/normal
mutation detection. Similar to the results observed in
the TGS cohort, mutation counts were lower with the
matched tumor/normal methods (Fig. 2b, right-hand
side): Shimmer 125 (2.9/megabase), Strelka 128 (3.0/
megabase), and MuTect 154.5 (3.6/megabase).
Normal pools proved to be very effective in removing

putative variants in both TGS and WES cohorts. Titra-
tion experiments were performed to determine filtering
effectiveness using fewer normal samples. The resulting
mutation counts were compared after filtering with
decreasing numbers of normal samples: from 238 down
to 12 (TGS cohort) and from 100 down to 20 (WES
cohort). Surprisingly, the amount of putative mutations
remaining after removing variants with normal sample al-
lele frequency ≥ 1% was stable down to 25 samples (TGS)
and 20 samples (WES) (Additional file 3: Figure S4a, b).
Furthermore, the exact method of mutation detection in
the normal pool affected the results. When the TGS
normal samples were analyzed in a separate, independent
GATK run, the number of putative artifacts removed was
less then when the normal samples were analyzed to-
gether with the tumor samples (Fig. 3c). This is likely due
to increased prior probability of detection when variants
are observed in other samples using GATK multi-sample
genotype detection. This suggests it is beneficial to
analyze all samples together and then extract the normal
samples for frequency calculations.

Precision, recall, and sensitivity for known tumor
mutations
Mutation detection performance was examined by compar-
ing results of each method at each mutated position.
MuTect tumor/normal was used as a truth set due to its
common usage in TCGA analyses, as well as its reasonable
performance in evaluations of tumor/normal methods. Pre-
cision and recall were calculated for each sample against
MuTect tumor/normal using GATK tumor-only, Strelka
tumor/normal, and Shimmer tumor/normal (Fig. 3a, b).
GATK tumor-only recall at all positions was similar to
Shimmer and slightly decreased compared to Strelka in
both TGS and WES datasets. However, the GATK tumor-
only precision was much lower than the Strelka in TGS,
and much lower than both Strelka and Shimmer in WES
data. We also noted precision and recall heterogeneity
across samples for each method. Precision and recall were
calculated at subsequent filter levels, which demonstrated
increasing precision and slightly decreasing recall with each
additional filter (Additional file 3: Figures S5 and S6). Al-
though many inherited variants are removed by population
filters, precision only moderately increases due to the large
number of remaining variants. This suggests it is not pos-
sible to precisely identify somatic mutations with current
tumor-only methods and that both population filters and a
normal pool are important to increase precision.
To further understand the differences between tumor-

only and matched tumor-normal mutation detection
methods, genotype calls were directly compared at each
position. The agreement of calls was counted within each
sample, and median values are displayed in Additional file 3:
Figure S7. In both TGS and WES cohorts, the tumor-only
method shows the most unique mutations. This was more
pronounced in the WES dataset, which agrees with the
earlier observation of a larger difference in mutation counts
between tumor-only and tumor-normal methods (Fig. 2).
Interestingly, Shimmer called many more unique muta-
tions than other tumor-normal methods in the TGS
dataset, but MuTect called many more unique mutations
in the WES cohort. Positions at which all methods made
the same mutation call were the more common (~ 5-fold)
than any other combination of two or more methods.
Despite this agreement, we noticed that many positions
were called by some tumor/normal methods and not
others (Additional file 3: Figure S8). Strelka had the
highest degree of overlap with the other two methods in
both cohorts.
Sensitivity for known cancer mutations was assessed

by determining the fraction of COSMIC mutations ob-
served in each dataset. 43.5% of those positions observed
commonly in COSMIC (more than 20 times) were also
observed in the tumor-only TGS analysis (Fig. 3c, right).
This fraction decreased as the less common mutations
were considered, likely due to the increased numbers of
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Fig. 3 Recall and precision of tumor-only and matched tumor-normal mutation detection. Recall and precision of methods compared to MuTect in TGS
(a) and WES (b). Distributions are represented with box plots, and individual data points are plotted as asterisks. Fraction of COSMIC mutations detected
by c matched tumor-normal and tumor-only methods within 182 TGS samples (left) and all TGS samples using tumor-only methods (right). d 250 WES
samples. Shading indicates the number of times the mutation was observed in the COSMIC v61 database. e TGS alternate allele fraction and accuracy of
KRAS G12/G13/Q61 mutations initially discovered by capillary sequencing. Not shown are the seven mutations detected in the TGS but not
capillary sequencing
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the more rare mutations as well as false positives (arti-
facts and common variants) in COSMIC. The fraction of
COSMIC mutations detected in 182 TGS tumor/normal
pairs was calculated from three different tumor-normal
pair mutation detection methods (Shimmer, Strelka,
MuTect) as well as from the GATK tumor-only method.
The fraction of COSMIC bases observed was highly
similar in all methods (Fig. 3c, left). Similar results were
observed in the WES cohort: the tumor-only mutation
detection method had similar sensitivity as the three dif-
ferent tumor-normal methods (Fig. 3d). This suggests
the tumor-only approach has equivalent sensitivity to
detect known cancer mutations.
Sample heterogeneity presents a specific challenge for

sensitive detection of somatic mutations. The fraction of
reads with a mutated base can be lower than expected
due to normal sample contamination, mutational hetero-
geneity within the tumor, or chromosomal amplification.
We therefore examined the sensitivity of our final tuned
pipeline to detect low-frequency mutations. One hun-
dred ninety of the lung samples that underwent TGS
were also subjected to capillary sequencing at the G12/
G13/Q61 KRAS loci. The capillary sequence data were
analyzed with both automated genotype calling pipelines
and extensive manual review of chromatograms in order
to detect low-frequency mutations. Of the 70 mutations
detected by capillary sequencing, 66 were also detected
using the tumor-only method. Of the four mutations not
detected, three had evidence of the variant, with allele
frequencies less than 10% (Fig. 3e). Therefore, given the
median overall target coverage of 141×, we observed a
mutation allele frequency sensitivity limit of ~ 10%. In
addition, seven mutations were detected only in TGS
data (not in capillary), with allele frequencies ranging
from 8 to 29% (mean = 18.0%, median = 15.6%).

Pan-cancer somatic mutation rates
Mutation rates detected by our tumor-only pipeline were
calculated across different tumor sites of origin in TGS
(sites with ≥ 50 samples) and WES cohorts. The frequen-
cies observed using tumor-only mutation detection were
higher than those from a matched tumor/normal large
consortium sequencing project [25] (Fig. 4a, b). We ob-
served a high variability in mutation rates in skin, uterus/
endometrium, lung, and large bowel in agreement with
the previous large consortium studies. Skin, uterus, and
lung have the highest mutation rates in the “tumor-only”
analyses; LAML and CLL have the lowest, mirroring other
studies. This suggests that somatic mutations can be
greatly enriched using tumor-only methods, but not as
precisely identified as matched tumor/normal methods.
Our observations have reproduced the overall mutation
frequency patterns of large global consortium studies in a
completely independent cohort.

Molecular associations with high mutation burden
Although the median mutation rate varies across tumor
sites, every site has outlier tumors with very high mutation
rates. To identify the potential molecular causes of high
mutation rates, we examined DNA polymerase epsilon
(POLE) exonuclease domain mutations (amino acids 268-
471 and R494 in NP_006222). The recurrent POLE muta-
tions almost always occur in the highly mutated outlier
samples (Fig. 4c). Singleton POLE mutations fell into two
groups: highly and moderately mutated tumors. Highly
mutated samples with POLE mutations were primarily ob-
served in tumors originating from the endometrium/
uterus, large bowel, and ovary. One highly mutated sam-
ple with a POLE mutation was observed in breast and
pancreatic cancers; the POLE-mutated sample was the
most highly mutated in each site.
We have recently observed that the presence of homopol-

ymer indels in both TGFBR2 and ACVR2A is highly corre-
lated with microsatellite instability (MSI) in TGS colorectal
samples [26]. Here, we demonstrate that these samples have
high mutation rates in the large bowel (Fig. 4d), strengthen-
ing the link between ACVR2A+TGFBR2 mutation and MSI
status. Additionally, several putative MSI samples in stom-
ach (2), endometrium (3), and breast (1) tumors were
observed. Notably, ACVR2A+TGFBR2 mutations and POLE
mutations only co-occurred once (singleton POLE muta-
tion). These observations confirm and extend previously
observed correlations of specific mutations and elevated
mutation rates. Many highly mutated samples remained un-
explained and require further analysis to identify mutational
mechanisms.

Discussion
We have presented an analysis strategy for the detection of
somatic mutations from tumor samples without matched
normal samples (Fig. 5, Additional file 5). GATK modifica-
tions for detecting somatic mutations included (1) limiting
putative mutations to targeted regions, (2) using a VQSR
training set of known cancer mutations, and (3) tuning of
settings (see Additional file 5) These modifications had a
greater impact on reducing false negatives in smaller target
sets. Tuning GATK also improved the filter quality of
known mutations in whole exome data, although fewer
false negatives were initially observed. The use of popula-
tion genomic datasets (1000 Genomes) was effective at
removing the vast majority of likely inherited variants, al-
though the large number of remaining false positive muta-
tions resulted in a small increase in precision. Interestingly,
the addition of larger population-specific germline datasets
(via the Exome Sequencing Project, ExAC, and KAVIAR)
each only removed a modest fraction of additional com-
mon variants compared to decreases observed after filter-
ing with a normal pool. Indeed, filtering with ExAC and
KAVIAR after the normal pool resulted in removal of only
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a few variants (Additional file 3: Figure S3). While popula-
tion databases are helpful in removing inherited variants,
they often include overlapping samples and can contain

known somatic mutations even when cancer samples have
been removed. Therefore, investigators should review
population datasets carefully before using them as a filter.

a b

c d

Fig. 4 Somatic mutation rates across different tissue types using the tumor-only method. Boxplot of mutation rates for tissue sites of origin in
a TGS (sites with more than 50 samples, a total of 3035 samples) and b WES. c The colored dots identify the samples with the indicated POLE
exonuclease domain mutation. d Homopolymer run mutations (the presence of ACVR2A and TGFBR2 mutations side by side infers MSI status).
The y-axes are in a log scale
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We demonstrated and quantitated the utility of exclud-
ing variants observed in a subset pool of normal samples
to enrich for somatic mutations. Arbitrary normal pool
variant frequency cutoffs of ≥ 5 and ≥ 1% were selected to
ensure that known cancer mutations were not erroneously
removed. Setting a normal pool allele frequency threshold
is important: we observed common cancer mutations
(BRAF V600E, PTEN truncation, TP53 G245C) in a single
normal sample each (TGS cohort). The TGS normal sam-
ples were the adjacent normal tissue from surgical resec-
tions, which may have contained infiltrating tumor cells.
This risk is lessened with peripheral blood normal sam-
ples, but observations of circulating tumor cells or cell-
free tumor DNA (reviewed in [27]) suggest that a normal
pool allele frequency cutoff should be used to avoid false
negatives. We also recommend examining the normal
sample variants for any well-known cancer mutations to
avoid erroneous exclusion. Although we describe muta-
tion detection in tumors without matched normal samples
as “tumor-only,” the pool of normal samples is very
important for reducing false positive variants and should
be included in experimental design.
We observed a relatively small difference in the number

of putative mutations removed using differently sized nor-
mal sample pools. Indeed, as few as 20 to 25 normal sam-
ples may be used to effectively remove many potential
artifacts from a large tumor sequencing dataset. We also
found that it was important to identify variants using
GATK multi-sample genotype detection on the combined
set of tumor and normal samples. Our final results show
that more putative mutations were detected compared to
that in three tumor/normal comparison methods. When
compared to MuTect, a commonly used tumor/normal
method, GATK tumor-only mutation detection, showed
similar sensitivity/recall to tumor/normal methods. How-
ever, precision was much lower. Many of these “mutations”
are likely to be very rare inherited variants that could only
be removed by direct tumor/normal comparison, although
future method improvements and larger population variant
databases may improve precision. Interestingly, the overlap
of calls among precise tumor/normal mutation detection
was also imperfect, highlighting the challenge of somatic
mutation detection in heterogeneous tumor samples. Al-
though numerous filters were applied to increase mutation
specificity, tumor-only sensitivity to detect known muta-
tions was equivalent to tumor/normal pair mutation
detection. Comparison with manually reviewed capillary
sequencing data demonstrated high tumor-only sensitivity
(down to 10% mutant allele frequency) in heterogeneous

Fig. 5 Schematic of tumor-only mutation calling pipeline. Analytical
pipeline overview for tumor mutation calling with a subset of
matched normal samples. See Additional file 5 for details of
commands, options, and settings
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tumor samples. Therefore, tumor-only sequencing supple-
mented with a normal pool is an effective alternative to
paired tumor/normal sequencing, with similar recall but
reduced precision.
Recently, Jones et al. [11] described tumor-only sequen-

cing in 58 targeted samples (111 genes) and 100 whole
exomes. We have extended their observations by examin-
ing 3380 TGS samples (1321 genes) and 250 WES samples
(drawn from 5 diseases included in TCGA). Our observa-
tions of high sensitivity for known mutations, but lower
precision (especially in WES), agree with those of Jones et
al.. We have additionally demonstrated significant non-
overlap between three different matched tumor/normal
methods. This suggests differences between tumor-only
and tumor/normal methods may be due to inaccuracies in
both analysis strategies. While Jones et al. conclude
tumor-only methods may not be sufficient for high accur-
acy in the clinical setting, we find the high degree of sensi-
tivity may be useful for tumor classification. Finally, we
offer detailed methods to enable others to utilize tumor-
only mutation detection.
The observed recall and precision of the tumor-only

approach with a limited normal pool suggests that this
method lends itself to specific use cases. It has been sug-
gested [25] that there are still many cancer genes and
mutations to be discovered, requiring sequencing of
many more samples. Although the tumor-only approach
results in almost half the cost to reach a target sample
size (as each tumor no longer needs a matched normal
sample), our analysis demonstrated much lower preci-
sion that would result in many more false positive muta-
tions. We conclude that tumor-only approaches are not
appropriate for novel mutation detection. However,
given similar sensitivity to detect known cancer muta-
tions in heterogeneous tumor samples with greatly re-
duced cost, the tumor-only detection method can be
useful for characterization of known mutations. Indeed,
we reproduced earlier observations of mutation rate pat-
terns across diseases. We also identified mutations in
the exonuclease domain of POLE and mutations asso-
ciated with MSI as two mechanisms explaining highly
mutated samples. MSI mutations were observed in large
bowel but also occasionally in endometrium and stom-
ach tumors. POLE mutations were observed in many
tumor types: endometrium/uterus, large bowel, ovary,
pancreas, and breast. Sample classification by known re-
current mutations enables the critical next step in cancer
genomics: association of genomic alterations with clin-
ical phenotype. The almost doubling of sample size at a
given cost gained from omitting matched normal sam-
ples can dramatically improve power to associate muta-
tions with phenotype, but researchers must consider the
loss of precision that results when matched normal sam-
ples are not used.

Conclusions
Detection of somatic mutations using tumor samples
and a smaller subset of normal samples is a valid strat-
egy for cancer genomics studies. The use of population
datasets (1000 Genomes) reduces the number of inher-
ited variants and artifacts. However, filtering against a
pool of normal samples captured and sequenced with
the same technology increases precision noticeably and
should be considered a required part of a “tumor-only”
sequencing experiment. We find that recall across all ob-
served mutations is similar to matched tumor/normal
methods, and sensitivity for known cancer mutations is
equivalent. However, the precision is lower: many puta-
tive mutations detected by the tumor-only method are
not observed in matched tumor/normal methods. There-
fore, tumor-only detection methods as described here
are appropriate for characterization of known mutations
in samples. Matched tumor/normal mutation detection
is more appropriate for applications requiring high pre-
cision such as novel mutation detection and mutation
signature analysis and remains the optimal approach,
especially as sequencing costs continue to decrease.

Additional files

Additional file 1: Table S1. Sample counts by the site of tumor origin.
(XLSX 35 kb)

Additional file 2: Table S2. List of 1321 targeted genes. (XLS 83 kb)

Additional file 3: Figure S1. Large tumor dataset quality control metrics.
A. Principal component analysis and B. loadings using sequencing metrics.
Colors in A. represent the different tissue sites of origin. C. Ratio of sequence
reads aligning to the X and Y chromosome and cutoffs used to infer gender.
D. Histogram of average coverage over targeted bases (filtered, aligned reads).
Figure S2: VQSR filtering effects on tumor-only mutation detection. A.
Fraction of total putative TGS mutations falling in each GATK VQSR
tranche (PASS being the most specific, SNPto100 being the least specific). B.
Fraction of TGS mutations seen in COSMIC more than five times falling into
each VQSR tranche. C. Fraction of total putative WES mutations falling in
each GATK VQSR tranche (PASS being most specific, SNPto100 being least
specific). D. Fraction of WES mutations seen in COSMIC more than five times
falling into each VQSR tranche. Figure S3: Mutation counts after filtering with
additional population databases. Boxplots showing numbers of mutations
detected after filtering with KAVIAR, ExAC, or both (excluding AF ≥ 1%) in
addition to 1000 Genomes and ESP. The rightmost columns show the minimal
effect of filtering with KAVIAR and ExAC after the normal filter has been applied.
A. TGS cohort, B. WES cohort. Median counts are indicated by the dark line in
the middle of the box. The bottom and top of the box are the first and third
quartiles, respectively. The whiskers represent the most extreme points within
1.5 times the interquartile range. The y-axes are in the log scale. Figure S4:
Normal pool features affect the ability to remove variants. Boxplots showing
the putative mutation counts after filtering with titrated sample counts in the
normal pool for A. TGS cohort, B. WES cohort. Figure S5: Total nonref counts,
precision, and recall with subsequent filters. Total nonref counts (left), precision
compare to MuTect (middle), and recall compared to MuTect (right) for A. TGS
and B. WES. All plots are in a linear scale. Figure S6: Precision-recall curve. Plot
showing approximate precision vs recall for A. TGS and B. WES. Data point
circles are area-proportional to the number of putative mutations at each filter
level. Note the largest circle across the middle of the plots corresponds to
precision = 0, recall = 1. Also note that data point circle sizes are scaled to fit,
and the scaling factors are different for TGS and WES. The red line indicates
performance of the random classifier based on positives (median number of
MuTect call)/total positions (targeted bases). Figure S7: Overlap between
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mutation calls across four methods. Non-area-proportional Venn diagram
showing median mutation counts across samples called by each combination
of methods. The bold underlined values are the intersection of all the four
methods. The underlined values are the counts unique to each method. A.
TGS (TCC) cohort and B. WES (TCGA) cohort. Figure S8: Overlap between
mutation calls across three matched tumor/normal methods. Non-area-
proportional Venn diagram showing median mutation counts across
samples called by each combination of methods. The bold underlined
values are the intersection of all the three methods. The underlined values
are the counts unique to each method. A. TGS (TCC) cohort and B. WES
(TCGA) cohort. (PDF 945 kb)

Additional file 4: Table S3. List of TCGA samples used. (XLSX 63 kb)

Additional file 5: Methods: A detailed description of the analysis methods
used for the detection of somatic mutations with an unmatched pool of
normal samples. (DOCX 106 kb)
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